JPH0845505A - Hydrogen storage alloy electrode for metal-hydride alkaline storage battery - Google Patents
Hydrogen storage alloy electrode for metal-hydride alkaline storage batteryInfo
- Publication number
- JPH0845505A JPH0845505A JP6197847A JP19784794A JPH0845505A JP H0845505 A JPH0845505 A JP H0845505A JP 6197847 A JP6197847 A JP 6197847A JP 19784794 A JP19784794 A JP 19784794A JP H0845505 A JPH0845505 A JP H0845505A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- storage alloy
- hydrogen
- electrode
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は金属−水素化物アルカリ
蓄電池用の水素吸蔵合金電極に係わり、詳しくは高率放
電容量密度及び低率放電容量密度がともに大きく、しか
も充放電サイクル特性に優れる水素吸蔵合金電極を得る
ことを目的とした電極材料たる水素吸蔵合金粉末の改良
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode for a metal-hydride alkaline storage battery, and more specifically, it has a large high rate discharge capacity density and a low rate discharge capacity density and is excellent in charge and discharge cycle characteristics. The present invention relates to improvement of hydrogen storage alloy powder, which is an electrode material for obtaining a storage alloy electrode.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
水素を可逆的に吸蔵及び放出することができる水素吸蔵
合金の開発が盛んに行われており、斯かる水素吸蔵合金
を負極材料として用いた金属−水素化物アルカリ蓄電池
が、従来汎用されている鉛蓄電池、ニッケル−カドミウ
ム蓄電池に比べて、高容量化が可能であり、しかも環境
を汚染する心配が少ないなどの理由から、次世代のアル
カリ蓄電池の主流を占めるものとして有望視されてい
る。2. Description of the Related Art In recent years,
A hydrogen storage alloy capable of reversibly storing and releasing hydrogen has been actively developed, and a metal-hydride alkaline storage battery using such a hydrogen storage alloy as a negative electrode material has been conventionally used for lead. Compared with storage batteries and nickel-cadmium storage batteries, it is considered promising as the mainstream of the next-generation alkaline storage batteries because it has a higher capacity and is less likely to pollute the environment.
【0003】而して、金属−水素化物アルカリ蓄電池用
の水素吸蔵合金としては、水素吸蔵合金の合金塊(イン
ゴット)、薄片、球状粉を機械的に粉砕して得た粉砕粉
(特開平4−126361号公報)や、ガスアトマイズ
法により作製した球状粉(特開平3−116655号公
報)などが提案されている。Thus, as a hydrogen storage alloy for a metal-hydride alkaline storage battery, a crushed powder obtained by mechanically crushing an alloy lump (ingot), flakes, or spherical powder of the hydrogen storage alloy (Japanese Patent Laid-Open No. 4-496). -126361), spherical powder produced by the gas atomizing method (Japanese Patent Laid-Open No. 3-116655), and the like.
【0004】しかしながら、これらの粉砕粉又は球状粉
をそのまま電極材料として使用した従来の水素吸蔵合金
電極には、それぞれ次に示す問題があった。However, the conventional hydrogen storage alloy electrodes using the pulverized powder or spherical powder as they are as electrode materials have the following problems.
【0005】すなわち、粉砕粉を使用した場合は、水素
吸蔵合金粒子同士の接触が主に面接触となるため電気的
接触抵抗が小さいという利点がある反面、水素吸蔵合金
粉末の嵩比重が小さいために充填密度が低いという欠点
がある。すなわち、粉砕粉を使用した水素吸蔵合金電極
には、低率放電における放電容量密度が低いという問題
があった。一方、球状粉を使用した場合は、水素吸蔵合
金粉末の嵩比重が大きいために充填密度が高いという利
点がある反面、水素吸蔵合金粒子同士の接触が主に点接
触となるために電気的接触抵抗が大きいという欠点があ
る。すなわち、球状粉を使用した水素吸蔵合金電極に
は、高率放電における放電容量密度が低いととともに、
電極反応が点接触の部分で集中的に行われるために水素
吸蔵合金の微分化が急激に進行し、充放電サイクル特性
が良くないという問題があった。That is, when pulverized powder is used, the hydrogen storage alloy particles are mainly in surface contact with each other, which has the advantage that the electrical contact resistance is small, while the hydrogen storage alloy powder has a small bulk specific gravity. Has the drawback of low packing density. That is, the hydrogen storage alloy electrode using the pulverized powder has a problem that the discharge capacity density in the low rate discharge is low. On the other hand, when spherical powder is used, there is an advantage that the packing density is high because the bulk specific gravity of the hydrogen storage alloy powder is high, but on the other hand, the hydrogen storage alloy particles are mainly in point contact with each other, so that electrical contact is made. It has the drawback of high resistance. That is, the hydrogen storage alloy electrode using the spherical powder, the discharge capacity density at high rate discharge is low,
Since the electrode reaction is intensively carried out at the point contact portion, the differentiation of the hydrogen storage alloy rapidly progresses, and there is a problem that the charge / discharge cycle characteristics are not good.
【0006】本発明は、従来の水素吸蔵合金電極におけ
る上述した二律背反的な問題を解決するべくなされたも
のであって、その目的とするところは、高率放電容量密
度及び低率放電容量密度がともに大きく、しかも充放電
サイクル特性に優れる金属−水素化物アルカリ蓄電池用
の水素吸蔵合金電極を提供するにある。The present invention has been made to solve the above-mentioned trade-off between the conventional hydrogen storage alloy electrodes, and its purpose is to achieve high-rate discharge capacity density and low-rate discharge capacity density. It is intended to provide a hydrogen storage alloy electrode for a metal-hydride alkaline storage battery, both of which are large and have excellent charge / discharge cycle characteristics.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る水素吸蔵合金電極(以下、「本発明電
極」と称する。)は、球状の水素吸蔵合金粒子、ほぼ球
状の水素吸蔵合金粒子、鶏卵状の水素吸蔵合金粒子又は
これらの2種以上の混合物からなる水素吸蔵合金粉末
を、熱処理して部分的に焼結させ、必要に応じて解砕し
てなる嵩比重3.3以上の一部焼結水素吸蔵合金粉末
が、電極材料として使用されている。A hydrogen storage alloy electrode according to the present invention (hereinafter, referred to as "the present electrode") for achieving the above object is a spherical hydrogen storage alloy particle, and a substantially spherical hydrogen storage alloy. Bulk specific gravity 3.3 obtained by heat-treating alloy particles, egg-shaped hydrogen-absorbing alloy particles, or hydrogen-absorbing alloy powder composed of a mixture of two or more of these, partially sintering, and crushing as necessary. The above partially sintered hydrogen storage alloy powder is used as an electrode material.
【0008】本発明では、球状の水素吸蔵合金粒子、ほ
ぼ球状の水素吸蔵合金粒子、鶏卵状の水素吸蔵合金粒子
又はこれらの2種以上の混合物(以下、これらの水素吸
蔵合金粒子を、「球状粒子等」と称することがある。)
からなる水素吸蔵合金粉末を、熱処理により部分的に焼
結させ、その後必要に応じて解砕したものを電極材料と
して使用する。熱処理により球状粒子等同士を一部焼結
させることにより、球状粒子等間の接触の一部が点接触
から面接触に変化するので、電気的接触抵抗が減少す
る。尤も、過度に焼結させると、嵩比重が極端に小さく
なり、電極への水素吸蔵合金の充填密度が極端に低下し
て、低率放電における放電容量密度が高い水素吸蔵合金
電極を得ることが困難になったり、解砕不能により充填
することができなくなったりする。そこで、本発明で
は、熱処理後又は解砕後の嵩比重が3.3以上、好まし
くは3.5以上となるように部分的に焼結したものを電
極材料として使用する。このように熱処理後又は解砕後
の嵩比重が3.3以上、好ましくは3.5以上の一部焼
結水素吸蔵合金粉末を使用することにより、低率放電に
おける放電容量密度を殆ど低下させることなく、高率放
電における放電容量密度の高い水素吸蔵合金を得ること
が可能になるのである。In the present invention, spherical hydrogen storage alloy particles, substantially spherical hydrogen storage alloy particles, egg-shaped hydrogen storage alloy particles or a mixture of two or more thereof (hereinafter, these hydrogen storage alloy particles are referred to as “spherical” Sometimes referred to as "particles, etc.")
The hydrogen-absorbing alloy powder consisting of is partially sintered by heat treatment and then crushed if necessary to be used as an electrode material. By partially sintering the spherical particles or the like by heat treatment, a part of the contact between the spherical particles or the like changes from point contact to surface contact, so that the electrical contact resistance decreases. However, if sintered excessively, the bulk specific gravity becomes extremely small, the packing density of the hydrogen storage alloy in the electrode is extremely lowered, and a hydrogen storage alloy electrode having a high discharge capacity density at low rate discharge can be obtained. It becomes difficult, and it becomes impossible to fill it because it cannot be crushed. Therefore, in the present invention, a partially sintered material having a bulk specific gravity after heat treatment or crushing of 3.3 or more, preferably 3.5 or more is used as an electrode material. As described above, by using the partially sintered hydrogen storage alloy powder having a bulk specific gravity of 3.3 or more, preferably 3.5 or more after heat treatment or crushing, the discharge capacity density at low rate discharge is almost reduced. Without this, it is possible to obtain a hydrogen storage alloy having a high discharge capacity density in high rate discharge.
【0009】本発明における球状粒子等としては、遠心
噴霧法、Arガス等の不活性ガスで水素吸蔵合金溶湯を
細孔より押し出して噴霧するガスアトマイズ法などによ
り作製されたものが例示される。Examples of the spherical particles and the like in the present invention include those produced by a centrifugal atomizing method, a gas atomizing method in which a molten hydrogen-absorbing alloy is extruded from the pores with an inert gas such as Ar gas and atomized.
【0010】[0010]
【作用】本発明電極は、水素吸蔵合金粉末を構成する球
状粒子等の一部を熱処理により焼結させた一部焼結水素
吸蔵合金粉末を電極材料として使用しているので、球状
粒子等からなる水素吸蔵合金粉末をそのまま電極材料と
して使用した従来の水素吸蔵合金電極に比し、球状粒子
等間の電気的接触抵抗が小さい。また、本発明電極は、
熱処理後又は解砕後の嵩比重が3.3以上の一部焼結水
素吸蔵合金粉末を使用しているので、充填密度が高い。The electrode of the present invention uses partially sintered hydrogen storage alloy powder obtained by sintering a part of spherical particles constituting hydrogen storage alloy powder by heat treatment as an electrode material. The electric contact resistance between the spherical particles and the like is smaller than that of the conventional hydrogen storage alloy electrode in which the hydrogen storage alloy powder is directly used as the electrode material. Further, the electrode of the present invention,
Since a partially sintered hydrogen storage alloy powder having a bulk specific gravity of 3.3 or more after heat treatment or crushing is used, the packing density is high.
【0011】[0011]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.
【0012】〔水素吸蔵合金粉末の作製〕Mm(ミッシ
ュメタル)とNiとCoとMnとAlとをモル比1.
0:3.2:1.0:0.6:0.2の割合で混合し、
高周波誘導加熱溶解炉にて種々の温度で加熱して水素吸
蔵合金溶湯を得た後、その水素吸蔵合金溶湯をArガス
で細孔より押し出して噴霧するガスアトマイズ法によ
り、球状粒子(短径/長径の比=1)からなる水素吸蔵
合金粉末M1−0、鶏卵状粒子(短径/長径の比=1/
2)からなる水素吸蔵合金粉末M2−0及び鶏卵状粒子
(短径/長径の比=1/5)からなる水素吸蔵合金粉末
M3−0を作製した。[Production of Hydrogen Storage Alloy Powder] Mm (Misch metal), Ni, Co, Mn and Al in a molar ratio of 1.
Mix at a ratio of 0: 3.2: 1.0: 0.6: 0.2,
Spherical particles (minor diameter / major diameter) Ratio = 1) hydrogen storage alloy powder M1-0, egg-shaped particles (minor axis / major axis ratio = 1 /
The hydrogen storage alloy powder M2-0 made of 2) and the hydrogen storage alloy powder M3-0 made of egg-shaped particles (ratio of minor axis / major axis = 1/5) were produced.
【0013】比較のために、上記と同じ組成の水素吸蔵
合金溶湯を金型に流し込み、冷却して作製したインゴッ
トを機械的に粉砕して、水素吸蔵合金粉末M4−0を作
製した。For comparison, a hydrogen-absorbing alloy powder M4-0 was prepared by pouring a molten metal of the same hydrogen-absorbing alloy composition into a mold and cooling the resulting ingot to mechanically crush it.
【0014】また、上記水素吸蔵合金粉末M1−0〜M
4−0を温度及び時間を制御して熱処理し、さらに解砕
し或いは解砕することなく、平均粒径50μmの種々の
水素吸蔵合金粉末M1−1〜M1−11、M2−1〜M
2−8、M3−1〜M3−4及びM4−1を作製した。
各水素吸蔵合金粉末を構成する粒子の短径/長径の比、
熱処理の有無、熱処理温度、熱処理時間、解砕の有無及
び嵩比重を表1にまとめて示す。熱処理の欄の焼結の程
度の判断は、SEMにより観察した結果である。嵩比重
は、JIS K−5101規格の嵩比重測定装置を用い
て測定した値である。なお、水素吸蔵合金粉末M2−8
は焼結がかなり進行したために解砕することが不可能で
あった。このため、水素吸蔵合金粉末M2−8は、電極
材料となし得なかった。Further, the above hydrogen storage alloy powders M1-0 to M
4-0 is heat-treated at a controlled temperature and time, and further crushed or without crushing, various hydrogen storage alloy powders M1-1 to M1-11, M2-1 to M having an average particle diameter of 50 μm.
2-8, M3-1 to M3-4 and M4-1 were produced.
The ratio of the minor axis / major axis of the particles constituting each hydrogen storage alloy powder,
Table 1 collectively shows the presence or absence of heat treatment, the heat treatment temperature, the heat treatment time, the presence or absence of crushing, and the bulk specific gravity. The judgment of the degree of sintering in the column of heat treatment is the result of observation by SEM. The bulk specific gravity is a value measured using a bulk specific gravity measuring device of JIS K-5101 standard. The hydrogen storage alloy powder M2-8
It was impossible to disintegrate because the sintering progressed considerably. Therefore, the hydrogen storage alloy powder M2-8 could not be used as an electrode material.
【0015】[0015]
【表1】 [Table 1]
【0016】〔水素吸蔵合金電極の作製〕表1に示すM
2−8を除く各水素吸蔵合金粉末(組成式:MmNi
3.2 Co1.0 Al0.2 Mn0.6 )800gにPEO(ポ
リエチレンオキシド)の5重量水溶液160gを加えて
混合し、スラリーを調製し、各スラリーを厚さ0.08
mmのパンチングメタルの両面に塗布し、乾燥して、水
素吸蔵合金電極(電極寸法:0.5mm×20mm×3
0mm)を作製した。[Preparation of Hydrogen Storage Alloy Electrode] M shown in Table 1
Each hydrogen storage alloy powder except 2-8 (compositional formula: MmNi
3.2 Co 1.0 Al 0.2 Mn 0.6 ) 800 g, 160 g of 5 weight aqueous solution of PEO (polyethylene oxide) was added and mixed to prepare a slurry, and each slurry had a thickness of 0.08.
mm punching metal applied on both sides, dried, and hydrogen storage alloy electrode (electrode size: 0.5 mm x 20 mm x 3
0 mm) was produced.
【0017】〔ニッケル−水素化物アルカリ蓄電池の組
立〕各水素吸蔵合金電極(負極)の両面に公知の焼結式
ニッケル極(正極)を対向配置して、開放型のニッケル
−水素化物アルカリ蓄電池を組み立てた。電解液とし
て、6Mの水酸化カリウム水溶液に水酸化リチウムを1
Mの割合で溶かしたアルカリ水溶液を使用した。[Assembly of Nickel-Hydride Alkaline Storage Battery] An open-type nickel-hydride alkaline storage battery is prepared by disposing a known sintered nickel electrode (positive electrode) on both sides of each hydrogen storage alloy electrode (negative electrode) so as to face each other. Assembled As an electrolyte, 1M lithium hydroxide was added to 6M potassium hydroxide aqueous solution.
An alkaline aqueous solution dissolved at a ratio of M was used.
【0018】〔各アルカリ蓄電池の高率放電における放
電容量密度、低率放電における放電容量密度及び充放電
サイクル特性〕各アルカリ蓄電池を50mAで10時間
充電した後、50mAで1.0Vまで放電する工程を5
サイクル繰り返して、水素吸蔵合金電極を活性化処理し
た。[Discharge capacity density at high rate discharge, discharge capacity density at low rate discharge and charge / discharge cycle characteristics of each alkaline storage battery] A step of charging each alkaline storage battery at 50 mA for 10 hours and then discharging at 50 mA to 1.0 V 5
The cycle was repeated to activate the hydrogen storage alloy electrode.
【0019】次いで、各アルカリ蓄電池を50mAで1
0時間充電した後、200mAで1.0Vまで放電し
て、各アルカリ蓄電池の放電容量密度C1(高率放電に
おける放電容量密度)を求めた。Next, each alkaline storage battery is operated at 50 mA at 1
After charging for 0 hours, the battery was discharged at 200 mA to 1.0 V, and the discharge capacity density C1 (discharge capacity density at high rate discharge) of each alkaline storage battery was obtained.
【0020】上記放電容量密度C1を求めた後、各アル
カリ蓄電池をさらに50mAで1.0Vまで放電して、
各アルカリ蓄電池の放電容量密度Cを求めた。因みに、
この放電容量密度Cと先に求めた放電容量密度C1との
和C2は、50mAで10時間充電した後、50mAで
1.0Vまで放電した場合の放電容量密度(低率放電に
おける放電容量密度)に相当する。放電容量密度C1と
放電容量密度C2との比の値、すなわちC1/C2は、
水素吸蔵合金電極の電子伝導性の良否を示す指標であ
り、この値が大きいものほど電子伝導性が良いことを表
している。After obtaining the above discharge capacity density C1, each alkaline storage battery was further discharged at 50 mA to 1.0 V,
The discharge capacity density C of each alkaline storage battery was determined. By the way,
The sum C2 of the discharge capacity density C and the previously obtained discharge capacity density C1 is the discharge capacity density when discharged to 1.0 V at 50 mA after being charged at 50 mA for 10 hours (discharge capacity density at low rate discharge). Equivalent to. The value of the ratio between the discharge capacity density C1 and the discharge capacity density C2, that is, C1 / C2 is
It is an index showing the electron conductivity of the hydrogen storage alloy electrode, and the larger this value is, the better the electron conductivity is.
【0021】上記放電容量密度C2を求めた後、各アル
カリ蓄電池をさらに50mAで10時間充電した後、5
0mAで1.0Vまで放電する工程を1サイクルとする
充放電サイクル試験を行って、300サイクル目の放電
容量密度C3を求め、C3のC2に対する比率〔(C3
/C2)×100(%)〕を算出した。この比率は、各
アルカリ蓄電池の充放電サイクル特性の指標であり、こ
の比率の大きいものほど、充放電サイクル特性が良いこ
とを表している。After obtaining the discharge capacity density C2, each alkaline storage battery was further charged at 50 mA for 10 hours, and then 5
A charging / discharging cycle test in which the process of discharging to 1.0 V at 0 mA is one cycle was performed to obtain the discharge capacity density C3 at the 300th cycle, and the ratio of C3 to C2 [(C3
/ C2) × 100 (%)] was calculated. This ratio is an index of the charge / discharge cycle characteristics of each alkaline storage battery, and the larger the ratio, the better the charge / discharge cycle characteristics.
【0022】各アルカリ蓄電池の負極の充填密度(g/
cc)、C1、C2、C1/C2、及びC3/C2の比
率を表2〜表4に示す。これらの表には、使用した水素
吸蔵合金粉末及び嵩比重も併せて示してある。Packing density of the negative electrode of each alkaline storage battery (g /
The ratios of cc), C1, C2, C1 / C2, and C3 / C2 are shown in Tables 2-4. In these tables, the hydrogen storage alloy powder used and the bulk specific gravity are also shown.
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】[0025]
【表4】 [Table 4]
【0026】表2〜表4に示すように、本発明電極を使
用したアルカリ蓄電池(A−2〜A−11,B−2〜B
−7,C−2〜C−4)では、C1が204〜222m
Ah/g(1018〜1087mAh/cc)、C1/
C2が0.65〜0.70と、それぞれの値が大きいの
に対して、比較電極を使用したアルカリ蓄電池(A−
0,A−1,B−0,B−1,C−0,C−1)では、
C1が170〜191mAh/g(907〜961mA
h/cc)、C1/C2が0.59〜0.61と、それ
ぞれの値が小さい。このように本発明電極を使用したア
ルカリ蓄電池のC1及びC1/C2の値が大きいのは、
水素吸蔵合金粒子が部分的に焼結されているために水素
吸蔵合金粒子間の電気的接触抵抗が低減されているため
である。As shown in Tables 2 to 4, alkaline storage batteries (A-2 to A-11, B-2 to B) using the electrodes of the present invention are used.
-7, C-2 to C-4), C1 is 204 to 222 m
Ah / g (1018-1087 mAh / cc), C1 /
C2 is 0.65 to 0.70, each of which is large, whereas an alkaline storage battery using a reference electrode (A-
0, A-1, B-0, B-1, C-0, C-1),
C1 is 170-191 mAh / g (907-961 mA)
h / cc) and C1 / C2 are as small as 0.59 to 0.61. Thus, the values of C1 and C1 / C2 of the alkaline storage battery using the electrode of the present invention are large,
This is because the hydrogen storage alloy particles are partially sintered and thus the electrical contact resistance between the hydrogen storage alloy particles is reduced.
【0027】また、本発明電極を使用したアルカリ蓄電
池のC3/C2の比率は74〜78%であるのに対し
て、比較電極を使用したアルカリ蓄電池のC3/C2の
比率は59〜67%である。比較電極を使用したアルカ
リ蓄電池のC3/C2の比率が小さいのは、水素吸蔵合
金粒子間の接触が点接触であるために、電極反応がその
点接触している部分で集中的に行われるようになり、微
粉化が急速に進行したためと考えられる。The alkaline storage battery using the electrode of the present invention has a C3 / C2 ratio of 74 to 78%, while the alkaline storage battery using a reference electrode has a C3 / C2 ratio of 59 to 67%. is there. The C3 / C2 ratio of the alkaline storage battery using the reference electrode is small because the contact between the hydrogen storage alloy particles is point contact, so that the electrode reaction is concentrated at the point contact part. It is considered that the pulverization rapidly progressed.
【0028】以上の結果から、球状の水素吸蔵合金粒子
からなる水素吸蔵合金粉末を部分的に焼結させることに
より、高率放電特性及び充放電サイクル特性を改善する
ことができることが分かる。From the above results, it is understood that high rate discharge characteristics and charge / discharge cycle characteristics can be improved by partially sintering the hydrogen storage alloy powder consisting of spherical hydrogen storage alloy particles.
【0029】さらに、本発明電極の充填密度は4.4〜
5.3g/ccであり、通常の粉砕合金を使用した比較
電極(M4−0,M4−1)の充填密度4.1〜4.2
g/ccよりも高い。このため、低率放電における放電
容量密度C2のうち、重量当たりの放電容量密度につい
ては、本発明電極のC2(309〜319mAh/g)
と比較電極(M4−0,M4−1)のC2(305〜3
11mAh/g)とで大きな差はないが、体積当たりの
放電容量密度については、本発明電極のC2(1382
〜1675mAh/cc)と比較電極(M4−0,M4
−1)のC2(1275〜1281mAh/cc)とで
大きな差がある。このことから、嵩比重3.3以上、好
ましくは3.5以上の一部焼結球状合金を使用すること
により、低率放電における体積当たりの放電容量密度C
2が高い水素吸蔵合金電極が得られることが分かる。Further, the packing density of the electrode of the present invention is 4.4 to
The packing density was 5.3 g / cc, and the packing densities of the reference electrodes (M4-0, M4-1) using ordinary crushed alloys were 4.1 to 4.2.
Higher than g / cc. Therefore, of the discharge capacity density C2 in the low rate discharge, the discharge capacity density per weight is C2 (309 to 319 mAh / g) of the electrode of the present invention.
And C2 (305-3 of reference electrodes (M4-0, M4-1)
11 mAh / g), but the discharge capacity density per volume is C2 (1382) of the electrode of the present invention.
˜1675 mAh / cc) and reference electrodes (M4-0, M4)
There is a large difference with C2 (1275 to 1281 mAh / cc) of -1). From this, by using a partially sintered spherical alloy having a bulk specific gravity of 3.3 or more, preferably 3.5 or more, the discharge capacity density C per volume in low rate discharge can be obtained.
It can be seen that a hydrogen storage alloy electrode having a high value of 2 can be obtained.
【0030】[0030]
【発明の効果】本発明電極を負極に使用すれば、高率放
電容量密度及び低率放電容量密度がともに大きく、しか
も充放電サイクル特性に優れる金属−水素化物アルカリ
蓄電池を得ることが可能になる。When the electrode of the present invention is used for the negative electrode, it is possible to obtain a metal-hydride alkaline storage battery having both a high rate discharge capacity density and a low rate discharge capacity density and excellent charge / discharge cycle characteristics. .
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 野上 光造 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kozo Nogami 2-chome, Keihanhondori, Moriguchi-shi, Osaka 5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito Keihan Hondori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd.
Claims (2)
吸蔵合金粒子、鶏卵状の水素吸蔵合金粒子又はこれらの
2種以上の混合物からなる水素吸蔵合金粉末を、熱処理
して部分的に焼結させ、必要に応じて解砕してなる嵩比
重3.3以上の一部焼結水素吸蔵合金粉末が、電極材料
として使用されていることを特徴とする金属−水素化物
アルカリ蓄電池用の水素吸蔵合金電極。1. Spherical hydrogen-absorbing alloy particles, substantially spherical hydrogen-absorbing alloy particles, egg-shaped hydrogen-absorbing alloy particles, or hydrogen-absorbing alloy powder consisting of a mixture of two or more thereof is heat-treated and partially burned. Hydrogen for a metal-hydride alkaline storage battery, characterized in that a partially sintered hydrogen storage alloy powder having a bulk specific gravity of 3.3 or more obtained by binding and crushing as needed is used as an electrode material. Storage alloy electrode.
吸蔵合金粒子、鶏卵状の水素吸蔵合金粒子又はこれらの
2種以上の混合物からなる水素吸蔵合金粉末を、熱処理
して部分的に焼結させ、必要に応じて解砕してなる嵩比
重3.5以上の一部焼結水素吸蔵合金粉末が、電極材料
として使用されていることを特徴とする金属−水素化物
アルカリ蓄電池用の水素吸蔵合金電極。2. Spherical hydrogen-absorbing alloy particles, substantially spherical hydrogen-absorbing alloy particles, egg-shaped hydrogen-absorbing alloy particles, or hydrogen-absorbing alloy powder consisting of a mixture of two or more thereof is heat-treated and partially burned. Hydrogen for a metal-hydride alkaline storage battery, characterized in that a partially sintered hydrogen storage alloy powder having a bulk specific gravity of 3.5 or more obtained by binding and crushing is used as an electrode material. Storage alloy electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6197847A JPH0845505A (en) | 1994-07-29 | 1994-07-29 | Hydrogen storage alloy electrode for metal-hydride alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6197847A JPH0845505A (en) | 1994-07-29 | 1994-07-29 | Hydrogen storage alloy electrode for metal-hydride alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0845505A true JPH0845505A (en) | 1996-02-16 |
Family
ID=16381334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6197847A Pending JPH0845505A (en) | 1994-07-29 | 1994-07-29 | Hydrogen storage alloy electrode for metal-hydride alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0845505A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006278189A (en) * | 2005-03-30 | 2006-10-12 | Sanyo Electric Co Ltd | Hydrogen storage alloy for alkaline storage battery and nickel hydrogen battery |
-
1994
- 1994-07-29 JP JP6197847A patent/JPH0845505A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006278189A (en) * | 2005-03-30 | 2006-10-12 | Sanyo Electric Co Ltd | Hydrogen storage alloy for alkaline storage battery and nickel hydrogen battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4865556B2 (en) | Multiphase silicon-containing electrodes for lithium ion batteries | |
JP4144997B2 (en) | Negative electrode for lithium secondary battery | |
JP2001332255A (en) | Negative electrode of lithium secondary battery | |
JP2004335272A (en) | Negative electrode material for nonaqueous electrolyte secondary battery | |
JP2001093524A (en) | Negative electrode for a non-aqueous electrolytic secondary cell, preparation thereof, and non-aqueous electrolytic secondary cell | |
JPH09213319A (en) | Sealed alkaline battery | |
JP4800589B2 (en) | Solid electrolyte-containing electrode for lithium secondary battery | |
JP2008184660A (en) | Hydrogen-storage alloy, and electrode for nickel-hydrogen battery | |
JPH0765825A (en) | Metal hydride battery | |
JP4372451B2 (en) | Method for producing negative electrode active material for non-aqueous electrolyte secondary battery | |
JPH0845505A (en) | Hydrogen storage alloy electrode for metal-hydride alkaline storage battery | |
JP3370071B2 (en) | Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode | |
TWI823005B (en) | Composite material for electrode, method of fabricating the same, and electrode of rechargeable battery including the same | |
JP3685643B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode | |
JP3373989B2 (en) | Hydrogen storage alloy powder and manufacturing method | |
JP3315880B2 (en) | Method for producing hydrogen storage alloy powder | |
JPH1197002A (en) | Hydrogen storage alloy electrode for alkaline storage battery | |
JP2003317796A (en) | Storage battery | |
JPH07105943A (en) | Hydrogen storage alloy electrode | |
WO2024024532A1 (en) | Negative electrode active material | |
JP3351227B2 (en) | Hydrogen storage alloy powder for battery and its manufacturing method | |
JP3290895B2 (en) | Hydrogen storage alloy powder for nickel-metal hydride batteries | |
JP2001338647A (en) | Lithium secondary battery | |
JP3490800B2 (en) | Hydrogen storage alloy electrode, method for producing the same, and metal hydride storage battery | |
JP2024018930A (en) | negative electrode active material |