JPH0843460A - High-harmonic measurement analysis system - Google Patents

High-harmonic measurement analysis system

Info

Publication number
JPH0843460A
JPH0843460A JP6178648A JP17864894A JPH0843460A JP H0843460 A JPH0843460 A JP H0843460A JP 6178648 A JP6178648 A JP 6178648A JP 17864894 A JP17864894 A JP 17864894A JP H0843460 A JPH0843460 A JP H0843460A
Authority
JP
Japan
Prior art keywords
current
waveform
harmonic
display data
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6178648A
Other languages
Japanese (ja)
Other versions
JP3260982B2 (en
Inventor
Masakazu Uehara
正和 上原
Hiroshi Kobayashi
浩 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toenec Corp
Original Assignee
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toenec Corp filed Critical Toenec Corp
Priority to JP17864894A priority Critical patent/JP3260982B2/en
Publication of JPH0843460A publication Critical patent/JPH0843460A/en
Application granted granted Critical
Publication of JP3260982B2 publication Critical patent/JP3260982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PURPOSE:To clearly and quickly recognize the occurrence location and state of high harmonics by analyzing high harmonics up to a specific degree from current waveform data and displaying the waveform of high harmonics in time series. CONSTITUTION:Analyzers 11 and 12 receive detection signals from current sensors A1-A5 and voltage sensors V1-V3, continuously record them at a lapse of time, and performs a fast Fourier Transformation of the recorded current and voltage waveform data for analysis. Then, waveform display data for displaying the waveform of each high harmonic up to for example 49th order are generated from the fundamental waves of received current, received voltage and load current, and load voltage. The waveform display data are transmitted to a personal computer 15 via cables 13 and 14 and are stored in a hard disk. By running a high-harmonic analysis software stored in a floppy disk 16 for the waveform display data, the high-harmonic waveform from the fundamental wave to the 49th at a detection part can be displayed successively in time series.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力需要家における高
調波の発生状況を連続的に測定し、解析する連続多点同
時測定による高調波測定解析システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic measurement / analysis system by continuous multipoint simultaneous measurement for continuously measuring and analyzing the generation state of harmonics in electric power consumers.

【0002】[0002]

【発明の背景及び従来の技術】近年、電力変換装置、汎
用インバ−タ、家庭電気機器などに使用されるパワ−エ
レクトロニクスの発展は目ざましく、その高性能、高効
率からますます普及されることが予想されているが、こ
れに伴って、パワ−エレクトロニクスの中枢となる素子
のスイッチング動作時に発生する高調波成分が配電系統
に流出し、電圧電流の歪みを増大させて各種機器に損
傷、あるいは不要動作等を与えることが多くなってい
る。
BACKGROUND OF THE INVENTION and Prior Art In recent years, the development of power electronics used in power converters, general-purpose inverters, household electric appliances, etc. has been remarkable, and is becoming more and more popular due to its high performance and high efficiency. However, along with this, harmonic components generated during the switching operation of the central element of power electronics flow out to the distribution system, increasing the distortion of voltage and current, and damaging various equipment, or Unnecessary actions are often given.

【0003】特に、高圧進相コンデンサに直列に接続さ
れたリアクトルに損傷が多く発生する傾向にある。その
ため、損傷を受けた電力機器の交換、あるいは修理等に
多額の経費を必要とするとともに、その停止期間が比較
的長期に亘るため、経済的損失が大きいという問題があ
った。そのため、従来は、高調波の発生状況を確認する
ため、例えば受電点のみの電圧、電流の瞬時値を測定し
たうえ電力アナライザで高調波を分析する高調波測定手
段、あるいは測定対象の負荷回路の電圧、電流の瞬時値
を測定したうえ電力アナライザで高調波を解析する高調
波測定解析手段が採用されている。
In particular, the reactor connected in series with the high voltage phase-advancing capacitor tends to be damaged a lot. Therefore, there is a problem that a large amount of cost is required for replacing or repairing a damaged electric power device, and the suspension period is relatively long, resulting in a large economic loss. Therefore, conventionally, in order to confirm the generation state of harmonics, for example, the harmonic measuring means for measuring the instantaneous value of the voltage or current only at the power receiving point and then analyzing the harmonics with the power analyzer, or the load circuit of the measurement target A harmonic measurement / analysis means for measuring instantaneous values of voltage and current and analyzing harmonics with a power analyzer is adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の高調波測定解析手段によれば、次のような問題があ
る。 (1)高調波の終日の変化傾向や最大値を特定すること
ができない。 (2)一般に、電力需要家での各負荷の稼働時間帯がラ
ンダムであるため、何時、どの負荷から高調波が発生し
ているのかを確定することが困難である。 (3)複数の箇所を同時に測定しようとすると多くの人
手を有し、その間、測定者は長時間拘束され、徹夜にな
ることもある。 (4)測定デ−タを記録紙に記録する手段であるため、
長時間測定の場合には記録紙が長くなって保管が不便で
あり、またデ−タ処理をする場合、デ−タを呼び出すの
に時間がかかり、コンピュ−タへ入力する入力作業が面
倒であるとともに時系列的な処理に時間がかかり、グラ
フを見ることが面倒である。
However, according to the above-mentioned conventional harmonic measurement / analysis means, there are the following problems. (1) It is not possible to specify the trend of the harmonics throughout the day and the maximum value. (2) Generally, the operating hours of each load in the power consumer are random, so it is difficult to determine when and from what load the harmonics are generated. (3) When attempting to measure a plurality of points at the same time, a large number of manpower is required, and the measurer is restrained for a long time during that time, and sometimes the person stays up all night. (4) Since it is a means for recording the measurement data on the recording paper,
When measuring for a long time, the recording paper becomes long and inconvenient to store, and when processing data, it takes time to retrieve the data, and the input work to input to the computer is troublesome. However, the time-series processing takes time and it is troublesome to see the graph.

【0005】そこで本発明では、複数の測定点において
同時に且つ連続的に電流を検出し、その各検出電流に基
づき自動的に各測定点における電流波形デ−タを記録し
たうえ、各電流波形デ−タから所定次までの高調波を解
析し、時系列的に高調波の波形を表示することにより、
前記従来の問題を解決することを課題とするものであ
る。
Therefore, in the present invention, currents are simultaneously and continuously detected at a plurality of measurement points, and the current waveform data at each measurement point is automatically recorded based on each detected current, and then each current waveform data is recorded. -By analyzing the harmonics up to the predetermined order and displaying the waveform of the harmonics in time series,
It is an object to solve the above conventional problems.

【0006】[0006]

【課題を解決するための手段】上記課題解決のための技
術的手段は、高調波測定解析システムを、進相コンデン
サが接続された受電回路における受電電流、その受電回
路からの電圧が1次側に印加される変圧器の1次側電
流、及び負荷側回路における負荷電流を検出して各検出
電流信号を出力する複数の電流検出手段と、その電流検
出手段それぞれから出力される前記検出電流信号を電流
波形デ−タとして連続的に時刻とともに記録する波形デ
−タ記録手段と、その波形デ−タ記録手段に記録された
前記電流波形デ−タを解析して前記受電電流、変圧器の
1次側電流、及び負荷電流の基本波から所定次までの各
高調波の波形を時系列的に表示するための波形表示デ−
タを演算する波形表示デ−タ演算手段と、その波形表示
デ−タ演算手段で演算された前記各波形表示デ−タに基
づいて前記受電電流及び前記変圧器の1次側電流の基本
波から所定次までの各高調波について受電電流から変圧
器の1次側電流の総和を減算することにより前記進相コ
ンデンサに流れる電流の基本波から所定次までの各高調
波の波形表示デ−タを演算する進相コンデンサ電流波形
表示デ−タ演算手段と、前記波形表示デ−タ演算手段及
び進相コンデンサ電流波形表示デ−タ演算手段で演算さ
れた各波形表示デ−タに基づいて前記受電電流、変圧器
の1次側電流、負荷電流、及び進相コンデンサ電流の基
本波から所定次までの各高調波の各波形を表示する波形
表示手段とを備えた構成にすることである。
The technical means for solving the above-mentioned problems is to use a harmonic measurement / analysis system in which a power receiving current in a power receiving circuit to which a phase advancing capacitor is connected and a voltage from the power receiving circuit are on the primary side. A plurality of current detecting means for detecting the primary side current of the transformer and the load current in the load side circuit and outputting each detected current signal, and the detected current signal output from each of the current detecting means. Is continuously recorded as current waveform data with time, and the current waveform data recorded in the waveform data recording means is analyzed to analyze the received current and the transformer. Waveform display data for displaying the waveforms of the primary current and the harmonics of the load current from the fundamental wave to the predetermined order in time series.
Waveform display data calculating means for calculating data, and the fundamental waves of the received current and the primary side current of the transformer based on the waveform display data calculated by the waveform display data calculating means. Waveforms of the harmonics from the fundamental wave to the predetermined order of the current flowing through the phase-advancing capacitor by subtracting the sum of the primary side current of the transformer from the received current for each of the harmonics up to the predetermined order. Based on each of the waveform display data calculated by the waveform display data calculating means and the advanced capacitor current waveform display data calculating means. And a waveform display means for displaying the waveforms of the harmonics of the received current, the primary side current of the transformer, the load current, and the phase-advancing capacitor current from the fundamental wave to the predetermined order.

【0007】また、進相コンデンサが接続された受電回
路における受電電流と受電電圧、及び受電回路の電圧が
1次側に印加される変圧器の負荷側回路における負荷電
流と負荷電圧を検出し、波形表示手段で各高調波の電力
の方向を表示させて各高調波の流入、流出の判定を可能
にした構成にすることである。
Further, the received current and the received voltage in the power receiving circuit to which the phase advancing capacitor is connected, and the load current and the load voltage in the load side circuit of the transformer to which the voltage of the power receiving circuit is applied to the primary side are detected, The waveform display means displays the direction of the power of each harmonic so that the inflow and outflow of each harmonic can be determined.

【0008】[0008]

【作用】上記構成の高調波測定解析システムによれば、
各電流検出手段が受電回路における受電電流、変圧器の
1次側電流、及び負荷側回路における複数の負荷電流を
検出して各検出電流信号を出力すると、波形デ−タ記録
手段は、電流検出手段それぞれから出力された検出電流
信号を電流波形デ−タとして連続的に記録する。そし
て、波形表示デ−タ演算手段は、その波形デ−タ記録手
段に記録された前記電流波形デ−タを解析して受電電
流、変圧器の1次側電流、及び負荷電流の基本波から所
定次までの各高調波の波形を時系列的に表示するための
波形表示デ−タを演算する。また、進相コンデンサ電流
波形表示デ−タ演算手段は、その波形表示デ−タ演算手
段で演算された前記各波形表示デ−タに基づいて受電電
流及び変圧器の1次側電流の基本波から所定次までの各
高調波について受電電流から変圧器の1次側電流の総和
を減算することにより進相コンデンサに流れる電流の基
本波から所定次までの各高調波の波形表示デ−タを演算
する。そして波形表示手段は、波形表示デ−タ演算手段
及び進相コンデンサ電流波形表示デ−タ演算手段で演算
された各波形表示デ−タに基づいて受電電流、変圧器の
1次側電流、負荷電流、及び進相コンデンサ電流の基本
波から所定次までの各高調波の各波形を時系列的に表示
する。
According to the harmonic measurement analysis system having the above configuration,
When each current detecting means detects the received current in the power receiving circuit, the primary side current of the transformer, and the plurality of load currents in the load side circuit and outputs each detected current signal, the waveform data recording means detects the current. The detected current signals output from the respective means are continuously recorded as current waveform data. Then, the waveform display data calculating means analyzes the current waveform data recorded in the waveform data recording means to calculate the basic wave of the received current, the primary side current of the transformer, and the load current. Waveform display data for displaying each harmonic waveform up to a predetermined order in time series is calculated. Further, the phase-advancing capacitor current waveform display data calculating means calculates the fundamental wave of the received current and the primary side current of the transformer based on the waveform display data calculated by the waveform display data calculating means. To the specified order of harmonics, subtract the sum of the primary side current of the transformer from the received current to obtain the waveform display data of the harmonics of the current up to the specified order of the current flowing through the phase-advancing capacitor. Calculate The waveform display means receives power, the primary side current of the transformer, and the load based on the waveform display data calculated by the waveform display data calculating means and the phase-advancing capacitor current waveform display data calculating means. The current and each waveform of each harmonic from the fundamental wave of the phase-advancing capacitor current to the predetermined order are displayed in time series.

【0009】また、進相コンデンサが接続された受電回
路における受電電流と受電電圧、及び受電回路の電圧が
1次側に印加される変圧器の負荷側回路における負荷電
流と負荷電圧を検出し、波形表示手段で各高調波の電力
の方向を表示させて各高調波の流入、流出の判定をする
ことができる。
Further, the received current and the received voltage in the receiving circuit connected to the phase advancing capacitor, and the load current and the load voltage in the load side circuit of the transformer to which the voltage of the receiving circuit is applied to the primary side are detected, It is possible to display the direction of the power of each harmonic by the waveform display means and determine the inflow and outflow of each harmonic.

【0010】[0010]

【実施例】次に、本発明の実施例を図面を参照しながら
説明する。図1は、電力需要家の受配電単線系統図であ
り、受配電系統において高調波を測定し、解析するため
に電流及び電圧を検出する複数の検出箇所を示したもの
である。3相3線式の受電回路1における受電電流を検
出するため、例えばR相とT相の電線に配設された2個
の変流器CT1,CT2にはそれぞれ電流センサA1,
A2が接続され、また3相式の計器用変圧器PT1に
は、例えばSR相間及びST相間の受電電圧を検出する
ための電圧センサV1,V2が接続される。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a power distribution single line system diagram of an electric power consumer, and shows a plurality of detection points for detecting current and voltage for measuring and analyzing harmonics in the power distribution system. In order to detect the received current in the three-phase three-wire power receiving circuit 1, for example, two current transformers CT1 and CT2 arranged on the R-phase and T-phase electric wires are respectively provided with current sensors A1,
A2 is connected to the three-phase meter transformer PT1, and voltage sensors V1 and V2 for detecting the received voltage between the SR phases and the ST phases are connected to the transformer PT1.

【0011】また、変圧器2,3それぞれの一次側電流
を検出するため、変流器CT3,CT5それぞれには電
流センサA3,A5が接続される。更に、変圧器2の二
次側電流を検出するため、変流器CT4には電流センサ
A4が接続される。また、変圧器2の二次側電圧を検出
するために電圧センサV3が接続される。
Further, in order to detect the primary side currents of the transformers 2 and 3, current sensors A3 and A5 are connected to the current transformers CT3 and CT5, respectively. Furthermore, in order to detect the secondary side current of the transformer 2, a current sensor A4 is connected to the current transformer CT4. Further, a voltage sensor V3 is connected to detect the secondary side voltage of the transformer 2.

【0012】一方、進相コンデンサ4にはリアクトル5
が直列に接続されており、直列リアクトル5にはは受電
回路1の電圧が印加されている。尚、この進相コンデン
サ回路に流れる電流を検出するためには、破線で示すよ
うに変流器CT6に電流センサA6を接続する必要があ
るが、一般に進相コンデンサ回路には変流器CT6が設
けられていないため、直接、電流センサA6でコンデン
サ電流を検出することは困難である。そのため本実施例
では、進相コンデンサ回路に流れる電流を間接的に演算
して求める「電流法」を用いた。この「電流法」は、図
1のような受配電系統の場合に進相コンデンサ回路に流
れる電流の大きさは、電流センサA1による検出電流か
ら電流センサA3による検出電流と電流センサA5によ
る検出電流との和を減算した値にほぼ等しいことが実証
されているため、この演算を基本波から例えば49次ま
での高調波それぞれについて行うことにより、進相コン
デンサ回路に流れる電流の基本波から49次までの高調
波それぞれの電流値が演算される。
On the other hand, the phase-advancing capacitor 4 has a reactor 5
Are connected in series, and the voltage of the power receiving circuit 1 is applied to the series reactor 5. In order to detect the current flowing in the phase advancing capacitor circuit, it is necessary to connect the current sensor A6 to the current transformer CT6 as shown by the broken line, but in general, the current transformer CT6 is provided in the phase advancing capacitor circuit. Since it is not provided, it is difficult to directly detect the capacitor current with the current sensor A6. Therefore, in this embodiment, the “current method” is used, which indirectly calculates the current flowing through the phase advancing capacitor circuit. According to the "current method", in the case of the power receiving and distributing system as shown in FIG. 1, the magnitude of the current flowing in the phase advancing capacitor circuit is determined from the current detected by the current sensor A1 to the current detected by the current sensor A3 and the current detected by the current sensor A5. Since it has been proved that it is almost equal to the value obtained by subtracting the sum of and, by performing this calculation for each of the harmonics from the fundamental wave to the 49th order, for example, the 49th order from the fundamental wave of the current flowing in the phase advance capacitor circuit. The current value of each harmonic up to is calculated.

【0013】図2は、上記「電流法」の確実性を実証す
るため進相コンデンサ回路に流れる電流を、実測法と、
この「電流法」と、電圧法、即ち、受電電圧を進相コン
デンサ回路のインピ−ダンスで割り算することにより求
める方法との3通りで求めたものをグラフで示したもの
である。図2に示すように、「電流法」が精度良く実測
値を再現していることが明らかであるため、本実施例で
はこの「電流法」を用いて進相コンデンサ回路に流れる
電流の基本波から49次までの高調波それぞれの電流値
を演算した。
FIG. 2 shows the current flowing through the phase advancing capacitor circuit in the actual measurement method in order to verify the certainty of the "current method".
3 is a graph showing three types of the "current method" and the voltage method, that is, the method of obtaining the received voltage by dividing the received voltage by the impedance of the phase advancing capacitor circuit. As shown in FIG. 2, since it is clear that the “current method” accurately reproduces the measured value, the fundamental wave of the current flowing in the phase advance capacitor circuit is used in the present embodiment by using the “current method”. The current value of each of the harmonics up to the 49th was calculated.

【0014】図3は、高調波測定解析システムの従来方
式と本発明方式とを比較して示したブロック図である。
図3において、従来、及び本発明方式共通のV1〜V3
は図1に示した電圧センサであり、A1〜A5は図1に
示した電流センサである。また、「3195」はディジ
タル式の電力用パワ−アナライザ11であり、「883
2」も同様の機能を持つアナライザ12である。
FIG. 3 is a block diagram showing a comparison between the conventional system of the harmonic measurement analysis system and the system of the present invention.
In FIG. 3, V1 to V3 common to the conventional method and the method of the present invention
Is the voltage sensor shown in FIG. 1, and A1 to A5 are the current sensors shown in FIG. Further, "3195" is a digital power analyzer 11, and "883"
2 "is also an analyzer 12 having a similar function.

【0015】本発明方式の高調波測定解析システムは、
上記2台のアナライザ11,12とRS−232Cリバ
−スケ−ブル13,14で接続されたパ−ソナルコンピ
ュ−タ(PC98)15が設けられている。このパ−ソ
ナルコンピュ−タ15は、フロッピ−ディスク16等に
格納された高調波測定解析ソフトがセットされると、そ
のプログラムが走るように構成されている。また、上記
2台のアナライザ11,12間には同期信号伝送用のケ
−ブル17が接続されており、電流センサ及び電圧セン
サからの信号を同期して取り込むようになっている。
The harmonic measurement analysis system of the present invention is
A personal computer (PC98) 15 is provided which is connected to the two analyzers 11 and 12 by RS-232C reverse scales 13 and 14. The personal computer 15 is configured to run its program when the harmonic measurement analysis software stored in the floppy disk 16 or the like is set. Further, a cable 17 for transmitting a synchronization signal is connected between the two analyzers 11 and 12 so that signals from the current sensor and the voltage sensor are synchronously fetched.

【0016】上記のように電流センサ、電圧センサをア
ナライザ11,12に接続するとともに、アナライザ1
1,12とパ−ソナルコンピュ−タ15とをRS−23
2Cリバ−スケ−ブル13,14で電気的に接続し、更
に、同期信号伝送用のケ−ブル17でアナライザ11,
12間を接続した状態で高調波の測定解析に入る。
The current sensor and the voltage sensor are connected to the analyzers 11 and 12 as described above, and the analyzer 1
RS-23 with 1, 12 and personal computer 15
The 2C reversal cables 13 and 14 electrically connect to each other, and the cable 17 for transmitting the synchronizing signal further connects the analyzer 11 and
The measurement and analysis of harmonics is started with 12 connected.

【0017】高調波測定解析に入るとき、パ−ソナルコ
ンピュ−タ15で、測定年月日、測定開始時刻、測定終
了時刻、サンプリングタイムなどの測定に必要な諸条件
を設定すると自動的に電流センサA1〜A5、及び電圧
センサV1〜V3からリアルタイムに電流検出信号及び
電圧検出信号がアナライザ11,12に入力される。
When entering the harmonic measurement analysis, the personal computer 15 automatically sets the various conditions necessary for the measurement, such as the measurement date, the measurement start time, the measurement end time, and the sampling time. Current detection signals and voltage detection signals are input to the analyzers 11 and 12 in real time from the sensors A1 to A5 and the voltage sensors V1 to V3.

【0018】アナライザ11,12は、電流検出信号及
び電圧検出信号を電流、電圧の波形デ−タとして入力
し、これを時刻とともに連続して記録し、記録された電
流、電圧波形デ−タを高速フ−リエ変換して解析し、受
電電流、受電電圧及び負荷電流、負荷電圧の基本波から
例えば49次までの各高調波の波形を表示するための波
形表示デ−タを生成する。
The analyzers 11 and 12 input the current detection signal and the voltage detection signal as current and voltage waveform data, continuously record them with time, and record the recorded current and voltage waveform data. A high-speed Fourier transform is performed and analyzed to generate waveform display data for displaying the waveforms of the received current, the received voltage and the load current, and the harmonics up to, for example, the 49th harmonic of the load voltage.

【0019】上記波形表示デ−タは、RS−232Cリ
バ−スケ−ブル13,14を介し、パ−ソナルコンピュ
−タ15に伝送され、ハ−ドディスクに保存される。こ
の波形表示デ−タは、前記フロッピ−ディスク16に格
納された高調波測定解析ソフトを走らせることにより、
図1に示した電流電圧検出箇所における基本波から49
次までの高調波の波形を、順次、パ−ソナルコンピュ−
タ15の表示部に時系列的に表示させることができる。
The waveform display data is transmitted to the personal computer 15 via the RS-232C reversible cables 13 and 14 and stored in the hard disk. This waveform display data is obtained by running the harmonic measurement analysis software stored in the floppy disk 16,
49 from the fundamental wave at the current and voltage detection points shown in FIG.
The harmonic waveforms up to the next are displayed in sequence on the personal computer.
It can be displayed on the display unit of the computer 15 in time series.

【0020】図4は、高調波測定解析システムの基本フ
ロ−チャ−トである。図4に示すように、最初、測定目
的、測定方法、測定手順、及び測定器の選定等をしたあ
と、適正な場所にアナライザ11,12、パ−ソナルコ
ンピュ−タ15等の使用機器を設置する。そして、電流
センサA1〜A5、及び電圧センサV1〜V3をアナラ
イザ11,12に接続するとともに、アナライザ11,
12とパ−ソナルコンピュ−タ15とをRS−232C
リバ−スケ−ブル13,14で電気的に接続し、更に、
同期信号伝送用ケ−ブル17でアナライザ11,12間
を接続する。
FIG. 4 is a basic flowchart of the harmonic measurement analysis system. As shown in FIG. 4, after the measurement purpose, the measurement method, the measurement procedure, and the selection of the measuring instrument, the analyzers 11 and 12 and the personal computer 15 are used in appropriate places. To do. The current sensors A1 to A5 and the voltage sensors V1 to V3 are connected to the analyzers 11 and 12, and the analyzers 11,
12 and personal computer 15 RS-232C
Electrically connected by reversal cables 13 and 14,
A cable 17 for transmitting a synchronization signal connects between the analyzers 11 and 12.

【0021】次に、パ−ソナルコンピュ−タ15の表示
部にメニュ−画面を表示させる。そして、各メニュ−操
作に沿って電圧、電流のレンジ設定等を行う設定ファイ
ル作成を行い、続いてパ−ソナルコンピュ−タ15とア
ナライザ11,12間のデ−タ授受をしてハ−ドウエア
設定を行う。
Next, a menu screen is displayed on the display section of the personal computer 15. Then, a setting file is created for setting the voltage and current ranges, etc. according to each menu operation, and then data is exchanged between the personal computer 15 and the analyzers 11 and 12 to execute the hardware. Make settings.

【0022】次に、電流センサA1〜A5、及び電圧セ
ンサV1〜V3とアナライザ11,12間の接続チェッ
クを行って間違いが無ければ、パ−ソナルコンピュ−タ
15で、測定年月日、測定開始時刻、測定終了時刻、サ
ンプリングタイムなどの測定に必要な諸条件を設定す
る。
Next, the connection check between the current sensors A1 to A5 and the voltage sensors V1 to V3 and the analyzers 11 and 12 is checked, and if there is no error, the personal computer 15 is used to measure the measurement date and time. Set various conditions required for measurement such as start time, measurement end time, and sampling time.

【0023】上記のように測定に必要な諸条件が設定さ
れると、スタンバイ状態になり、測定開始時刻になる
と、電流センサA1〜A5、及び電圧センサV1〜V3
からアナライザ11,12に電流検出信号及び電圧検出
信号が取り込まれる。そしてアナライザ11,12は、
電流検出信号及び電圧検出信号を電流、電圧の波形デ−
タとして入力すると、これを時刻とともに連続して記録
し、記録された電流、電圧波形デ−タを高速フ−リエ変
換して解析し、受電電流、電圧及び負荷電流、電圧の基
本波から49次までの各高調波の波形を表示するための
波形表示デ−タを生成する。この波形表示デ−タは順
次、測定終了時刻までパ−ソナルコンピュ−タ15に伝
送され、図示していないハ−ドディスクに記憶される。
When the various conditions necessary for the measurement are set as described above, the standby state is set, and at the measurement start time, the current sensors A1 to A5 and the voltage sensors V1 to V3.
From this, the current detection signal and the voltage detection signal are fetched into the analyzers 11 and 12. And the analyzers 11 and 12
Current detection signal and voltage detection signal
When it is input as a data, it is continuously recorded with time, and the recorded current and voltage waveform data are subjected to high-speed Fourier transform for analysis, and the received current, voltage and load current, and the fundamental wave of voltage are used to calculate 49 Waveform display data for displaying the waveform of each harmonic up to the next is generated. This waveform display data is sequentially transmitted to the personal computer 15 until the measurement end time and stored in a hard disk (not shown).

【0024】また、パ−ソナルコンピュ−タ15は、上
記各波形表示デ−タに基づいて前述した「電流法」によ
り進相コンデンサ4の回路に流れる電流の基本波から所
定次までの各高調波の波形表示デ−タを演算し、ハ−ド
ディスクに記憶する。
Further, the personal computer 15 uses the above-mentioned "current method" based on the above waveform display data to determine the harmonics from the fundamental wave of the current flowing through the circuit of the phase advance capacitor 4 to the predetermined order. Waveform display data is calculated and stored in the hard disk.

【0025】尚、測定終了時刻を変更する場合には、変
更後の測定終了日時を入力するとともに、ハ−ドディス
ク(HD)の容量が十分であると判断したうえ測定を継
続する。
When the measurement end time is changed, the measurement end date and time after the change is input, and the measurement is continued after it is determined that the hard disk (HD) has a sufficient capacity.

【0026】測定終了時刻後、ハ−ドディスク(HD)
にファイルされた基本波から49次までの各高調波の波
形表示デ−タを呼び出してパ−ソナルコンピュ−タ15
の表示部に表示させるとき、呼び出しが短時間でできる
ように、ファイル変換する。尚、このファイル変換処理
により、1週間分のデ−タでも1秒ほどで表示させるこ
とができる。この状態で測定を終了し、各センサの接続
を外して測定機器を撤去する。
After the measurement end time, a hard disk (HD)
Call up the waveform display data for each harmonic from the fundamental wave to the 49th order stored in the personal computer 15
When it is displayed on the display section of, the file is converted so that it can be called in a short time. By this file conversion process, data for one week can be displayed in about 1 second. In this state, measurement is terminated, each sensor is disconnected, and the measuring device is removed.

【0027】図5から図9は、上記の高調波測定解析シ
ステムで測定された結果をパ−ソナルコンピュ−タ15
の表示部に表示させた波形図である。図5は、受電点の
電圧歪み率の3日分の時間変化を示したものである。こ
の波形図に示すように、時系列的に波形表示デ−タを得
ることで、高調波の1日の傾向や、最大値等が一目で認
識することができる。
FIGS. 5 to 9 show the results measured by the above-described harmonic measurement / analysis system by the personal computer 15.
5 is a waveform diagram displayed on the display unit of FIG. FIG. 5 shows changes over time in the voltage distortion rate at the power receiving point for three days. As shown in this waveform diagram, by obtaining the waveform display data in time series, the tendency of the harmonics for one day, the maximum value, etc. can be recognized at a glance.

【0028】図6は、R相、T相、及び進相コンデンサ
回路の電流波形図であり、測定期間中の任意の時刻の電
流波形を再現することができる。
FIG. 6 is a current waveform diagram of the R-phase, T-phase and phase-advancing capacitor circuits, and the current waveform at any time during the measurement period can be reproduced.

【0029】図7は、受電点、動力負荷、一般負荷それ
ぞれにおける第5高調波電流の時間変化を示した波形図
であり、多数の回路を同時に測定することによって、ど
の時刻に、どの回路から高調波が発生しているかが一目
で認識することができる。尚、上記動力負荷、一般負荷
の測定点は、図1の測定点とは一致していない。
FIG. 7 is a waveform diagram showing the time change of the fifth harmonic current at each of the power receiving point, the power load, and the general load. It is possible to recognize at a glance whether or not harmonics are generated. The measurement points of the above-mentioned power load and general load do not match the measurement points of FIG.

【0030】図8は、基本波から第49次高調波までの
動力負荷の電流スペクトルを示したグラフであり、この
図から、含まれている高調波成分の各次数毎の量が容易
に認識される。
FIG. 8 is a graph showing the current spectrum of the power load from the fundamental wave to the 49th harmonic. From this graph, the amount of the contained harmonic component for each order can be easily recognized. To be done.

【0031】図9は、受電点の高調波電力の時間変化を
示した波形図であり、受電点で電圧、電流を各2か所測
定することにより、高調波の方向を電力の正負として表
示したものである。この波形図では、電力値が正のとき
高調波成分が流入する一方、負のときは高調波成分が流
出していることを示しており、この例では第5高調波は
昼間に流出していることが認識できる。尚、(*100
0)は、3次、5次、7次の高調波の実効値を1000
倍して表示していることを示している。
FIG. 9 is a waveform diagram showing the time variation of the harmonic power at the power receiving point. By measuring the voltage and current at each of two points at the power receiving point, the direction of the harmonic is displayed as positive or negative power. It was done. This waveform diagram shows that the harmonic component flows in when the power value is positive, while the harmonic component flows out when the power value is negative. In this example, the fifth harmonic component flows out in the daytime. I can recognize that In addition, (* 100
0) is the effective value of the 3rd, 5th and 7th harmonics of 1000
It is shown that it is doubled and displayed.

【0032】以上のように、多数の電流電圧測定点から
同期して電流、電圧を検出することにより、所要期間、
連続して各測定点における高調波を測定し、それを瞬時
に時系列的に表示することができるため、負荷変動に伴
う高調波の発生箇所、発生時刻等の状況を確実に認識す
ることができるようになり、高調波の発生を抑制するた
めの対策の計画が容易になる。
As described above, by detecting the current and voltage in synchronization from a large number of current and voltage measurement points,
Since harmonics at each measurement point can be continuously measured and displayed in a time series instantly, it is possible to reliably recognize the location of harmonics due to load fluctuations, the time of occurrence, etc. This makes it easier to plan countermeasures for suppressing the generation of harmonics.

【0033】[0033]

【発明の効果】以上のように本発明によれば、複数の測
定点において同時に且つ連続的に電流を検出し、その各
検出電流に基づき自動的に各測定点における電流波形を
生成したうえ、各電流波形から所定次までの高調波を解
析し、それを時系列的に表示することができるため、次
のような効果がある。 (1)高調波の終日の変化傾向や最大値を特定すること
ができる。 (2)何時、どの負荷から高調波が発生しているのかを
確定することができる。 (3)複数の箇所を同時に測定しても、測定が自動化さ
れているため、測定者は長時間拘束されることなく、徹
夜になることもない。 (4)測定終了時刻後、各高調波の波形表示デ−タを呼
び出してパ−ソナルコンピュ−タ等の表示部に表示させ
るとき、例えば1週間分のデ−タでも1秒ほどで表示さ
せることができるため、デ−タの呼び出しが簡単であ
り、各高調波の発生状況が明確に、且つ短時間に認識す
ることができる。 (5)高調波の発生を抑制するための対策が立てやすく
なる。
As described above, according to the present invention, the current is detected simultaneously and continuously at a plurality of measurement points, and the current waveform at each measurement point is automatically generated based on each detected current. Since it is possible to analyze harmonics up to a predetermined order from each current waveform and display them in time series, there are the following effects. (1) It is possible to specify the trend of the harmonics throughout the day and the maximum value. (2) It is possible to determine at what time and from what load the harmonic is generated. (3) Even if a plurality of points are measured at the same time, since the measurement is automated, the measurer is not restrained for a long time and is not allowed to stay up all night. (4) When the waveform display data of each harmonic is called and displayed on the display unit of a personal computer or the like after the measurement end time, for example, the data for one week is displayed in about one second. Therefore, the calling of data is easy, and the generation status of each harmonic can be clearly recognized in a short time. (5) It becomes easy to take measures to suppress the generation of harmonics.

【図面の簡単な説明】[Brief description of drawings]

【図1】高調波測定箇所を示した受配電単線系統図であ
る。
FIG. 1 is a power reception / distribution single line system diagram showing harmonic measurement points.

【図2】電流法の優位性を示す電流波形図である。FIG. 2 is a current waveform diagram showing the superiority of the current method.

【図3】高調波測定解析システムの従来方式と本発明方
式との比較ブロック図である。
FIG. 3 is a comparison block diagram of a conventional method and a method of the present invention of a harmonic measurement analysis system.

【図4】高調波測定解析システムの基本フロ−図であ
る。
FIG. 4 is a basic flowchart of a harmonic measurement analysis system.

【図5】受電点の電圧歪み率の3日分の時間変化を示し
た波形図である。
FIG. 5 is a waveform diagram showing a time change of a voltage distortion rate at a power receiving point for three days.

【図6】R相、T相、及び進相コンデンサ回路の電流波
形図である。
FIG. 6 is a current waveform diagram of R-phase, T-phase, and phase-advancing capacitor circuits.

【図7】第5高調波電流の時間変化を示した波形図であ
る。
FIG. 7 is a waveform diagram showing the time change of the fifth harmonic current.

【図8】高調波の電流スペクトル図である。FIG. 8 is a harmonic current spectrum diagram.

【図9】受電点の高調波電力の時間変化を示した波形図
である。
FIG. 9 is a waveform diagram showing the time change of the harmonic power at the power receiving point.

【符号の説明】[Explanation of symbols]

1 3相3線式の受電回路 2 変圧器 3 変圧器 4 進相コンデンサ 5 直列リアクトル 11 アナライザ 12 アナライザ 13 RS−232Cリバ−スケ−ブル 14 RS−232Cリバ−スケ−ブル 15 パ−ソナルコンピュ−タ 16 フロッピ−ディスク 17 同期信号伝送用ケ−ブル A1 電流センサ A2 電流センサ A3 電流センサ A4 電流センサ A5 電流センサ V1 電圧センサ V2 電圧センサ V3 電圧センサ 1 3-phase 3-wire type power receiving circuit 2 Transformer 3 Transformer 4 Phase-advancing capacitor 5 Series reactor 11 Analyzer 12 Analyzer 13 RS-232C reversible cable 14 RS-232C reversible cable 15 Personal computer 16 floppy disk 17 cable for synchronous signal transmission A1 current sensor A2 current sensor A3 current sensor A4 current sensor A5 current sensor V1 voltage sensor V2 voltage sensor V3 voltage sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 進相コンデンサが接続された受電回路に
おける受電電流、その受電回路からの電圧が1次側に印
加される変圧器の1次側電流、及び変圧器の負荷側回路
における負荷電流を検出して各検出電流信号を出力する
複数の電流検出手段と、その電流検出手段それぞれから
出力される前記検出電流信号を電流波形デ−タとして連
続的に時刻とともに記録する波形デ−タ記録手段と、そ
の波形デ−タ記録手段に記録された前記電流波形デ−タ
を解析して前記受電電流、変圧器の1次側電流、及び負
荷電流の基本波から所定次までの各高調波の波形を時系
列的に表示するための波形表示デ−タを演算する波形表
示デ−タ演算手段と、その波形表示デ−タ演算手段で演
算された前記各波形表示デ−タに基づいて前記受電電流
及び前記変圧器の1次側電流の基本波から所定次までの
各高調波について受電電流から変圧器の1次側電流の総
和を減算することにより前記進相コンデンサに流れる電
流の基本波から所定次までの各高調波の波形表示デ−タ
を演算する進相コンデンサ電流波形表示デ−タ演算手段
と、前記波形表示デ−タ演算手段及び進相コンデンサ電
流波形表示デ−タ演算手段で演算された各波形表示デ−
タに基づいて前記受電電流、変圧器の1次側電流、負荷
電流、及び進相コンデンサ電流の基本波から所定次まで
の各高調波の各波形を表示する波形表示手段とを備えた
ことを特徴とする高調波測定解析システム。
1. A power receiving current in a power receiving circuit to which a phase advancing capacitor is connected, a primary side current of a transformer to which a voltage from the power receiving circuit is applied to a primary side, and a load current in a load side circuit of the transformer. And a plurality of current detecting means for detecting each of the detected current signals, and waveform data recording for continuously recording the detected current signals output from the respective current detecting means as current waveform data with time. Means and the current waveform data recorded in the waveform data recording means to analyze the received current, the primary side current of the transformer and the harmonics of the load current from the fundamental wave to the predetermined order. Based on the waveform display data calculating means for calculating the waveform display data for displaying the waveforms of the above waveforms and the waveform display data calculated by the waveform display data calculating means. 1 of the received current and the transformer For each harmonic from the fundamental wave of the secondary current to the predetermined order, the sum of the primary current of the transformer is subtracted from the received current to obtain each harmonic of the fundamental wave to the predetermined order of the current flowing through the phase-advancing capacitor. Leading capacitor current waveform display data computing means for computing the waveform display data and each waveform display data computed by the waveform display data computing means and the leading capacitor current waveform display data computing means. −
Waveform display means for displaying the waveforms of the received current, the primary side current of the transformer, the load current, and the harmonics from the fundamental wave to the predetermined order of the phase-advancing capacitor current based on the Characteristic harmonic measurement analysis system.
【請求項2】 進相コンデンサが接続された受電回路に
おける受電電流と受電電圧、及び受電回路の電圧が1次
側に印加される変圧器の負荷側回路における負荷電流と
負荷電圧を検出し、波形表示手段で各高調波の電力の方
向を表示させて各高調波の流入、流出の判定を可能にし
たことを特徴とする請求項1の高調波測定解析システ
ム。
2. A power receiving current and voltage in a power receiving circuit to which a phase advancing capacitor is connected, and a load current and a load voltage in a load side circuit of a transformer to which the voltage of the power receiving circuit is applied to the primary side, 2. The harmonic measurement analysis system according to claim 1, wherein the direction of electric power of each harmonic is displayed on the waveform display means so that the inflow and outflow of each harmonic can be determined.
JP17864894A 1994-07-29 1994-07-29 Harmonic measurement analysis system Expired - Fee Related JP3260982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17864894A JP3260982B2 (en) 1994-07-29 1994-07-29 Harmonic measurement analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17864894A JP3260982B2 (en) 1994-07-29 1994-07-29 Harmonic measurement analysis system

Publications (2)

Publication Number Publication Date
JPH0843460A true JPH0843460A (en) 1996-02-16
JP3260982B2 JP3260982B2 (en) 2002-02-25

Family

ID=16052143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17864894A Expired - Fee Related JP3260982B2 (en) 1994-07-29 1994-07-29 Harmonic measurement analysis system

Country Status (1)

Country Link
JP (1) JP3260982B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236876A (en) * 2007-03-19 2008-10-02 Toshiba Corp Power quality evaluation system
KR101136910B1 (en) * 2010-09-01 2012-04-20 한국전력공사 System and method for assessment of harmonic emission limits at cus transmission
CN102478605A (en) * 2010-11-23 2012-05-30 上海市电力公司 Harmonic calculation method of 256 sampling points for power quality
CN102478601A (en) * 2010-11-23 2012-05-30 上海市电力公司 Harmonic calculation method for 64 sampling points of power quality
CN104049159A (en) * 2014-05-16 2014-09-17 北京京东方能源科技有限公司 Fault detection method and device of inverter
CN108732409A (en) * 2018-05-21 2018-11-02 南京丹迪克科技开发有限公司 A kind of harmonic data methods of exhibiting and device
JP2021163139A (en) * 2020-03-31 2021-10-11 株式会社関電工 Measuring auxiliary apparatus and measurement system with measuring auxiliary apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236876A (en) * 2007-03-19 2008-10-02 Toshiba Corp Power quality evaluation system
KR101136910B1 (en) * 2010-09-01 2012-04-20 한국전력공사 System and method for assessment of harmonic emission limits at cus transmission
CN102478605A (en) * 2010-11-23 2012-05-30 上海市电力公司 Harmonic calculation method of 256 sampling points for power quality
CN102478601A (en) * 2010-11-23 2012-05-30 上海市电力公司 Harmonic calculation method for 64 sampling points of power quality
CN104049159A (en) * 2014-05-16 2014-09-17 北京京东方能源科技有限公司 Fault detection method and device of inverter
CN108732409A (en) * 2018-05-21 2018-11-02 南京丹迪克科技开发有限公司 A kind of harmonic data methods of exhibiting and device
JP2021163139A (en) * 2020-03-31 2021-10-11 株式会社関電工 Measuring auxiliary apparatus and measurement system with measuring auxiliary apparatus

Also Published As

Publication number Publication date
JP3260982B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP4167872B2 (en) Leakage current monitoring device and monitoring system therefor
US6173236B1 (en) Vector electricity meters and associated vector electricity metering methods
KR101300789B1 (en) Instrument and method to obtain ratio error of current transformer for watt-hour-meter
US10088546B2 (en) Method and apparatus to diagnose current sensor polarities and phase associations for a three-phase electric power system
CN109001577B (en) Electric energy metering field data analysis method and system
WO2013181809A1 (en) Method for identifying fault by current differential protection and device thereof
CN113156336B (en) Method and device for identifying single-tube open-circuit fault of Vienna rectifier in two stages and storage medium
JP4564863B2 (en) Power line measuring device
Abidullah et al. Real-time power quality signals monitoring system
KR20210125313A (en) Fault recording device for monitoring power quality
CN108414838A (en) A kind of inverter parallel system line impedance measurement method
JPH10123188A (en) Higher-harmonic measuring system
JPH0843460A (en) High-harmonic measurement analysis system
JPS62110168A (en) Digital trouble point locating apparatus
JP2009008580A (en) Handy electric power meter and three-phase electric power measurement method
Cataliotti et al. A time-domain strategy for the measurement of IEEE Standard 1459-2000 power quantities in nonsinusoidal three-phase and single-phase systems
JP3891434B2 (en) Judgment method of electric quantity change factor
CN103176030A (en) Method for detecting inter-harmonics of power distribution system
JP2001298877A (en) Device for monitoring power of a plurality of loads
JPS61186871A (en) Diagnosing device for electric motor
JPH01212366A (en) Apparatus for detecting deterioration of lightning arrester
JP2000055953A (en) Apparatus for measuring circuit element
Subtirelu et al. Virtual instrumentation for power quality analysis in the main supplying point at entrance of an industrial consumer
Gao et al. A low consumption DSP based power analyzer
CN218727958U (en) Electric energy meter on-site calibration instrument with state studying and judging function

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees