JPH0843242A - Leakage testing device - Google Patents

Leakage testing device

Info

Publication number
JPH0843242A
JPH0843242A JP18338494A JP18338494A JPH0843242A JP H0843242 A JPH0843242 A JP H0843242A JP 18338494 A JP18338494 A JP 18338494A JP 18338494 A JP18338494 A JP 18338494A JP H0843242 A JPH0843242 A JP H0843242A
Authority
JP
Japan
Prior art keywords
pressure
container
chamber
volume
variable volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18338494A
Other languages
Japanese (ja)
Other versions
JP3382726B2 (en
Inventor
Shigeo Nakazawa
茂夫 中沢
Shinichi Tsuchiya
真一 土屋
Koji Horiuchi
幸二 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Keiki Seisakusho KK
Original Assignee
Nagano Keiki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Keiki Seisakusho KK filed Critical Nagano Keiki Seisakusho KK
Priority to JP18338494A priority Critical patent/JP3382726B2/en
Publication of JPH0843242A publication Critical patent/JPH0843242A/en
Application granted granted Critical
Publication of JP3382726B2 publication Critical patent/JP3382726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To provide a leakage testing device which can be operated easily and can accurately measure leakage. CONSTITUTION:A pressure receiving chamber 42 to which an operating pressure is applied from the outside and a variable volume vessel 40 equipped with a diaphragm 32 which divides the chamber 42 from a variable volume chamber 31 and changes the volume of the chamber 41 when the diaphragm 43 is displaced by the operating pressure applied to the chamber 41 are provided in the branch section 4D of the piping 4 of the leakage testing device 10 which measures leakage from a container 2 to be tested based on the differential pressure generated between a reference container 1 and the container 2 to be tested which have been sealed after their internal pressures were adjusted to the same pressure as each other and a gas is supplied to the chamber 42 and containers 1 and 2 through an electropneumatic regulator 20 which adjusts the pressure of the supplied gas in accordance with an electric signal from the outside so as to accurately and easily secure the operability of the testing device 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基準容器および被試験
物の内部を同一の所定圧力にした後、これらの基準容器
および被試験物の間に生じる差圧に基づいて被試験物か
らの気体の漏れを測定する漏れ試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention sets the same predetermined pressure inside a reference container and an object to be tested, and then based on the differential pressure generated between these reference container and the object to be tested, The present invention relates to a leak test device for measuring gas leak.

【0002】[0002]

【背景技術】従来より、気密性を要する容器等の漏れを
検査する装置として、漏れが無い、または、無いとみな
せる基準容器、および、検査対象となる被試験物の内部
を同一の所定圧力にした後、これらの基準容器および被
試験物の間に生じる差圧に基づいて被試験物からの気体
の漏れを測定する漏れ試験装置が知られている。図4に
は、漏れ試験装置の一例が示されている。この図の漏れ
試験装置50は、漏れの無い基準容器1と、検査対象とな
る被試験容器2と、これらの容器1, 2の内部に気体を
供給するための気体供給源3とを有するものである。漏
れ試験装置50には、基準容器1および被試験容器2と気
体供給源3とを接続する分岐した配管4が備えられてい
る。配管4の分岐部4Aの上流側の基幹部4Bには、気体供
給源3から供給される気体を所定圧力に調整する機械式
の減圧弁51と、三方弁52とが設けられている。三方弁52
は、減圧弁51の下流側と、配管4の分岐部4Aと、外部と
連通した排気管5とに接続されたものである。この三方
弁52により、分岐部4Aは、気体供給源3および排気管5
の何れかと選択的に連通可能となっている。
2. Description of the Related Art Conventionally, as a device for inspecting leaks of containers and the like that require airtightness, a reference container that is not leaked or can be regarded as not leaked, and the inside of a DUT to be inspected are kept at the same predetermined pressure. After that, there is known a leak test device that measures the gas leak from the DUT based on the differential pressure generated between the reference container and the DUT. FIG. 4 shows an example of the leak test apparatus. The leak test apparatus 50 of this figure has a leak-free reference container 1, a test container 2 to be inspected, and a gas supply source 3 for supplying gas into these containers 1 and 2. Is. The leak test apparatus 50 is provided with a branched pipe 4 that connects the reference container 1, the container under test 2, and the gas supply source 3. A mechanical pressure reducing valve 51 that adjusts the gas supplied from the gas supply source 3 to a predetermined pressure and a three-way valve 52 are provided in the trunk portion 4B on the upstream side of the branch portion 4A of the pipe 4. Three-way valve 52
Is connected to the downstream side of the pressure reducing valve 51, the branch portion 4A of the pipe 4, and the exhaust pipe 5 communicating with the outside. With this three-way valve 52, the branching section 4A is provided with the gas supply source 3 and the exhaust pipe 5.
It is possible to selectively communicate with any of the above.

【0003】配管4の分岐部4Aの枝部4C, 4Dのうち、枝
部4Cは、基準容器1に接続され、枝部4Dは、被試験容器
2に接続されている。枝部4Cには、二方弁53が設けられ
るとともに、この二方弁53の下流側に導圧管6Aが接続さ
れている。一方、枝部4Dには、枝部4Cと同様に、二方弁
54が設けられるとともに、この二方弁54の下流側に導圧
管6Bが接続されている。枝部4Cの導圧管6Aおよび枝部4D
の導圧管6Bの先端には、差圧センサ6が接続されてい
る。被試験容器2からの気体の漏れは、基準容器1側お
よび被試験容器2側に所定圧力を加え、二方弁53, 54を
閉鎖した状態で、基準容器1側および被試験容器2側の
間に生じる差圧を差圧センサ6で検出することにより検
知される。また、多くの場合、被試験容器2から漏れる
漏れ量を算出する必要があり、このような場合、被試験
容器2の容積が既知であることが前提となる。
Of the branch portions 4C and 4D of the branch portion 4A of the pipe 4, the branch portion 4C is connected to the reference container 1 and the branch portion 4D is connected to the container under test 2. The branch portion 4C is provided with a two-way valve 53, and a pressure guiding pipe 6A is connected to the downstream side of the two-way valve 53. On the other hand, the branch 4D has a two-way valve, like the branch 4C.
54 is provided, and the pressure guiding pipe 6B is connected to the downstream side of the two-way valve 54. Pressure conduit 6A of branch 4C and branch 4D
The differential pressure sensor 6 is connected to the tip of the pressure guiding tube 6B. Leakage of gas from the test container 2 is caused by applying a predetermined pressure to the reference container 1 side and the test container 2 side and closing the two-way valves 53 and 54, and then the reference container 1 side and the test container 2 side. It is detected by detecting the differential pressure generated between them with the differential pressure sensor 6. In many cases, it is necessary to calculate the leak amount leaking from the container under test 2, and in such a case, it is premised that the volume of the container under test 2 is known.

【0004】そこで、被試験容器2側の枝部4Dには、二
方弁54の下流側に内部容積が可変となった容積変化付加
器60が接続されている。容積変化付加器60は、図5に示
されるように、内部に被試験容器2側の枝部4Dと連通す
る可変容積室61が形成されたシリンダ部62と、このシリ
ンダ部62の内部に移動可能に設けられたピストン部63と
を有している。ピストン部63は、可変容積室61を密閉す
るためにOリング63A が巻回されたものであり、図中上
方の面がプランジャ64を介してマイクロメータ65に押圧
されるようになっている。マイクロメータ65を手動で操
作してピストン部63を移動することにより、可変容積室
61は、密閉状態のまま容積が可変となっている。
Therefore, the branch portion 4D on the side of the container 2 to be tested is connected to a volume change adder 60 having a variable internal volume on the downstream side of the two-way valve 54. As shown in FIG. 5, the volume change adder 60 moves to the inside of the cylinder portion 62 in which a variable volume chamber 61 that communicates with the branch portion 4D on the container 2 side to be tested is formed. And a piston portion 63 that is capable of being provided. The piston portion 63 is formed by winding an O-ring 63A to seal the variable volume chamber 61, and the upper surface in the drawing is pressed by the micrometer 65 via the plunger 64. By manually operating the micrometer 65 and moving the piston 63, the variable volume chamber
The volume of 61 is variable in a sealed state.

【0005】このような容積変化付加器60では、基準容
器1側および被試験容器2側に同一の所定圧力を加え、
二方弁53, 54を閉鎖した状態で、可変容積室61の容積を
所定量だけ変える。この可変容積室61の容積変動による
被試験容器2側の圧力変動は、基準容器1側と被試験容
器2側との間の差圧として検知できるので、この差圧に
基づき被試験容器2の容積が算出できる。すなわち、基
準容器1側および被試験容器2に加える圧力をP、容積
変化付加器60の容積変化量をΔV0 、容積変化付加器60
の容積変化により発生した差圧をΔP0 、二方弁54から
下流側の枝管4Dの容積であって、変化量ΔV0 を含み被
試験容器2の容積を除いた容積をVM とすれば、次の式
(1)より被試験容器2の容積VW が算出される。 VW =(P・ΔV0 /ΔP0 )−VM ‥‥‥‥(1)
In such a volume change adder 60, the same predetermined pressure is applied to the reference container 1 side and the container under test 2 side,
With the two-way valves 53 and 54 closed, the volume of the variable volume chamber 61 is changed by a predetermined amount. The pressure fluctuation on the side of the container under test 2 due to the volume fluctuation of the variable volume chamber 61 can be detected as a differential pressure between the side of the reference container 1 and the side of the container under test 2, and therefore the pressure of the container under test 2 on the basis of this differential pressure is detected. The volume can be calculated. That is, the pressure applied to the reference container 1 side and the container 2 to be tested 2 is P, the volume change amount of the volume change adder 60 is ΔV 0 , and the volume change adder 60 is
[Delta] P 0 and the differential pressure generated by the volume change of them from the two-way valve 54 a volume of the branch tube 4D downstream, the volume excluding the volume of the test container 2 comprises a change amount [Delta] V 0 and V M For example, the volume V W of the container 2 under test is calculated from the following equation (1). V W = (P · ΔV 0 / ΔP 0 ) −VM M (1)

【0006】そして、被試験容器2の容積が判れば、基
準容器1側および被試験容器2側の間に生じる差圧に基
づいて、被試験容器2から漏れる気体の量を算出するこ
とができる。すなわち、漏れ試験により発生した差圧を
ΔP、大気圧をP0 とすれば、次の式(2)より被試験
容器2からの漏れ量ΔVが算出される。 ΔV=(ΔP/P0 )・(VW +VM ) ‥‥‥‥(2)
Then, if the volume of the container under test 2 is known, the amount of gas leaking from the container under test 2 can be calculated based on the differential pressure generated between the side of the reference container 1 and the side of the test container 2. . That is, assuming that the differential pressure generated by the leak test is ΔP and the atmospheric pressure is P 0 , the leak amount ΔV from the container 2 under test is calculated by the following equation (2). ΔV = (ΔP / P 0 ) · (V W + V M ) ..... (2)

【0007】[0007]

【発明が解決しようとする課題】従来の漏れ試験装置50
では、被試験容器2の容積を検出する際に、容積変化付
加器60のマイクロメータ65を操作してピストン部63を移
動させる必要がある。ここで、移動させるピストン部63
にはOリング63A が巻回され、このOリング63A がピス
トン部63の移動時にバックラッシュや変形を起こすた
め、ピストン部63を所定距離だけ移動することによって
必ずしも所定の容積変化量が得られるとは限らず、所定
の容量変化量が得られないと、漏れ量の測定に誤差が発
生するという問題がある。
Conventional leak test apparatus 50
Then, when detecting the volume of the container under test 2, it is necessary to operate the micrometer 65 of the volume change adding device 60 to move the piston portion 63. Here, the piston part 63 to be moved
An O-ring 63A is wound around the shaft, and this O-ring 63A causes backlash and deformation when the piston portion 63 moves. Therefore, if the piston portion 63 is moved by a predetermined distance, a predetermined volume change amount is not always obtained. However, if a predetermined amount of capacity change is not obtained, there is a problem that an error occurs in the measurement of the leakage amount.

【0008】また、マイクロメータ65は、作業者が手動
で操作するので、作業者の体温が容積変化付加器60側に
伝わって被試験容器2側の温度を変動させるため、温度
変動の影響により、漏れ量の測定に誤差が生じるという
問題がある。なお、漏れ試験装置として、容積変化付加
器のピストン部の移動に気体の圧力を利用し、容積変化
付加器の容積変化を自動的に行うもの(実公昭61-46433
号公報)が提案されている。しかしながら、この漏れ試
験装置では、ピストン部を所定位置に停止させるため
に、手動操作式のマイクロメータを利用しているうえ、
ピストン部にOリングを巻回しているので、前述の問題
を解決することはできない。さらに、マイクロメータ65
は、そのメータヘッドを一回転しても、ピストン部63の
移動距離が僅かなものなので、大きな容積変化を与える
場合には、マイクロメータ65のメータヘッドを何回転も
回転しなければならず、操作が煩雑となるという問題が
ある。
Further, since the operator manually operates the micrometer 65, the body temperature of the operator is transmitted to the volume change adder 60 side to change the temperature of the container 2 to be tested. However, there is a problem that an error occurs in the measurement of the leakage amount. As a leak tester, a device that automatically changes the volume of the volume change adder by utilizing the gas pressure to move the piston part of the volume change adder (Sho 61-46433
Issue). However, in this leak test device, in order to stop the piston part at a predetermined position, in addition to using a manually operated micrometer,
Since the O-ring is wound around the piston part, the above-mentioned problem cannot be solved. In addition, micrometer 65
Is the movement distance of the piston portion 63 is short even if the meter head makes one rotation, so in the case of giving a large volume change, the meter head of the micrometer 65 must be rotated many times. There is a problem that the operation becomes complicated.

【0009】また、従来の漏れ試験装置50では、機械式
の減圧弁51を用いていていることから、試験対象物の変
更等により試験圧力が変わるたびに、減圧弁51を手動操
作して設定圧力を変更しなければならない。この漏れ試
験装置50の圧力設定は、減圧弁51の二次側に設けた圧力
計を監視しながら、この圧力計の読み値が所望の圧力と
なるように、減圧弁51の圧力調節機構を操作することに
より行うが、前記圧力計の読み値は、内部の流体の流量
により微妙に変化し、減圧弁51の圧力調節機構には、微
妙な操作が必要となるので、正確な設定操作を行うこと
が非常に煩雑となるという問題がある。
Further, in the conventional leak test apparatus 50, since the mechanical type pressure reducing valve 51 is used, the pressure reducing valve 51 is manually operated and set whenever the test pressure is changed due to the change of the test object or the like. The pressure has to be changed. The pressure of the leak test apparatus 50 is set by monitoring the pressure gauge provided on the secondary side of the pressure reducing valve 51 and setting the pressure adjusting mechanism of the pressure reducing valve 51 so that the reading of the pressure gauge becomes a desired pressure. Although it is performed by operating, the reading of the pressure gauge slightly changes depending on the flow rate of the internal fluid, and the pressure adjusting mechanism of the pressure reducing valve 51 requires a delicate operation. There is a problem that it is very complicated to do.

【0010】本発明の目的は、操作が容易なうえ、漏れ
量の測定が正確に行える漏れ試験装置を提供することに
ある。
It is an object of the present invention to provide a leak test apparatus which is easy to operate and can accurately measure the leak rate.

【0011】[0011]

【課題を解決するための手段】本発明は、内部が同一の
所定圧力にされた後に密閉された基準容器と被試験物と
の間に生じる差圧に基づいて前記被試験物の漏れを測定
する漏れ試験装置であって、前記被試験物側には、当該
被試験物と連通する可変容積室と、外部からの操作圧力
が加わる受圧室と、この受圧室および前記可変容積室を
仕切るとともに当該受圧室に加わる前記操作圧力によっ
て変位して前記可変容積室の容積を変えるダイアフラム
とを備えた可変容積器を設けたことを特徴とする。以上
において、前記気体供給源から前記可変容積器、前記基
準容器、および、前記被試験物に供給する気体の圧力
を、外部からの電気信号に応じて調節する電−空レギュ
レータを設け、前記受圧室に加える操作圧力や、前記基
準容器および前記被試験物に供給する気体圧力を自由か
つ正確に調整可能とすることが好ましい。また、前記可
変容積器の受圧室の内部には、前記ダイアフラムが当該
受圧室側に変位するのを防止するスペーサを配置するこ
とが望ましい。さらに、スペーサとしては、前記外部か
らの操作圧力を前記ダイアフラムに導く細孔を有するも
のを採用するのが好ましい。
SUMMARY OF THE INVENTION According to the present invention, a leak of an object to be tested is measured based on a differential pressure generated between a reference container and an object to be tested, which are hermetically sealed after the inside is brought to the same predetermined pressure. A leak test apparatus for operating a variable volume chamber communicating with the DUT, a pressure receiving chamber to which an operating pressure is applied from the outside, and the pressure receiving chamber and the variable volume chamber are partitioned on the side of the DUT. A variable volume device provided with a diaphragm that changes the volume of the variable volume chamber by being displaced by the operating pressure applied to the pressure receiving chamber is provided. In the above, an electro-pneumatic regulator for adjusting the pressure of the gas supplied from the gas supply source to the variable capacity device, the reference container, and the DUT according to an electric signal from the outside is provided, and the pressure receiving is provided. It is preferable that the operating pressure applied to the chamber and the gas pressure supplied to the reference container and the DUT can be adjusted freely and accurately. Further, it is desirable to dispose a spacer inside the pressure receiving chamber of the variable volume unit, which prevents the diaphragm from being displaced toward the pressure receiving chamber. Further, as the spacer, it is preferable to employ a spacer having pores that guide the operating pressure from the outside to the diaphragm.

【0012】[0012]

【作用】このような本発明では、ダイヤフラムで可変容
積室の容積を変えるようにした可変容積器を設けたの
で、バックラッシュや変形のおそれのあるOリングによ
る密閉構造を要しないうえ、受圧室に所定の圧力を加え
ることにより、所望の容積変化量が正確に得られるよう
になる。さらに、外部からの電気信号に応じて供給気体
の圧力を調節する電−空レギュレータを設ければ、受圧
室に加わる圧力は、正確かつ容易に調節でき、手動操作
が煩雑なマイクロメータが不要となるうえ、可変容積器
に直接手等を触れずに済み、体温等による温度変動のお
それがなく、測定誤差が低減される。また、電−空レギ
ュレータの設置により、基準容器と被試験容器とに供給
する試験圧力についても圧力設定が正確かつ容易に行え
るようになり、従来のような微妙な操作が不要となり、
試験耐圧が何度も変更される場合でも、迅速な対応が可
能となり、これらにより前記目的が達成される。
In the present invention as described above, since the variable volume unit in which the volume of the variable volume chamber is changed by the diaphragm is provided, there is no need for a closed structure by the O-ring which may cause backlash or deformation, and the pressure receiving chamber. By applying a predetermined pressure to, a desired volume change amount can be accurately obtained. Furthermore, if an electro-pneumatic regulator that adjusts the pressure of the supply gas according to an electric signal from the outside is provided, the pressure applied to the pressure receiving chamber can be adjusted accurately and easily, and a micrometer that is cumbersome to manually operate is unnecessary. In addition, it is not necessary to directly touch the variable volume unit with a hand or the like, there is no possibility of temperature fluctuation due to body temperature and the like, and measurement error is reduced. Also, by installing the electro-pneumatic regulator, it becomes possible to accurately and easily set the test pressure to be supplied to the reference container and the container under test, and the delicate operation as in the past becomes unnecessary,
Even if the test withstand voltage is changed many times, a prompt response can be made, and the above-mentioned object can be achieved.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。なお、以下の説明では既に説明した部材と同じ
部材には同一の符号を付し、その説明を省略もしくは簡
略にする。図1には、本実施例の漏れ試験装置10が示さ
れている。この漏れ試験装置10は、前述の漏れ試験装置
50における三方弁52、二方弁53, 54、減圧弁51、およ
び、容積変化付加器60の各々を、三方電磁弁12、二方電
磁弁13, 14、電−空レギュレータ20、および、可変容積
器40に置き換えたものである。なお、前記三方電磁弁12
および二方電磁弁13, 14は、空気式の操作器を有する空
気作動弁でもよい。この場合、空気作動弁へのON−O
FF信号は、別の二方電磁弁により空気圧を調節して発
生させる。また、漏れ試験装置10には、前述のものの他
に、電−空レギュレータ20の下流側と可変容積器40とを
接続する配管15と、この配管15の途中に設けられた二方
電磁弁16と、これらの電磁弁12〜14, 16および電−空レ
ギュレータ20等を制御するシーケンスコントローラ17と
が備えられている。
An embodiment of the present invention will be described below with reference to the drawings. In the following description, the same members as those already described are designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 1 shows a leak test apparatus 10 of this embodiment. The leak test apparatus 10 is the leak test apparatus described above.
Each of the three-way valve 52, the two-way valves 53 and 54, the pressure reducing valve 51, and the volume change adder 60 in the 50 are a three-way solenoid valve 12, two-way solenoid valves 13 and 14, an electro-pneumatic regulator 20, and a variable valve. It is replaced with the volume 40. The three-way solenoid valve 12
The two-way solenoid valves 13 and 14 may be air-operated valves having pneumatic actuators. In this case, ON-O to the air operated valve
The FF signal is generated by adjusting the air pressure by another two-way solenoid valve. In addition to the above, the leak test apparatus 10 includes a pipe 15 that connects the downstream side of the electro-pneumatic regulator 20 and the variable volume 40, and a two-way solenoid valve 16 provided in the middle of the pipe 15. And a sequence controller 17 for controlling the solenoid valves 12 to 14, 16 and the electro-pneumatic regulator 20.

【0014】シーケンスコントローラ17は、マイクロコ
ンピュータ等の1チップCPUが搭載されたものであ
り、そのCPUには漏れ試験の手順および被試験物の容
積VWを求めるための作業手順等が記憶されている。シ
ーケンスコントローラ17には、漏れ試験を開始する漏れ
試験開始信号、容積VW を求める作業を開始する算出作
業開始信号、および、電−空レギュレータ20の圧力設定
を行うアナログ信号等を設定・発信するための操作パネ
ル17A と、電磁弁駆動用の出力端子と、アナログ電気信
号用の入出力端子等とを含んで構成されている。シーケ
ンスコントローラ17の電磁弁駆動用の各出力端子には、
電磁弁12〜13,16(または、空気作動弁の操作用電磁
弁)が電気的に接続されている。シーケンスコントロー
ラ17のアナログ電気信号用の出力端子からは、電−空レ
ギュレータ20に圧力設定値を指示するための電気信号が
出力される。なお、電−空レギュレータ20は、圧力の設
定値としての電気信号を外部から受け、この電気信号に
応じて空気圧を出力する一般的なものである。電−空レ
ギュレータ20の内部には、出力空気圧を検出する圧力セ
ンサが内蔵されており、出力空気圧を検出した圧力セン
サからの電気信号と、前記外部からの電気信号とを比較
し、外部からの電気信号に合うように出力空気圧を調節
することにより、高精度の空気圧制御が可能となってい
る。
The sequence controller 17 is equipped with a one-chip CPU such as a microcomputer, and the CPU stores a procedure for a leak test and a work procedure for obtaining the volume V W of the device under test. There is. The sequence controller 17 sets / transmits a leak test start signal for starting the leak test, a calculation work start signal for starting the work for obtaining the volume V W , and an analog signal for setting the pressure of the electro-pneumatic regulator 20. The operation panel 17A for this purpose, an output terminal for driving a solenoid valve, an input / output terminal for an analog electric signal, and the like are included. At each output terminal for driving the solenoid valve of the sequence controller 17,
The solenoid valves 12 to 13 and 16 (or solenoid valves for operating air operated valves) are electrically connected. From the analog electric signal output terminal of the sequence controller 17, an electric signal for instructing a pressure setting value is output to the electro-pneumatic regulator 20. The electro-pneumatic regulator 20 is a general one that receives an electric signal as a set value of pressure from the outside and outputs an air pressure according to the electric signal. Inside the electro-pneumatic regulator 20, a pressure sensor for detecting the output air pressure is built in, and the electric signal from the pressure sensor that has detected the output air pressure is compared with the electric signal from the outside, and the electric signal from the outside is compared. By adjusting the output air pressure so as to match the electric signal, highly accurate air pressure control is possible.

【0015】可変容積器40は、図2に示されるように、
配管4の枝部4Dに接続されて被試験容器2と連通する可
変容積室41と、配管15に接続されて電−空レギュレータ
20の出口側圧力が加えられる受圧室42と、この受圧室42
および可変容積室41を仕切るとともに、電−空レギュレ
ータ20の出口側圧力を外部操作圧力として変位し、この
変位により可変容積室41の容積を変えるダイアフラム43
と含んで構成されたものである。受圧室42の内部には、
ダイアフラム43が受圧室42側に変位するのを防止するス
ペーサ44が配置されている。このスペーサ44は、図中上
面に設けられた凹部45と、図中上側から伝達される操作
圧力をダイアフラム43側に導く複数の細孔46とを有する
ものである。
The variable volume 40, as shown in FIG.
A variable volume chamber 41 connected to the branch portion 4D of the pipe 4 and communicating with the container under test 2, and an electro-pneumatic regulator connected to the pipe 15.
The pressure receiving chamber 42 to which the pressure on the outlet side of 20 is applied, and the pressure receiving chamber 42
And the variable volume chamber 41 is partitioned, the outlet side pressure of the electro-pneumatic regulator 20 is displaced as an external operation pressure, and the displacement changes the volume of the variable volume chamber 41.
It is configured to include. Inside the pressure receiving chamber 42,
A spacer 44 is arranged to prevent the diaphragm 43 from displacing to the pressure receiving chamber 42 side. The spacer 44 has a recess 45 provided on the upper surface in the figure and a plurality of pores 46 for guiding the operating pressure transmitted from the upper side in the figure to the diaphragm 43 side.

【0016】次に、本実施例の動作を説明する。まず、
被試験物である被試験容器2を漏れ試験装置10にセット
するとともに、シーケンスコントローラ17の操作パネル
17A にて、電−空レギュレータ20の出口圧力を被試験容
器2に応じた値にセットする。ここで、操作パネル17A
で算出作業開始の操作を行うと、シーケンスコントロー
ラ17は、内部に記憶された被試験容器2の容積VW を求
める作業手順に基づき動作を開始する。すなわち、シー
ケンスコントローラ17は、三方電磁弁12および二方電磁
弁16を駆動し、気体供給源3と可変容積器40の受圧室42
とを連通させ、図3(A)に示されるように、可変容積
器40の受圧室42へ気体の供給を開始し、ダイアフラム43
が所定の変位を生じるまで、受圧室42の内部圧力を上昇
させる。所定時間の経過後、シーケンスコントローラ17
は、二方電磁弁16のみの駆動を解除するとともに、二方
電磁弁13, 14を駆動し、気体供給源3と基準容器1およ
び被試験容器2とを連通させ、図3(B)に示されるよ
うに、気体供給源3から基準容器1および被試験容器2
への気体供給を開始し、基準容器1および被試験容器2
の内部を同一の所定圧力にする。これにより、可変容積
器40の内部には、受圧室42から可変容積室41へ突出する
所定容積ΔV0 の突出部47が生じる。
Next, the operation of this embodiment will be described. First,
The container 2 to be tested, which is the device under test, is set in the leak test apparatus 10, and the operation panel of the sequence controller 17 is set.
At 17A, set the outlet pressure of the electro-pneumatic regulator 20 to a value according to the container 2 under test. Here, operation panel 17A
When the operation for starting the calculation work is performed in, the sequence controller 17 starts the operation based on the work procedure for obtaining the volume V W of the container 2 to be tested stored inside. That is, the sequence controller 17 drives the three-way solenoid valve 12 and the two-way solenoid valve 16, and the gas supply source 3 and the pressure receiving chamber 42 of the variable volume 40.
3A to communicate with each other, and as shown in FIG. 3A, supply of gas to the pressure receiving chamber 42 of the variable volume 40 is started, and the diaphragm 43
The internal pressure of the pressure receiving chamber 42 is increased until a predetermined displacement occurs. After a predetermined time has passed, the sequence controller 17
Releases the drive of only the two-way solenoid valve 16 and drives the two-way solenoid valves 13 and 14 to connect the gas supply source 3 to the reference container 1 and the container 2 to be tested. As shown, from the gas supply source 3 to the reference container 1 and the container under test 2
The gas supply to the reference container 1 and the container under test 2 is started.
To the same predetermined pressure inside. As a result, a protrusion 47 having a predetermined volume ΔV 0 that protrudes from the pressure receiving chamber 42 to the variable volume chamber 41 is formed inside the variable volume 40.

【0017】所定の加圧時間の経過後、シーケンスコン
トローラ17は、二方電磁弁13, 14の駆動を解除し、基準
容器1および被試験容器2の各々を密閉する。この後、
電−空レギュレータ20の圧力設定値を0にし、かつ、三
方電磁弁12の駆動を解除するとともに、二方電磁弁16を
駆動し、図3(C)に示されるように、可変容積器40の
受圧室42の内部を大気開放し、可変容積器40のダイアフ
ラム43を元の状態に戻し、可変容積器40の突出部47を消
滅させる。これにより、被試験容器2側は、容積が所定
容積ΔV0 だけ増大し、この容積の増大により圧力が減
少する。この圧力の減少分をΔP0 とすると、図示しな
い測定装置は、圧力減少分ΔP0 に応じた電気信号を差
圧センサ6から受け、容積の変動分である容積ΔV0
よび圧力の変動分である差圧ΔP0 等に基づき、被試験
容器2の容積VW を算出する。
After the elapse of a predetermined pressurizing time, the sequence controller 17 releases the driving of the two-way solenoid valves 13 and 14 and closes the reference container 1 and the container 2 to be tested. After this,
The pressure set value of the electro-pneumatic regulator 20 is set to 0, the driving of the three-way solenoid valve 12 is released, and the two-way solenoid valve 16 is driven, and as shown in FIG. The inside of the pressure receiving chamber 42 is opened to the atmosphere, the diaphragm 43 of the variable volume unit 40 is returned to the original state, and the protruding portion 47 of the variable volume unit 40 disappears. As a result, the volume on the container 2 side to be tested increases by the predetermined volume ΔV 0 , and the pressure decreases due to this increase in volume. Assuming that this pressure decrease is ΔP 0 , a measuring device (not shown) receives an electric signal corresponding to the pressure decrease ΔP 0 from the differential pressure sensor 6, and detects the volume change ΔV 0 and the pressure change. The volume V W of the container 2 under test is calculated based on a certain pressure difference ΔP 0 or the like.

【0018】次いで、操作パネル17A で漏れ試験開始の
操作を行うと、内部に記憶された漏れ試験手順に基づく
動作を開始する。すなわち、シーケンスコントローラ17
は、三方電磁弁12, 二方電磁弁13, 14を駆動し、気体供
給源3と基準容器1および被試験容器2とを連通させ、
気体供給源3から電−空レギュレータ20を介して基準容
器1および被試験容器2に気体を供給し、基準容器1お
よび被試験容器2の内部を同一の所定圧力にする。所定
の加圧時間が経過した後、シーケンスコントローラ17
は、三方電磁弁12,二方電磁弁13, 14の駆動を解除し、
基準容器1側および被試験容器2側の各々を密閉する。
この状態で、図示しない測定装置は、差圧センサ6から
の電気信号を受信し、差圧が発生するか否かを監視す
る。差圧が発生した場合には、所定時間当たりの差圧の
変動分ΔPおよび被試験容器2の容積VW 等に基づき単
位時間当たりに発生した被試験容器2の漏れ量ΔV等を
算出する。所定の試験時間が経過した後、シーケンスコ
ントローラ17は、二方電磁弁13,14を駆動するととも
に、電−空レギュレータ20の圧力設定値を0にし、基準
容器1側および被試験容器2側の内部を大気開放し、基
準容器1側および被試験容器2側の内部の圧力を大気圧
に戻した後、試験を終了する。
Then, when a leak test start operation is performed on the operation panel 17A, an operation based on the leak test procedure stored inside is started. That is, the sequence controller 17
Drives the three-way solenoid valves 12, two-way solenoid valves 13, 14 to connect the gas supply source 3 to the reference container 1 and the container under test 2,
Gas is supplied from the gas supply source 3 to the reference container 1 and the DUT 2 through the electropneumatic regulator 20 so that the insides of the reference container 1 and the DUT 2 have the same predetermined pressure. After a predetermined pressurizing time has elapsed, the sequence controller 17
Release the three-way solenoid valves 12, two-way solenoid valves 13, 14
Each of the reference container 1 side and the test container 2 side is sealed.
In this state, a measuring device (not shown) receives an electric signal from the differential pressure sensor 6 and monitors whether a differential pressure is generated. When the differential pressure occurs, the leak amount ΔV of the container under test 2 generated per unit time is calculated based on the variation ΔP of the differential pressure per predetermined time, the volume V W of the container under test 2, and the like. After the lapse of a predetermined test time, the sequence controller 17 drives the two-way solenoid valves 13 and 14 and sets the pressure setting value of the electro-pneumatic regulator 20 to 0 to set the reference container 1 side and the container under test 2 side. The inside of the container is opened to the atmosphere, the pressure inside the reference container 1 side and the container under test 2 side is returned to atmospheric pressure, and then the test is completed.

【0019】前述のような本実施例によれば、次のよう
な効果がある。すなわち、可変容積器40にダイアフラム
43を設け、このダイアフラム43を変位させて可変容積室
41の容積を変えるようにしたので、バックラッシュや変
形により容積変化量に誤差を生じさせるOリングが不要
となり、所望の容積変化量が正確に得られるため、測定
誤差を低減できる。
According to this embodiment as described above, the following effects can be obtained. That is, the variable volume 40 has a diaphragm
43 is provided, and this diaphragm 43 is displaced to change the volume of the variable volume chamber.
Since the volume of 41 is changed, an O-ring that causes an error in the amount of change in volume due to backlash or deformation is unnecessary, and the desired amount of change in volume can be obtained accurately, so that the measurement error can be reduced.

【0020】また、電−空レギュレータ20によって可変
容積器40の受圧室42に所定の圧力を加わえるようにし、
操作パネル17A で圧力値を設定するだけで、設定値に応
じて供給圧が自動制御されるようにしたので、受圧室42
の圧力調節は正確かつ容易に行えるうえ、容積変化量の
調節も電−空レギュレータ20で正確かつ容易に行えるよ
うになる。これにより、容積変化量の調節には、煩雑な
手動操作が必要なマイクロメータが不要となり、容積変
化量の設定操作を容易にできるうえ、可変容積器40に直
接手等を触れる必要がなくなるため、体温等による容積
変動のおそれがなく、この点からも測定誤差を低減でき
る。
A predetermined pressure is applied to the pressure receiving chamber 42 of the variable volume 40 by the electro-pneumatic regulator 20,
By simply setting the pressure value on the operation panel 17A, the supply pressure is automatically controlled according to the set value.
The pressure can be adjusted accurately and easily, and the volume change amount can be adjusted accurately and easily by the electro-pneumatic regulator 20. This eliminates the need for a complicated micrometer that requires a complicated manual operation to adjust the volume change amount, facilitates the volume change amount setting operation, and eliminates the need to directly touch the variable volume unit 40 with a hand or the like. Also, there is no possibility of volume fluctuation due to body temperature and the like, and measurement errors can be reduced from this point as well.

【0021】さらに、可変容積器40の受圧室42にスペー
サ44を設けたので、スペーサ44によりダイアフラム43の
変位が規制され、受圧室42を大気開放するだけで、所定
の容積変化量を得ることができるうえ、被試験容器2側
が高圧となった状態で、受圧室42を大気開放しても、ダ
イヤフラム43が限界を超えて変位しなくなるので、ダイ
アフラム43の破損を未然に防止できる。
Further, since the spacer 44 is provided in the pressure receiving chamber 42 of the variable volume unit 40, the displacement of the diaphragm 43 is restricted by the spacer 44, and the predetermined volume change amount can be obtained only by opening the pressure receiving chamber 42 to the atmosphere. In addition, even if the pressure receiving chamber 42 is opened to the atmosphere while the pressure of the container 2 under test is high, the diaphragm 43 does not move beyond the limit, so that the diaphragm 43 can be prevented from being damaged.

【0022】また、電−空レギュレータ20で基準容器1
および被試験容器2に供給する気体の圧力を調節するよ
うにしたので、従来のような微妙な操作が一切不要とな
り、正確かつ容易な圧力設定を行うことができるうえ、
試験圧力が何度変わっても設定圧力の変更を迅速に行う
ことができる。
Further, the electro-pneumatic regulator 20 is used for the reference container 1.
Since the pressure of the gas supplied to the container under test 2 is adjusted, no delicate operation as in the past is required, and accurate and easy pressure setting can be performed.
No matter how many times the test pressure changes, the set pressure can be changed quickly.

【0023】以上、本発明について好適な実施例を挙げ
て説明したが、本発明は、この実施例に限られるもので
なく、本発明の要旨を逸脱しない範囲において種々の改
良並びに設計の変更が可能である。例えば、スペーサと
しては、操作圧力をダイアフラム43側に導く複数の細孔
46が設けられたスペーサ44に限らず、軽石状に孔が開い
て裏面側に表面側の圧力を導圧可能な多孔質のものでも
よく、さらに、孔の全く開いていない小さな無孔スペー
サも採用でき、このような無孔スペーサは、隙間を開け
て複数配置すればよい。
The present invention has been described above with reference to the preferred embodiments, but the present invention is not limited to these embodiments, and various improvements and design changes can be made without departing from the gist of the present invention. It is possible. For example, as the spacer, a plurality of pores that guide the operating pressure to the diaphragm 43 side.
Not only the spacer 44 provided with 46, but also a porous one that has a pumice-like hole and can guide the pressure on the front surface side to the back surface side, and a small non-porous spacer with no holes at all is also possible. A plurality of such non-perforated spacers may be arranged with a gap therebetween.

【0024】また、前記実施例では、一つの電−空レギ
ュレータ20で基準容器1、被試験容器2、および、可変
容積器40のすべてに圧力供給を行っていたが、基準容器
1および被試験容器2に圧力を供給するものとは別の電
−空レギュレータを可変容積器40専用に設けてもよい。
この場合、可変容積器40専用に圧力供給を行うものにつ
いては、Oリングの影響や体温等の影響がないので、操
作性の問題を考慮すれば、機械式の減圧弁も採用可能で
ある。
Further, in the above embodiment, pressure was supplied to all of the reference container 1, the container under test 2 and the variable volume 40 by one electro-pneumatic regulator 20. An electro-pneumatic regulator other than that for supplying pressure to the container 2 may be provided exclusively for the variable volume 40.
In this case, as for the device for supplying the pressure exclusively to the variable volume 40, since there is no influence of the O-ring or body temperature, a mechanical pressure reducing valve can be adopted in consideration of the operability problem.

【0025】さらに、シーケンスコントーラはなくても
よい。シーケンスコントーラを利用しなくとも、電−空
レギュレータにポテンショメータ等の設定操作器を直接
接続するとともに、各バルブを手動式にすれば、簡単な
構成ながら故障が少なく信頼性の高い漏れ試験装置を得
ることができる。
Further, the sequence controller may be omitted. Even without using a sequence controller, if a setting operation device such as a potentiometer is directly connected to the electro-pneumatic regulator and each valve is made to be a manual type, a leak test device with a simple structure and high reliability can be obtained. be able to.

【0026】また、漏れ試験装置は、容器の試験に限ら
ず、気体の圧力で駆動するニューマティック式の機器や
配管等の気密試験にも利用できる。
Further, the leak test apparatus can be used not only for the test of the container but also for the airtight test of pneumatic equipment driven by pneumatic pressure, pipes and the like.

【0027】[0027]

【発明の効果】前述のように本発明によれば、容易かつ
迅速な操作を実現でき、漏れ量の測定を正確に行うこと
ができる。
As described above, according to the present invention, an easy and quick operation can be realized and the leak amount can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体を示す概略構成図であ
る。
FIG. 1 is a schematic configuration diagram showing an entire embodiment of the present invention.

【図2】前記実施例の可変容積器を示す概略構成図であ
る。
FIG. 2 is a schematic configuration diagram showing a variable volume unit of the embodiment.

【図3】前記実施例の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the embodiment.

【図4】従来例の全体を示す図1に相当する図である。FIG. 4 is a diagram corresponding to FIG. 1 showing an entire conventional example.

【図5】従来例の要部を示す図2に相当する図である。5 is a diagram corresponding to FIG. 2 showing a main part of a conventional example.

【符号の説明】[Explanation of symbols]

1 基準容器 2 被試験物としての被試験容器 3 気体供給源 10 漏れ試験装置 20 電−空レギュレータ 40 可変容積器 41 可変容積室 42 受圧室 43 ダイアフラム 44 スペーサ 46 細孔 1 Reference container 2 Test container as DUT 3 Gas supply source 10 Leak test device 20 Electro-pneumatic regulator 40 Variable volume 41 Variable volume chamber 42 Pressure receiving chamber 43 Diaphragm 44 Spacer 46 Pore

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】漏れが無い、もしくは、無いとみなせる基
準容器および漏れの有無が不明な被試験物の内部に気体
供給源からの気体を供給し、これらの基準容器および被
試験物の内部を同一の所定圧力にした状態でそれぞれ密
閉し、当該基準容器および被試験物の間に生じる差圧に
基づいて前記被試験物の漏れを測定する漏れ試験装置に
おいて、前記被試験物側には、当該被試験物と連通する
可変容積室と、外部からの操作圧力が加わる受圧室と、
この受圧室および前記可変容積室を仕切るとともに当該
受圧室に加わる前記操作圧力により変位して前記可変容
積室の容積を変えるダイアフラムとを備えた可変容積器
が設けられていることを特徴とする漏れ試験装置。
1. A gas from a gas supply source is supplied to the inside of a reference container that does not leak, or can be regarded as not leaking, and an object to be tested whose leakage is unknown. In a leak test apparatus for measuring the leak of the DUT based on the differential pressure generated between the reference container and the DUT, each of which is sealed under the same predetermined pressure, on the DUT side, A variable volume chamber that communicates with the DUT, and a pressure receiving chamber to which an operating pressure from the outside is applied,
Leakage, characterized in that a variable volume device is provided, which partitions the pressure receiving chamber and the variable volume chamber and which is displaced by the operating pressure applied to the pressure receiving chamber to change the volume of the variable volume chamber. Test equipment.
【請求項2】請求項1に記載の漏れ試験装置において、
前記気体供給源から前記可変容積器、前記基準容器、お
よび、前記被試験物に供給する気体の圧力を、外部から
の電気信号に応じて調節する電−空レギュレータが設け
られていることを特徴とする漏れ試験装置。
2. The leak test apparatus according to claim 1,
An electro-pneumatic regulator that adjusts the pressure of the gas supplied from the gas supply source to the variable capacity device, the reference container, and the DUT according to an electric signal from the outside is provided. Leak test equipment.
【請求項3】請求項1に記載の漏れ試験装置において、
前記可変容積器の受圧室の内部には、前記ダイアフラム
が当該受圧室側に変位するのを防止するスペーサが配置
されていることを特徴とする漏れ試験装置。
3. The leak test apparatus according to claim 1, wherein
A leak test apparatus, wherein a spacer that prevents the diaphragm from displacing to the pressure receiving chamber side is arranged inside the pressure receiving chamber of the variable volume unit.
【請求項4】請求項3に記載の漏れ試験装置において、
前記スペーサには、前記外部からの操作圧力を前記ダイ
アフラムに導く細孔が設けられていることを特徴とする
漏れ試験装置。
4. The leak test apparatus according to claim 3,
The leak testing device, wherein the spacer is provided with pores for guiding the operating pressure from the outside to the diaphragm.
JP18338494A 1994-08-04 1994-08-04 Leak test apparatus and leak test method Expired - Fee Related JP3382726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18338494A JP3382726B2 (en) 1994-08-04 1994-08-04 Leak test apparatus and leak test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18338494A JP3382726B2 (en) 1994-08-04 1994-08-04 Leak test apparatus and leak test method

Publications (2)

Publication Number Publication Date
JPH0843242A true JPH0843242A (en) 1996-02-16
JP3382726B2 JP3382726B2 (en) 2003-03-04

Family

ID=16134833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18338494A Expired - Fee Related JP3382726B2 (en) 1994-08-04 1994-08-04 Leak test apparatus and leak test method

Country Status (1)

Country Link
JP (1) JP3382726B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163152A (en) * 2005-12-09 2007-06-28 Denso Corp Flow rate measuring device and its accuracy confirmation method
CN107991040A (en) * 2017-12-01 2018-05-04 遵义市产品质量检验检测院 A kind of intelligent pressure container leak detection systems
WO2022138971A1 (en) 2020-12-25 2022-06-30 株式会社フクダ Leak test condition design method, leak test condition design device, leak testing method, and leak testing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163152A (en) * 2005-12-09 2007-06-28 Denso Corp Flow rate measuring device and its accuracy confirmation method
DE102006000430B4 (en) * 2005-12-09 2008-10-30 Denso Corp., Kariya-shi Flow meter and method for checking an accuracy thereof
CN107991040A (en) * 2017-12-01 2018-05-04 遵义市产品质量检验检测院 A kind of intelligent pressure container leak detection systems
WO2022138971A1 (en) 2020-12-25 2022-06-30 株式会社フクダ Leak test condition design method, leak test condition design device, leak testing method, and leak testing device

Also Published As

Publication number Publication date
JP3382726B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
US4627270A (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
JPS60608B2 (en) Fluid flow measurement device
JPH0466307B2 (en)
US7210335B2 (en) Automated clamp-on sample chamber for flow porometry and a method of using same
KR910004621B1 (en) Volume measure system and method
US8201438B1 (en) Detection of gas leakage
JPH07181101A (en) Leak quantity detector
US4012945A (en) Means for testing containers for leakage
JP3201667B2 (en) Check valve test apparatus and check valve test method
JP3382726B2 (en) Leak test apparatus and leak test method
JP3184885B2 (en) Gas meter calibration device
JP3454406B2 (en) Leakage and flow rate inspection device
KR20080021421A (en) Fluid tightness test apparatus with integrated positive and negative pressurizer
JPS5920093B2 (en) Leakage measuring device
JP3715543B2 (en) Airtight performance test method
JP3502687B2 (en) Pressure leak measurement method
JP2005077310A (en) Gas measuring device and self-diagnosis method therefor
US4019379A (en) Pneumatic roughness measurer
JPH0523705B2 (en)
JP2001228047A (en) Volume-adjusting method in air leak testing device and air leak testing device having volume adjusting function
GB2049954A (en) Improvements in or relating to apparatus for testing aircraft instruments
JPH0465967B2 (en)
JP7378162B2 (en) Verification system and method for concrete testing machines, and verification equipment for testing machines
US11680866B2 (en) Bleeding air regulator control pneumatic circuit, and leakage detection system for testing a device under test
SU1733936A1 (en) Device for testing articles for tightness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees