JPH0843342A - Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it - Google Patents

Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it

Info

Publication number
JPH0843342A
JPH0843342A JP18226194A JP18226194A JPH0843342A JP H0843342 A JPH0843342 A JP H0843342A JP 18226194 A JP18226194 A JP 18226194A JP 18226194 A JP18226194 A JP 18226194A JP H0843342 A JPH0843342 A JP H0843342A
Authority
JP
Japan
Prior art keywords
carbon dioxide
carbonic acid
sensor
acid gas
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18226194A
Other languages
Japanese (ja)
Inventor
Shoichi Shimizu
章一 志水
Toshiiku Itou
俊郁 伊藤
Shogo Matsubara
正吾 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18226194A priority Critical patent/JPH0843342A/en
Publication of JPH0843342A publication Critical patent/JPH0843342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Storage Of Harvested Produce (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

PURPOSE:To obtain a small-sized carbonic acid sensor with its high sensitivity and high response speed and improve the performance of carbonic acid gas concentration adjusting equipment, etc., by constituting a sintered disk by plural oxides in which a carbonic acid salt forming reaction reversible to a carbonic acid gas is generated and detecting the variation of the electrostatic capacitance or electric resistance valve due to the adsorbed carbon acid gas. CONSTITUTION:A sintered disk is formed by adding oxides in which no carbonic aid forming reaction is generated to two or more oxides. Out of oxides of alkali earth metals Fe, Co, Ni, Cu, Zn, etc., in which the carbonic acid salt forming reaction reversible to carbonic acid gas is generated. And, the variation in current due to the adsorption of carbonic acid gas is fetched by means of an electrode and a lead wire provided on both surfaces of the disk. This carbonic acid gas sensor is installed in a gas sensing part 5, the carbonic acid gas concentration in a box 4 is measured, for example, when volume % is more than 10, a carbonic acid gas detection circuit 7 is actuated, a control part 11 opens an air flow-in valve 12, the carbonic acid gas concentration in the box 4 is maintained constant. This small-sized, high-performance sensor is inexpensive and maintenance is easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は環境衛生、施設園芸、防
災設備、生産設備に用いられる炭酸ガス濃度を計測、制
御する炭酸ガスセンサとそれを利用した炭酸ガス濃度調
整設備、換気用設備に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide sensor for measuring and controlling carbon dioxide concentration used in environmental hygiene, horticulture, disaster prevention equipment, and production equipment, and carbon dioxide concentration adjusting equipment and ventilation equipment using the same. Is.

【0002】[0002]

【従来の技術】近年、炭酸ガスセンサとしては赤外線を
用いた検出方法、電解液を使用した方法、熱伝導を利用
した方法、NaCO3 を電極としNASICON等のア
ルカリイオン導電性固体電解質を用いる方法、K2 CO
3 等のCO3 2-イオン導電体を用いる方法、水酸化アパ
タイトの抵抗値を用いる方法、ペロブスカイト化合物の
抵抗値もしくは他酸化物と混合して静電容量の変化を利
用する方法等がある。
2. Description of the Related Art In recent years, as a carbon dioxide sensor, a detection method using infrared rays, a method using an electrolytic solution, a method using heat conduction, a method using NaCO 3 as an electrode and an alkali ion conductive solid electrolyte such as NASICON, K 2 CO
There are a method of using a CO 3 2- ion conductor such as 3 and a method of using a resistance value of hydroxyapatite, a method of using a resistance value of a perovskite compound or a method of utilizing a change in capacitance by mixing with another oxide.

【0003】また赤外線による炭酸ガス検出装置を用い
た花、野菜、果物等の育成設備が実用化されている。
Further, a growing facility for flowers, vegetables, fruits and the like using a carbon dioxide detecting device by infrared rays has been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前記従来
の炭酸ガスセンサでは、メインテナンスが困難であり、
炭酸ガス濃度の検出感度が悪く、炭酸ガスの検出時の応
答速度が遅いという問題点を有していた。
However, the conventional carbon dioxide gas sensor is difficult to maintain.
There is a problem that the detection sensitivity of carbon dioxide concentration is low and the response speed at the time of carbon dioxide detection is slow.

【0005】又、前記従来の炭酸ガスセンサを用いた設
備では、炭酸ガスセンサが大きいため設備が大型とな
り、製造コストが高価となり、炭酸ガスセンサ自体の炭
酸ガス濃度の検出感度が悪かったり、応答速度が遅いと
いうことや、炭酸ガスセンサが大型であるため複数の炭
酸ガスセンサを設備に設置することができないため設備
内の炭酸ガス濃度を正確に制御することができないとい
う問題点を有していた。
Further, in the equipment using the conventional carbon dioxide gas sensor, the equipment is large due to the large size of the carbon dioxide gas sensor, the manufacturing cost is high, the carbon dioxide gas sensor itself has a poor detection sensitivity of the carbon dioxide gas concentration, and the response speed is slow. That is, since the carbon dioxide gas sensor is large in size, it is impossible to install a plurality of carbon dioxide gas sensors in the equipment, so that the carbon dioxide concentration in the equipment cannot be accurately controlled.

【0006】本発明は前記従来の問題点を解決するもの
で、小型で、炭酸ガスの検出感度が高く、その応答速度
が速く、メインテナンスの容易な炭酸ガスセンサ及びそ
れを用いた炭酸ガス濃度調整設備、換気用設備を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems, and is a small-sized carbon dioxide sensor having high detection sensitivity of carbon dioxide, high response speed, and easy maintenance, and carbon dioxide concentration adjusting equipment using the same. , For the purpose of providing ventilation equipment.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1記載の炭酸ガスセンサは、焼結ディ
スクと、前記焼結ディスクの両面に形成された電極と、
前記電極に固定された端子部と、を有する炭酸ガスセン
サであって、前記焼結ディスクが炭酸ガスと可逆的な炭
酸塩形成反応を生じる2以上の酸化物の組成物から形成
されている構成を有している。請求項2記載の炭酸ガス
センサは、焼結ディスクと、前記焼結ディスクの両面に
形成された電極と、前記電極に固定された端子部と、を
有する炭酸ガスセンサであって、前記焼結ディスクが炭
酸ガスと可逆的な炭酸塩形成反応を生じる2以上の酸化
物と、反応の生じない酸化物と、の組成物とから形成さ
れている構造を有している。請求項3記載の炭酸ガスセ
ンサは、請求項1又は請求項2の内いずれか1におい
て、前記炭酸ガスと可逆的な炭酸塩形成反応を生じる酸
化物がアルカリ土類金属の酸化物、Fe,Co,Ni,
Cu,Zn,の酸化物、Y,Zr,Pb,Biの酸化
物、原子番号57〜72のランタニド元素の酸化物のい
ずれかである構成を有している。請求項4記載の炭酸ガ
スセンサは、請求項1乃至請求項3の内いずれか1にお
いて、前記電極がAu,Pt,RuOいずれか1種又は
これらの混合物である構成を有している。請求項5記載
の炭酸ガスセンサは、前記炭酸ガスと可逆的な炭酸塩形
成反応の生じない酸化物がAl2 3 、SiO2 いずれ
か1種又はこれらの混合物である構成を有している。請
求項6記載の本発明の炭酸ガスセンサを用いた炭酸ガス
濃度調整設備は、炭酸ガス濃度を検出する請求項1乃至
5の内いずれか1に記載の炭酸ガスセンサを備えた炭酸
ガスセンシング部と、炭酸ガスの流量を調節する炭酸ガ
ス流入バルブと、空気の流量を調節する空気流入バルブ
と、炭酸ガス濃度の上、下限を検知する炭酸ガス検知回
路・前記炭酸ガス流入バルブ及び前記空気流入バルブの
各々の開閉を制御するコントロール部を備えた制御部
と、を備えた構成を有している。請求項7記載の本発明
の炭酸ガスセンサを用いた換気用設備は、炭酸ガス濃度
を検出する請求項1乃至請求項5の内いずれか1に記載
の炭酸ガスセンサを備えた炭酸ガスセンシング部と、換
気用ファンと、炭酸ガス濃度の上限を検知する炭酸ガス
検知回路・前記換気用ファンの回転もしくはON/OF
Fを制御するコントロール回路を備えた制御部と、を備
えた構成を有している。前記炭酸ガス濃度調整設備とし
ては、植物育成設備、生鮮食品等の貯蔵設備、生鮮食品
等の輸送設備がある。
[Means for Solving the Problems] To achieve this object
The carbon dioxide sensor according to claim 1 of the present invention is
Disk, electrodes formed on both sides of the sintered disk,
A carbon dioxide gas sensor having a terminal portion fixed to the electrode
The sintered disk is carbon dioxide and reversible charcoal.
Formed from a composition of two or more oxides that undergo an acid salt formation reaction
It has a configuration that is configured. Carbon dioxide according to claim 2
The sensor consists of a sintered disc and both sides of the sintered disc.
The formed electrode and the terminal portion fixed to the electrode,
A carbon dioxide sensor having, wherein the sintered disk is charcoal.
Two or more oxidations that cause a reversible carbonate formation reaction with acid gas
And a composition of a non-reactive oxide.
It has a structure. Carbon dioxide gas according to claim 3.
The sensor is in any one of claim 1 or claim 2.
Acid that causes a reversible carbonate formation reaction with the carbon dioxide gas.
Oxides of alkaline earth metals, such as Fe, Co, Ni,
Oxide of Cu, Zn, Oxidation of Y, Zr, Pb, Bi
Oxides of lanthanide elements with atomic numbers 57 to 72
It has a configuration that is a little off. Carbon dioxide according to claim 4.
The scan sensor is any one of claims 1 to 3.
And the electrode is one of Au, Pt, and RuO, or
It has a composition that is a mixture of these. Claim 5
The carbon dioxide sensor of is a carbonate form reversible with the carbon dioxide.
Al oxide is the oxide that does not cause the reaction2 O 3 , SiO2 Either
It has a constitution which is one kind or a mixture thereof. Contract
Carbon dioxide using the carbon dioxide sensor of the present invention according to claim 6
The concentration adjusting facility detects the carbon dioxide concentration.
Carbon dioxide provided with the carbon dioxide sensor according to any one of 5
Gas sensing unit and carbon dioxide gas for adjusting the flow rate of carbon dioxide
Inlet valve and an air inlet valve that regulates the flow rate of air
And the carbon dioxide detection times for detecting the upper and lower limits of the carbon dioxide concentration.
Of the passage and the carbon dioxide gas inflow valve and the air inflow valve
A control unit having a control unit for controlling each opening and closing
And has a configuration including. The present invention according to claim 7
The ventilation equipment using the carbon dioxide sensor of
The method according to any one of claims 1 to 5 for detecting
The carbon dioxide sensing unit equipped with the carbon dioxide sensor of
Carbon dioxide that detects the upper limit of carbon dioxide concentration with a fan
Rotation or ON / OF of the detection circuit and the ventilation fan
And a control unit having a control circuit for controlling F.
It has the above configuration. As the carbon dioxide concentration adjusting equipment
, Plant growing equipment, storage equipment for fresh food, fresh food
There are transportation facilities such as.

【0008】前記炭酸ガスセンニング部は、前記炭酸ガ
スセンサを加熱器で囲い、前記炭酸ガスセンサの酸化物
が炭酸ガスとの可逆的な炭酸塩形成反応が生じる温度ま
で加熱されている。
The carbon dioxide gas sensing section surrounds the carbon dioxide gas sensor with a heater and is heated to a temperature at which an oxide of the carbon dioxide gas sensor causes a reversible carbonate formation reaction with carbon dioxide gas.

【0009】[0009]

【作用】この構成によって、炭酸ガスの検出は、焼結デ
ィスクの炭酸ガスと可逆的な炭酸塩形成反応を生じる酸
化物と他の酸化物との界面に、吸着した炭酸ガスが炭酸
塩形成反応を生じ、前記界面での電気伝導に関与する電
子密度、イオン密度が変化し、焼結ディスク全体の静電
容量値や電気抵抗値が変化することによりおこなわれ
る。
With this configuration, the carbon dioxide gas is detected by detecting the carbon dioxide gas adsorbed at the interface between the oxide and another oxide that causes a reversible carbonate formation reaction with the carbon dioxide gas of the sintered disk. Occurs, and the electron density and the ion density involved in the electric conduction at the interface are changed, and the electrostatic capacitance value and the electric resistance value of the entire sintered disk are changed.

【0010】この変化を最適化するために、炭酸ガスと
可逆的な炭酸塩形成反応を生じない酸化物を焼結ディス
クに添加して、インピーダンスを最適化することによ
り、静電容量値、電気抵抗値を炭酸ガスを検知するのに
最も良いようにすることができる。
In order to optimize this change, an oxide that does not cause a reversible carbonate formation reaction with carbon dioxide gas is added to the sintered disk to optimize the impedance, thereby obtaining the capacitance value, the electric The resistance value can be optimized to detect carbon dioxide.

【0011】この構成によって本発明の炭酸ガスセンサ
を用いた炭酸ガス濃度調整設備は、本発明の炭酸ガスセ
ンサにより、正確にボックス内の炭酸ガス濃度を検出で
き、制御部の信号により、ただちに炭酸ガス流入バルブ
と空気流入バルブを調節して、ボックス内の炭酸ガス濃
度を正確に制御することができる。
With this configuration, the carbon dioxide gas concentration adjusting equipment using the carbon dioxide gas sensor of the present invention can accurately detect the carbon dioxide gas concentration in the box by the carbon dioxide gas sensor of the present invention, and the carbon dioxide gas inflow is immediately supplied by the signal of the control unit. By adjusting the valve and the air inflow valve, the carbon dioxide concentration in the box can be precisely controlled.

【0012】この構成によって本発明の換気用設備は、
本発明の炭酸ガスセンサにより、ボックス内の炭酸ガス
濃度を正確に検知でき、制御部の信号により、換気用フ
ァンを作動させて、ボックス内の炭酸ガスを換気するこ
とができる。
With this configuration, the ventilation equipment of the present invention is
With the carbon dioxide sensor of the present invention, the concentration of carbon dioxide in the box can be accurately detected, and the ventilation fan can be operated by the signal of the control unit to ventilate the carbon dioxide in the box.

【0013】[0013]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0014】(実施例1〜8 比較例1、2)図1は本
発明の一実施例における炭酸ガスセンサの斜視図であ
る。
(Examples 1 to 8 Comparative Examples 1 and 2) FIG. 1 is a perspective view of a carbon dioxide sensor according to an example of the present invention.

【0015】図1において、1は焼結ディスク、2は電
極、3は端子部である。(表1)に記載の材料1と材料
2を同じモル比率で混合し、ディスク状(直径10mm、
厚さ0.4mm)に成形した後、500℃〜800℃で電
気炉を用いて焼成し、焼結ディスク1とした。この焼結
ディスク1の両面にAgで電極2を成形した後、作動温
度に耐え電気抵抗の小さなPtを用いて端子部3を成形
した。
In FIG. 1, 1 is a sintered disk, 2 is an electrode, and 3 is a terminal portion. The materials 1 and 2 described in (Table 1) were mixed in the same molar ratio to form a disk shape (diameter 10 mm,
After being formed into a thickness of 0.4 mm), it was fired at 500 ° C. to 800 ° C. in an electric furnace to obtain a sintered disk 1. After the electrodes 2 were formed of Ag on both sides of the sintered disk 1, the terminal portion 3 was formed by using Pt that withstands an operating temperature and has a low electric resistance.

【0016】炭酸ガスセンサを、ヒーターで200℃〜
800℃に加熱した状態で、YHP社製インピーダンス
アナライザ4192Aを用いて2端子法により電気抵抗
値及び静電容量を測定した。この時の周波数は0.1〜
1000Hzの範囲であり、試料ガスには乾燥空気と乾
燥空気で希釈した炭酸ガスを用いた。上記乾燥空気を流
入した状態で測定した静電容量の値を基準とし、炭酸濃
度2%に調整された乾燥空気を流入させて測定した静電
容量の値と前記基準との比率を感度とし、静電容量感度
の結果を(表1)に示した。電気抵抗値も前記と同様の
方法で感度を測定し、結果を(表1)に示した。
The carbon dioxide gas sensor is heated to 200 ° C.
The electrical resistance value and the capacitance were measured by a two-terminal method using an impedance analyzer 4192A manufactured by YHP Co. while being heated to 800 ° C. The frequency at this time is 0.1
The range was 1000 Hz, and dry air and carbon dioxide gas diluted with dry air were used as the sample gas. The capacitance value measured with the dry air introduced is used as a reference, and the ratio of the capacitance value measured with the dry air adjusted to a carbonic acid concentration of 2% and the reference is taken as the sensitivity, The results of capacitance sensitivity are shown in (Table 1). The electric resistance value was also measured for sensitivity by the same method as described above, and the results are shown in (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】本実施例は炭酸ガス濃度2%の時、平衡に
達するまでを100%とした場合80%に達する応答時
間は静電容量、電気抵抗共に20秒であった。炭酸ガス
雰囲気から乾燥空気に変更した時の回復応答時間は3分
程度であった。
In this example, when the carbon dioxide concentration was 2%, the response time to reach 80% when the equilibrium was reached to 100% was 20 seconds for both capacitance and electric resistance. The recovery response time when the carbon dioxide atmosphere was changed to dry air was about 3 minutes.

【0019】この(表1)から明らかなように、本実施
例による炭酸ガスセンサは、炭酸ガスに対する感度が非
常に高く、又、応答感度も十分に速いという優れた効果
を有することが判った。
As is clear from (Table 1), the carbon dioxide sensor according to the present embodiment has an excellent effect that the sensitivity to carbon dioxide is very high and the response sensitivity is sufficiently fast.

【0020】一種類の炭酸塩形成酸化物しか含まない比
較例1と比較例2の場合は炭酸ガスを流入しても測定値
に変化はなかった。
In Comparative Examples 1 and 2 containing only one kind of carbonate-forming oxide, the measured values did not change even when carbon dioxide gas was introduced.

【0021】(実施例9、10、11)(表2)に記載
の材料1、材料2、材料3をモル比が60:5:35と
なるように焼結ディスクを成形し、以後は実施例1と同
様に炭酸ガスセンサを成形し、静電容量感度と抵抗値感
度を測定した。
(Examples 9, 10 and 11) Materials 1, 2, and 3 described in (Table 2) were molded into a sintered disk so that the molar ratio was 60: 5: 35, and thereafter, performed. A carbon dioxide sensor was molded in the same manner as in Example 1, and the capacitance sensitivity and resistance value sensitivity were measured.

【0022】[0022]

【表2】 [Table 2]

【0023】静電容量感度と電気抵抗値感度を高めるた
めには、適当なインピーダンス値であることが必要であ
り、電気抵抗値と位相角を最適化しなければならない。
In order to increase the capacitance sensitivity and the electric resistance value sensitivity, it is necessary that the impedance values are appropriate, and the electric resistance value and the phase angle must be optimized.

【0024】Al23 のかわりにSiO2 を用いても
(表2)と同様な結果が得られた。この(表2)から明
らかなように、本実施例による炭酸ガスセンサは、炭酸
ガスに対する感度が非常に高く、又、応答感度も十分に
速いという優れた効果を有することがわかった。
Even when SiO 2 was used instead of Al 2 O 3, the same results as in (Table 2) were obtained. As is clear from this (Table 2), it was found that the carbon dioxide sensor according to the present example has an excellent effect that the sensitivity to carbon dioxide is very high and the response sensitivity is sufficiently fast.

【0025】(実施例12)(表3)は実施例1と実施
例9に記載の試料の炭酸塩分解温度と感度発現温度であ
る。実施例12はPbO、BaO、Al23 を原料と
して、他は実施例9と同様の方法で作成した炭酸ガスセ
ンサの炭酸塩分解温度と感度発現温度である。
(Example 12) (Table 3) shows the carbonate decomposition temperature and the sensitivity development temperature of the samples described in Examples 1 and 9. Example 12 is a carbonate decomposition temperature and a sensitivity expression temperature of a carbon dioxide sensor prepared in the same manner as in Example 9 except that PbO, BaO and Al 2 O 3 are used as raw materials.

【0026】[0026]

【表3】 [Table 3]

【0027】炭酸塩分解温度は、測定温度と感度のグラ
フから、感度曲線の延長線と測定温度軸との交点から求
めた。
The carbonate decomposition temperature was determined from the graph of measured temperature and sensitivity from the intersection of the extension line of the sensitivity curve and the measured temperature axis.

【0028】この(表3)から明らかなように、炭酸塩
分解温度と感度発現温度とは同じ温度であり、又、炭酸
塩をもたない金属酸化物では感度が出現しないことか
ら、可逆的な炭酸ガスとの反応による炭酸塩の形成が感
度の出現に重要な働きをしている。重量分析によると炭
酸塩分解温度以下の温度においても炭酸ガスの脱着は起
こっており、静電容量値、電気抵抗値の測定においても
若干の感度を示す。
As is clear from this (Table 3), the decomposition temperature of the carbonate and the temperature at which the sensitivity develops are the same, and the sensitivity does not appear in the metal oxide having no carbonate. The formation of carbonate by the reaction with various carbon dioxides plays an important role in the appearance of sensitivity. According to the gravimetric analysis, desorption of carbon dioxide occurs even at a temperature below the decomposition temperature of carbonate, and some sensitivity is shown in the measurement of capacitance value and electric resistance value.

【0029】このことから本実施例の炭酸ガスセンサは
炭酸塩分解温度以上で使用すると効果的であるといえ
る。
From the above, it can be said that the carbon dioxide gas sensor of this embodiment is effective when used at a carbonate decomposition temperature or higher.

【0030】(実施例13〜15 比較例3)実施例1
に記載のCuO,CaOの試料で電極をAg,Au,P
t,RuOにする以外は実施例1と同様に炭酸ガスセン
サを成形した。電極材料としては田中貴金属インターナ
ショナル(株)製のAgペースト、Auペースト、Pt
ペースト、RuOペーストを使用し、各焼結ディスクの
両面に直径6mmの円状に各ペーストを塗布後、熱処理を
おこない電極を成形した。
(Examples 13 to 15 Comparative Example 3) Example 1
The sample of CuO and CaO described in 1.
A carbon dioxide gas sensor was molded in the same manner as in Example 1 except that t and RuO were used. As electrode materials, Ag paste, Au paste, Pt manufactured by Tanaka Kikinzoku International Co., Ltd.
Using paste and RuO paste, each paste was applied to both surfaces of each sintered disk in a circular shape having a diameter of 6 mm, and then heat-treated to form electrodes.

【0031】炭酸ガスセンサを、ヒーター中に600℃
で30日、500cc/min空気を流しながら、放置
した。炭酸ガスセンサを放置後の静電容量の感度の変化
率を(表4)に示した。
A carbon dioxide sensor was placed in a heater at 600 ° C.
It was left for 30 days while flowing 500 cc / min of air. The rate of change in capacitance sensitivity after leaving the carbon dioxide sensor is shown in (Table 4).

【0032】[0032]

【表4】 [Table 4]

【0033】この(表4)から明らかなように、電極材
料としてはAu,Pt,RuOが適しており、Agは適
していないことがわかる。
As is apparent from this (Table 4), Au, Pt, and RuO are suitable as the electrode material, and Ag is not suitable.

【0034】(実施例16)図2は本発明の一実施例に
おける換気用設備の構成図である。
(Embodiment 16) FIG. 2 is a structural diagram of ventilation equipment in an embodiment of the present invention.

【0035】図2において、4はボックス、5は2mm×
1mm×0.4mmの炭酸ガスセンサの回りをヒーターで覆
った炭酸ガスセンシング部、6は換気用ファン、7は炭
酸ガス濃度2%で信号が発生するようにした炭酸ガス検
知回路、8は換気用ファン6のコントロール回路、9は
炭酸ガスの流量を調節する炭酸ガス流入バルブ、10は
炭酸ガス濃度を測定する赤外線ガス測定器である。以上
のように構成された換気用設備について、図2を用いて
その動作を説明する。まず、炭酸ガス流入バルブ9を開
閉してボックス4内の炭酸ガス濃度を増加させると、炭
酸ガスセンシング部5で炭酸ガス濃度を検知し、炭酸ガ
ス濃度が2%になると炭酸ガス検知回路7が作動する。
この信号が発生するとコントロール回路8が信号を発生
し、換気用ファン6が作動し、ボックス4内の炭酸ガス
濃度が低下する。赤外線ガス測定器10によりボックス
4内の炭酸ガス濃度を測定すると、ボックス4内の炭酸
ガス濃度はほぼ2%の近辺であることがわかった。炭酸
ガス検知回路7の作動する炭酸ガス濃度は炭酸ガスセン
サの静電容量値又は電気抵抗値を変更することで容易に
変更することができる。
In FIG. 2, 4 is a box and 5 is 2 mm ×
A carbon dioxide sensing part in which a 1 mm × 0.4 mm carbon dioxide sensor is covered with a heater, 6 is a ventilation fan, 7 is a carbon dioxide detection circuit that generates a signal at a carbon dioxide concentration of 2%, and 8 is for ventilation. A control circuit of the fan 6, 9 is a carbon dioxide gas inflow valve for adjusting the flow rate of carbon dioxide, and 10 is an infrared gas measuring instrument for measuring the carbon dioxide concentration. The operation of the ventilation equipment configured as described above will be described with reference to FIG. First, when the carbon dioxide gas inflow valve 9 is opened and closed to increase the carbon dioxide gas concentration in the box 4, the carbon dioxide gas sensing unit 5 detects the carbon dioxide gas concentration, and when the carbon dioxide gas concentration becomes 2%, the carbon dioxide gas detection circuit 7 is activated. Operate.
When this signal is generated, the control circuit 8 generates a signal, the ventilation fan 6 is operated, and the carbon dioxide concentration in the box 4 is lowered. When the carbon dioxide gas concentration in the box 4 was measured by the infrared gas measuring device 10, it was found that the carbon dioxide gas concentration in the box 4 was around 2%. The carbon dioxide concentration at which the carbon dioxide detection circuit 7 operates can be easily changed by changing the capacitance value or the electric resistance value of the carbon dioxide sensor.

【0036】(実施例17)図3は本発明の一実施例に
おける植物育成設備の構成図である。
(Embodiment 17) FIG. 3 is a block diagram of a plant growing facility in an embodiment of the present invention.

【0037】図3において、5は炭酸ガスセンシング
部、7は炭酸ガス検知回路、9は炭酸ガスの流量を調整
する炭酸ガス流入バルブ、11は炭酸ガス流入バルブ9
と空気流入バルブ12を制御するコントロール部、12
は空気の流量を調整する空気流入バルブ、13はビニー
ルハウスである。
In FIG. 3, 5 is a carbon dioxide sensing unit, 7 is a carbon dioxide detection circuit, 9 is a carbon dioxide inflow valve for adjusting the flow rate of carbon dioxide, and 11 is a carbon dioxide inflow valve 9.
And a control unit for controlling the air inflow valve 12,
Is an air inflow valve for adjusting the flow rate of air, and 13 is a greenhouse.

【0038】以上のように構成された植物育成設備につ
いて、図3を用いてその動作を説明する。まず、炭酸ガ
スセンシング部5でビニールハウス13内の炭酸ガス濃
度を測定し、750ppm以上の時は、炭酸ガス検知回
路7が作動し、コントロール部11により空気流入バル
ブ12が開かれる。ビニールハウス13内の炭酸ガス濃
度が750ppm以下の時は、炭酸ガス検知回路7が作
動せず、コントロール部11により炭酸ガス流入バルブ
9が開かれる。
The operation of the plant growing facility constructed as described above will be described with reference to FIG. First, the carbon dioxide gas concentration in the greenhouse 13 is measured by the carbon dioxide gas sensing unit 5, and when it is 750 ppm or more, the carbon dioxide gas detection circuit 7 is activated and the control unit 11 opens the air inflow valve 12. When the carbon dioxide gas concentration in the vinyl house 13 is 750 ppm or less, the carbon dioxide gas detection circuit 7 does not operate, and the control unit 11 opens the carbon dioxide gas inflow valve 9.

【0039】ビニールハウス13中でホウレンソウを育
成した。育成したホウレンソウの1株当たりの平均重量
は40gであり、通常の生育法で育てたホウレンソウの
1株当たりの平均重量は25gであった。本実施例の植
物育成設備で育成したホウレンソウは従来の育成法で育
成したホウレンソウに比較して60%以上の増量となっ
た。
Spinach was grown in the vinyl house 13. The average weight of the cultivated spinach was 40 g, and the average weight of the cultivated spinach was 25 g. The amount of spinach grown in the plant growing equipment of this example increased by 60% or more as compared with the spinach grown by the conventional growing method.

【0040】(実施例18)図4は本発明の一実施例に
おける貯蔵設備の構成図である。
(Embodiment 18) FIG. 4 is a block diagram of storage equipment in an embodiment of the present invention.

【0041】図4において、5は炭酸ガスセンシング
部、7は炭酸ガス検知回路、9は炭酸ガスの流量を調整
する炭酸ガス流入バルブ、11は炭酸ガス流入バルブ9
と空気流入バルブ12の開閉を制御するコントロール
部、12は空気の流量を調整する空気流入バルブ、4は
ボックスである。
In FIG. 4, 5 is a carbon dioxide sensing unit, 7 is a carbon dioxide detection circuit, 9 is a carbon dioxide inflow valve for adjusting the flow rate of carbon dioxide, and 11 is a carbon dioxide inflow valve 9.
And an air inflow valve 12 for controlling the opening and closing of the air inflow valve 12, 12 for adjusting the flow rate of air, and 4 a box.

【0042】以上のように構成された貯蔵設備につい
て、図4を用いてその動作を説明する。まず、炭酸ガス
センシング部5でボックス4内の炭酸ガス濃度を測定
し、10体積%以上の時は、炭酸ガス検知回路7が作動
し、コントロール部11により空気流入バルブ12が開
かれる。ボックス4内の炭酸ガス濃度が10体積%以下
の時は、炭酸ガス検知回路7が作動せず、コントロール
部11により炭酸ガス流入バルブ9が開かれる。
The operation of the storage facility constructed as above will be described with reference to FIG. First, the carbon dioxide gas concentration in the box 4 is measured by the carbon dioxide gas sensing unit 5, and when it is 10% by volume or more, the carbon dioxide gas detection circuit 7 is activated and the air inlet valve 12 is opened by the control unit 11. When the carbon dioxide concentration in the box 4 is 10% by volume or less, the carbon dioxide detection circuit 7 does not operate, and the control unit 11 opens the carbon dioxide inflow valve 9.

【0043】ボックス4でブロッコリーを保管した。本
実施例の貯蔵設備に保管したブロッコリーは8日間変色
しなかったが、従来の貯蔵設備に保管したブロッコリー
は2日間しか変色しない期間がなかった。
Broccoli was stored in Box 4. The broccoli stored in the storage facility of this example did not discolor for 8 days, but the broccoli stored in the conventional storage facility did not discolor for only 2 days.

【0044】本実施例の貯蔵設備はブロッコリー以外の
植物、魚等の生鮮食品の保管に利用することができる。
又、本実施例の貯蔵設備は前記の生鮮食品の輸送設備と
しても用いることができる。
The storage facility of this embodiment can be used for storing fresh foods such as plants and fish other than broccoli.
The storage equipment of this embodiment can also be used as the above-mentioned transportation equipment for fresh food.

【0045】[0045]

【発明の効果】以上のように本発明は、焼結ディスクに
炭酸ガスと可逆的な炭酸塩形成反応を生じる2以上の酸
化物を用いることにより、きわめて小型で、炭酸ガスに
対する感度が良く、炭酸ガスに対する応答速度も早く、
メインテナンスも容易な優れた炭酸ガスセンサを実現で
きる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, by using two or more oxides which cause a reversible carbonate formation reaction with carbon dioxide in the sintered disk, the size is extremely small and the sensitivity to carbon dioxide is high. The response speed to carbon dioxide is fast,
An excellent carbon dioxide sensor that is easy to maintain can be realized.

【0046】本発明の優れた特性を有する炭酸ガスセン
サを用いた炭酸ガス濃度調整設備、換気用設備であるの
で、小型であり、設備内の炭酸ガス濃度を精度良く制御
でき、メンテナンスも容易であり、製造コストも安くす
ることができる。
The carbon dioxide concentration adjusting facility and the ventilation facility using the carbon dioxide sensor having the excellent characteristics of the present invention are small in size, the carbon dioxide concentration in the facility can be controlled with high accuracy, and the maintenance is easy. Also, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における炭酸ガスセンサの斜
視図
FIG. 1 is a perspective view of a carbon dioxide sensor according to an embodiment of the present invention.

【図2】本発明の一実施例における換気用設備の構成図FIG. 2 is a configuration diagram of ventilation equipment according to an embodiment of the present invention.

【図3】本発明の一実施例における植物育成設備の構成
FIG. 3 is a configuration diagram of a plant growing facility according to an embodiment of the present invention.

【図4】本発明の一実施例における貯蔵設備の構成図FIG. 4 is a configuration diagram of a storage facility according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焼結ディスク 2 電極 3 端子部 4 ボックス 5 炭酸ガスセンシング部 6 換気用ファン 7 炭酸ガス検知回路 8 コントロール回路 9 炭酸ガス流入バルブ 10 赤外線ガス測定器 11 コントロール部 12 空気流入バルブ 13 ビニールハウス 1 Sintered disc 2 Electrode 3 Terminal part 4 Box 5 Carbon dioxide sensing part 6 Ventilation fan 7 Carbon dioxide detection circuit 8 Control circuit 9 Carbon dioxide inflow valve 10 Infrared gas measuring instrument 11 Control part 12 Air inflow valve 13 Vinyl house

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】焼結ディスクと、前記焼結ディスクの両面
に形成された電極と、前記電極に固定された端子部と、
を有する炭酸ガスセンサであって、前記焼結ディスクが
炭酸ガスと可逆的な炭酸塩形成反応を生じる2以上の酸
化物の組成物から形成されていることを特徴とする炭酸
ガスセンサ。
1. A sintered disk, electrodes formed on both surfaces of the sintered disk, and a terminal portion fixed to the electrode.
2. A carbon dioxide gas sensor having: a carbon dioxide gas sensor, wherein the sintered disk is formed of a composition of two or more oxides that cause a reversible carbonate formation reaction with carbon dioxide.
【請求項2】焼結ディスクと、前記焼結ディスクの両面
に形成された電極と、前記電極に固定された端子部と、
を有する炭酸ガスセンサであって、前記焼結ディスクが
炭酸ガスと可逆的な炭酸塩形成反応を生じる2以上の酸
化物と、反応の生じない酸化物と、の組成物とから形成
されていることを特徴とする炭酸ガスセンサ。
2. A sintered disk, electrodes formed on both sides of the sintered disk, and terminal portions fixed to the electrodes.
A carbon dioxide gas sensor having: a sintered disc formed from a composition of two or more oxides that cause a reversible carbonate formation reaction with carbon dioxide and an oxide that does not react. Carbon dioxide sensor characterized by.
【請求項3】前記炭酸ガスと可逆的な炭酸塩形成反応を
生じる酸化物が、アルカリ土類金属の酸化物、Fe,C
o,Ni,Cu,Zn,の酸化物、Y,Zr,Pb,B
iの酸化物、原子番号57〜72のランタニド元素の酸
化物のいずれかであることを特徴とする請求項1又は請
求項2の内いずれか1に記載の炭酸ガスセンサ。
3. The oxide that causes a reversible carbonate formation reaction with carbon dioxide is an oxide of an alkaline earth metal, Fe or C.
O, Ni, Cu, Zn, oxides, Y, Zr, Pb, B
3. The carbon dioxide sensor according to claim 1, wherein the carbon dioxide sensor is any one of an oxide of i and an oxide of a lanthanide element having an atomic number of 57 to 72.
【請求項4】前記電極がAu,Pt,RuOいずれか1
種又はこれらの混合物であることを特徴とする請求項1
乃至請求項3の内いずれか1に記載の炭酸ガスセンサ。
4. The electrode is any one of Au, Pt, and RuO.
2. A seed or a mixture thereof.
The carbon dioxide sensor according to any one of claims 1 to 3.
【請求項5】前記炭酸ガスと可逆的な炭酸塩形成反応の
生じない酸化物がAl 23 、SiO2 いずれか1種又
はこれらの混合物であることを特徴とする請求項2記載
の炭酸ガスセンサ。
5. A method for reversible carbonate formation reaction with carbon dioxide
The oxide that does not occur is Al 2 O3 , SiO2 Any one or
Is a mixture thereof.
Carbon dioxide sensor.
【請求項6】炭酸ガス濃度を検出する請求項1乃至請求
項5の内いずれか1に記載の炭酸ガスセンサを備えた炭
酸ガスセンシング部と、炭酸ガスの流量を調節する炭酸
ガス流入バルブと、空気の流量を調節する空気流入バル
ブと、炭酸ガス濃度の上、下限を検知する炭酸ガス検知
回路・前記炭酸ガス流入バルブ及び前記空気流入バルブ
の各々の開閉を制御するコントロール部を備えた制御部
と、を備えたことを特徴とする炭酸ガス濃度調整設備。
6. A carbon dioxide gas sensing unit equipped with the carbon dioxide gas sensor according to claim 1, which detects a carbon dioxide gas concentration, and a carbon dioxide gas inflow valve for adjusting the flow rate of carbon dioxide gas. A control unit including an air inflow valve for adjusting the flow rate of air, a carbon dioxide detection circuit for detecting upper and lower limits of carbon dioxide concentration, and a control unit for controlling opening / closing of each of the carbon dioxide inflow valve and the air inflow valve. And a carbon dioxide concentration adjusting facility.
【請求項7】炭酸ガス濃度を検出する請求項1乃至請求
項5の内いずれか1に記載の炭酸ガスセンサを備えた炭
酸ガスセンシング部と、換気用ファンと、炭酸ガス濃度
の上限を検知する炭酸ガス検知回路・前記換気用ファン
の回転もしくはON/OFFを制御するコントロール回
路を備えた制御部と、を備えたことを特徴とする換気用
設備。
7. A carbon dioxide sensing part equipped with the carbon dioxide sensor according to claim 1, which detects the carbon dioxide concentration, a ventilation fan, and an upper limit of the carbon dioxide concentration. A ventilation facility comprising: a carbon dioxide detection circuit; and a control unit having a control circuit for controlling rotation or ON / OFF of the ventilation fan.
JP18226194A 1994-08-03 1994-08-03 Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it Pending JPH0843342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18226194A JPH0843342A (en) 1994-08-03 1994-08-03 Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18226194A JPH0843342A (en) 1994-08-03 1994-08-03 Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it

Publications (1)

Publication Number Publication Date
JPH0843342A true JPH0843342A (en) 1996-02-16

Family

ID=16115165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18226194A Pending JPH0843342A (en) 1994-08-03 1994-08-03 Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it

Country Status (1)

Country Link
JP (1) JPH0843342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182010A1 (en) * 2018-03-23 2019-09-26 Koa株式会社 Gas sensor and method for manufacturing same
CN113436518A (en) * 2021-05-27 2021-09-24 浙江集赞电子科技有限公司 Teaching display device based on carbon dioxide sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182010A1 (en) * 2018-03-23 2019-09-26 Koa株式会社 Gas sensor and method for manufacturing same
JP2019168366A (en) * 2018-03-23 2019-10-03 Koa株式会社 Gas sensor and manufacturing method therefor
CN111886495A (en) * 2018-03-23 2020-11-03 兴亚株式会社 Gas sensor and method for manufacturing the same
US11977042B2 (en) 2018-03-23 2024-05-07 Koa Corporation Gas sensor and method for manufacturing same
CN111886495B (en) * 2018-03-23 2024-06-04 兴亚株式会社 Gas sensor and method for manufacturing the same
CN113436518A (en) * 2021-05-27 2021-09-24 浙江集赞电子科技有限公司 Teaching display device based on carbon dioxide sensor

Similar Documents

Publication Publication Date Title
US7006926B2 (en) Carbon dioxide sensor
US3951603A (en) Gas-sensor element and method for detecting reducing gas or oxygen gas
Egashira et al. Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases
US4601883A (en) Sensor element
US5609096A (en) Vegetable freshness keeping device having a sensor
EP0089470A1 (en) Gas detecting apparatus
US4378691A (en) Multi-functional sensor
Devi et al. SnO2/Bi2 O 3: A Suitable System for Selective Carbon Monoxide Detection
Yoon et al. Interface reaction and its effect on the performance of a CO2 gas sensor based on Li0. 35La0. 55TiO3 electrolyte and Li2CO3 sensing electrode
US5993624A (en) Carbon dioxide gas sensor
JPH0843342A (en) Carbonic aid gas sensor and carbonic acid gas concentration adjusting equipment and air ventilation equipment using it
EP0030112B1 (en) Combustible gas detectors
WO1998032007A1 (en) Nitrogen oxides detection method, and sensor element for detection of nitrogen oxides
JP3533334B2 (en) Carbon dioxide sensor and method for measuring carbon dioxide concentration
EP1039292B1 (en) Method of detecting the concentration of carbon dioxide in a gas mixture
KR100881905B1 (en) Gas Sensor for Detecting Freshness of Fish and Manufacturing Method at the same and Apparatus for Detecting using the Gas Sensor
JPH09257747A (en) Carbon dioxide sensor
EP0115953A2 (en) Gas sensor
JPS5840695B2 (en) gas sensing element
JPH0634592A (en) Gas sensor for detecting quality of food
TWI255340B (en) Method and apparatus for analyzing mixtures of gases
JP3366118B2 (en) Gas sensor for food quality detection
JPH0572162A (en) Gas sensor
JPH04335149A (en) Gas sensor
Stankova et al. Improvement of the gas sensing properties of RF sputtered WO/sub 3/thin films using different dopants