JPH0842814A - Catalytic burning method - Google Patents

Catalytic burning method

Info

Publication number
JPH0842814A
JPH0842814A JP6197949A JP19794994A JPH0842814A JP H0842814 A JPH0842814 A JP H0842814A JP 6197949 A JP6197949 A JP 6197949A JP 19794994 A JP19794994 A JP 19794994A JP H0842814 A JPH0842814 A JP H0842814A
Authority
JP
Japan
Prior art keywords
air
catalyst
combustion
catalytic
premixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6197949A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yamamoto
義志 山本
Takashi Nishimura
高志 西村
Shiyouzou Miyata
賞三 宮田
Natsuhiko Ninomiya
夏彦 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIURA KENKYUSHO KK
Original Assignee
MIURA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIURA KENKYUSHO KK filed Critical MIURA KENKYUSHO KK
Priority to JP6197949A priority Critical patent/JPH0842814A/en
Publication of JPH0842814A publication Critical patent/JPH0842814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalytic burning method wherein the thermal problems of a catalyst are avoided by lowering the combustion temperature of the catalytic part, and the emission of air pollutant is controlled and obtain a high thermal efficiency by employing the aforesaid method in the combustion apparatus such as boiler and combustion furnace. CONSTITUTION:A catalytic burning method comprises supplying a premixed gas adjusted to an air ratio of less than one to a catalytic reaction part C with a catalyst 12, generating the partially reactive gases containing the combustible components such as HC hydrocarbon, CO and H2 from the fuel in the premixed gas by the action of the catalyst 12 of the catalytic reaction part C and introducing the partially reactive gases into a flame burning part F with a secondary air introducing means A, whereby a secondary air is introduced into the partially reactive gases from the catalytic reaction part C by the secondary air introducing means A to effect the flame burning. The aforesaid method further comprises setting a total of the amounts of the air in the premixed gas and of the secondary air and the amount of fuel in the premixed gas at an air ratio of at most 1.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃焼触媒を利用した
新規な燃焼方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel combustion method using a combustion catalyst.

【0002】[0002]

【従来の技術】近年の地球環境問題の高まりと共に、産
業用熱機器からの大気汚染物質排出量の削減に対する社
会的要請は一段と厳しくなっている。特にNOx による
大気汚染の現状は、各種の排気ガス規制にも係わらず、
大都市地域を中心に依然として改善されておらず、NO
x の低減化対策の強化が図られている。
2. Description of the Related Art With the recent increase in global environmental problems, social demands for reducing the emission of air pollutants from industrial heat equipment have become more severe. In particular, the current state of air pollution due to NO x , despite various exhaust gas regulations,
No improvement, especially in metropolitan areas, NO
Measures to reduce x are being strengthened.

【0003】ボイラ或は燃焼炉等の産業用熱機器に用い
られる燃焼機器では、燃料を理論空気量で燃焼するのが
最もエネルギー効率のよい燃焼であるが、実際には燃料
と空気の混合不完全或は燃焼遅れ等のために理論空気量
よりも僅かに多い空気を供給して燃焼させるのが一般的
である。そのため、このような理論空気量に近い火炎燃
焼では、燃焼反応領域が高温となり、この高温の領域に
おいて空気中のN2 が酸化されてサーマルNOx (ther
mal NOx )が発生する。特に、燃料中の窒素分が極め
て少ない灯油やガス燃料等の燃焼によって発生するNO
x は、その殆どが前記のサーマルNOx であり、このサ
ーマルNOx は、燃焼温度を下げることによりその生成
を抑制できることが知られている。しかしながら、通常
の火炎を発生する燃焼では、NOx (特に前記のサーマ
ルNOx )を低減するために燃焼温度を低下させると逆
にCOの発生が増加するトレードオフの関係にあり、火
炎燃焼の方式の改善によってある程度はNOx 、COの
発生を抑制できるものの本質的な解決には至っていな
い。
In the combustion equipment used for industrial heat equipment such as a boiler or a combustion furnace, it is the most energy efficient combustion to burn the fuel at the theoretical air amount, but in reality, the fuel and air are not mixed. It is general to supply and burn a slightly larger amount of air than the theoretical air amount due to completeness or combustion delay. Therefore, in flame combustion close to such a theoretical air amount, the combustion reaction region becomes high temperature, and in this high temperature region, N 2 in the air is oxidized and thermal NO x (ther
mal NO x ) is generated. In particular, NO generated by the combustion of kerosene, gas fuel, etc. in which the nitrogen content in the fuel is extremely small
Most of x is the above-mentioned thermal NO x , and it is known that the production of this thermal NO x can be suppressed by lowering the combustion temperature. However, in combustion that generates a normal flame, there is a trade-off relationship in which, when the combustion temperature is lowered in order to reduce NO x (especially the above-mentioned thermal NO x ), the amount of CO is increased on the contrary. Although the generation of NO x and CO can be suppressed to some extent by the improvement of the method, the essential solution has not been reached.

【0004】[0004]

【発明が解決しようとする課題】これまでに、燃焼機器
における大気汚染物質の低減化対策は種々提案されてい
るが、その一つとして、触媒燃焼方法が脚光を浴びてい
る。即ち、触媒燃焼方法では触媒表面反応を利用するこ
とによって、COの発生量を増加させることなく燃焼温
度を下げ、NOx 発生量を低減できることが知られてい
る。しかしながら、PtやPdを始めとする貴金属、C
e,La,Y等の希土類元素、或は両者の混合物を担持
した触媒では、低温活性が高い反面、高温(現状の触媒
では 1,000℃以上)では揮散、固相反応が起こり易く、
熱安定性、即ち、耐熱性に問題がある。従って、これら
低温活性の高い触媒をボイラ或は燃焼炉用の燃焼機器、
即ち、バーナに適用する際には、触媒の熱負荷を適正な
範囲に制御する方法が必要である。従来より触媒の熱負
荷を制御する方法として、触媒に導入する予混合気の空
気比を2以上とすることにより触媒燃焼温度を低くし、
更に触媒による燃焼ガスに燃料を加えて火炎燃焼を行い
燃焼装置全体での空気比を1.5以下とする触媒燃焼バ
ーナが提案されている。
Various measures for reducing air pollutants in combustion equipment have been proposed so far, and as one of them, a catalytic combustion method is in the limelight. That is, it is known that in the catalytic combustion method, by utilizing the catalyst surface reaction, the combustion temperature can be lowered and the NO x generation amount can be reduced without increasing the CO generation amount. However, precious metals such as Pt and Pd, C
Catalysts that carry rare earth elements such as e, La, and Y, or a mixture of both, have high low-temperature activity, but volatilize at high temperatures (current catalysts of 1,000 ° C or higher), and solid-phase reactions tend to occur.
There is a problem in thermal stability, that is, heat resistance. Therefore, these low-temperature highly active catalysts are used for boilers or combustion equipment for combustion furnaces.
That is, when applied to a burner, a method of controlling the heat load of the catalyst within an appropriate range is required. Conventionally, as a method of controlling the heat load of the catalyst, the catalyst combustion temperature is lowered by setting the air ratio of the premixed gas introduced to the catalyst to 2 or more,
Further, there has been proposed a catalytic combustion burner in which fuel is added to combustion gas by a catalyst to perform flame combustion and the air ratio in the entire combustion device is set to 1.5 or less.

【0005】前記のように、触媒の燃焼温度を触媒耐熱
温度以下に維持するために空気比の高い予混合気(空気
比が2以上)を触媒に導入する方法では以下の4つの点
が特に問題となっている。まず、第1の問題点は、触媒
を通過する予混合気の体積が相対的に大きくなり、空間
速度が大きくなることである。この場合、触媒と予混合
気との接触時間が短くなり、触媒反応が完全に行なわれ
難い。また、予混合気の体積が大きくなることにより、
触媒層での圧力損失が大きくなる。第2の問題点は、触
媒燃焼を開始するにあたっての予熱に要する熱量が増大
することである。即ち、触媒燃焼を開始するにあたって
は、触媒、或は予混合気を所定の温度以上に予熱してお
く必要があるが、前記のように予混合気の空気比が高
く、燃料に対して空気量が多いと、触媒を予熱する場合
には、触媒が大量の予混合気によって冷却され易くな
り、また予混合気を予熱する場合には燃料以外に大量の
空気を予熱する必要があるからである。第3の問題点
は、触媒燃焼温度が高温側に変動する危険性が高いこと
である。即ち、予混合気を形成する空気量が減少し、空
気比が2以下に低下すると、即時に、触媒温度の急激な
上昇を引き起こし、触媒の熱劣化及び焼損の原因とな
る。第4の問題点は、NOx 低減効果が制限されること
である。即ち、触媒による燃焼ガスに2次燃料を供給し
て火炎燃焼する場合には、混合距離が短いこと、及び、
2次燃料と前記触媒による燃焼ガスの体積比が大きい等
の理由により十分な混合が達成できず、局所的に燃料の
濃淡が形成されNOx 低減を阻害する。
As described above, in the method of introducing a premixed gas having a high air ratio (air ratio of 2 or more) into the catalyst in order to maintain the combustion temperature of the catalyst below the heat resistant temperature of the catalyst, the following four points are particularly important. It's a problem. First, the first problem is that the volume of the premixed gas passing through the catalyst becomes relatively large and the space velocity becomes large. In this case, the contact time between the catalyst and the premixed gas becomes short, and it is difficult to completely carry out the catalytic reaction. Also, because the volume of the premixed gas increases,
The pressure loss in the catalyst layer increases. The second problem is that the amount of heat required for preheating when starting catalytic combustion increases. That is, when starting the catalytic combustion, it is necessary to preheat the catalyst or the premixed gas to a predetermined temperature or higher. However, as described above, the air ratio of the premixed gas is high, and the air is mixed with the fuel. When the amount is large, when the catalyst is preheated, the catalyst is likely to be cooled by a large amount of premixed air, and when preheating the premixed air, it is necessary to preheat a large amount of air in addition to the fuel. is there. The third problem is that there is a high risk that the catalyst combustion temperature will fluctuate toward the high temperature side. That is, when the amount of air forming the premixed gas is reduced and the air ratio is reduced to 2 or less, the catalyst temperature is rapidly increased, which causes thermal deterioration and burnout of the catalyst. The fourth problem is that the NO x reduction effect is limited. That is, when the secondary fuel is supplied to the combustion gas by the catalyst for flame combustion, the mixing distance is short, and
The volume ratio of the combustion gas and secondary fuel by the catalyst can not be achieved sufficiently mixed because of such a large, inhibits locally shading of fuel is formed NO x reduction.

【0006】従って、この発明が解決しようとする技術
的課題は、触媒での反応温度を制御して触媒の熱的問題
を回避し、大気汚染物質の排出を抑制し、更に、ボイ
ラ、燃焼炉等の燃焼機器に適用して高い熱効率の得られ
る触媒燃焼方法を提供することである。
Therefore, the technical problem to be solved by the present invention is to control the reaction temperature in the catalyst to avoid the thermal problem of the catalyst, to suppress the emission of air pollutants, and to further improve the boiler and the combustion furnace. It is intended to provide a catalytic combustion method which can be applied to a combustion device such as the above to obtain high thermal efficiency.

【0007】[0007]

【課題を解決するための手段】この発明は、上述の課題
に鑑みてなされたもので、触媒を備えた触媒反応部に対
して空気比を1未満に調整した予混合気を供給し、前記
触媒反応部の触媒の作用によって予混合気中の燃料をH
C(炭化水素),CO,H2 等の可燃成分を含む部分反
応ガスを発生させ、前記部分反応ガスを二次空気導入手
段を備えた火炎燃焼部に導入し、前記触媒反応部からの
部分反応ガスに対して前記二次空気導入手段によって二
次空気を導入することにより火炎燃焼させることを第1
の特徴とし、更に、前記予混合気中の空気と2次空気と
を合わせた全空気量と予混合気中の燃料量とが、空気比
で1.5以下となるように設定したことを第2の特徴と
する触媒バーナである。
The present invention has been made in view of the above-mentioned problems, and supplies a premixed gas having an air ratio adjusted to less than 1 to a catalytic reaction part equipped with a catalyst, The fuel in the premixed gas is converted into H
A partial reaction gas containing combustible components such as C (hydrocarbon), CO, and H 2 is generated, and the partial reaction gas is introduced into a flame combustion section equipped with a secondary air introducing means, and the partial reaction gas from the catalytic reaction section is introduced. Firstly, flame combustion is performed by introducing secondary air into the reaction gas by the secondary air introducing unit.
In addition, the total air amount of the air in the premixed air and the secondary air and the fuel amount in the premixed air are set to be 1.5 or less in air ratio. A second characteristic is a catalyst burner.

【0008】[0008]

【作用】本発明に係る触媒燃焼方法は、空気比を1未満
(燃料過剰)に調整した予混合気を触媒反応部(C) に導
入し、触媒(12)で予混合気中の燃料をHC(炭化水
素),CO,H2 等の可燃成分を含む部分反応ガスとす
る。そして、触媒反応部(C)の下流の火炎燃焼部(F) に
おいてこの部分反応ガスに2次空気を加えて燃焼させ
る。この火炎燃焼部(F) においては、NOx を殆ど含ま
ない比較的高温の部分反応ガスと2次空気が速やかに混
合し気相燃焼する。このため、火炎燃焼部(F) における
燃焼ガス温度は全体的に略均一になり、NOx 生成の原
因となる高温領域が小さくなる。
In the catalytic combustion method according to the present invention, the premixed gas with the air ratio adjusted to less than 1 (fuel excess) is introduced into the catalytic reaction section (C), and the catalyst (12) is used to remove the fuel in the premixed gas. A partial reaction gas containing combustible components such as HC (hydrocarbon), CO, and H 2 is used. Then, in the flame combustion section (F) downstream of the catalytic reaction section (C), secondary air is added to this partial reaction gas for combustion. In the flame combustion section (F), the relatively high temperature partial reaction gas containing almost no NO x and the secondary air are rapidly mixed and gas-phase combusted. Therefore, the temperature of the combustion gas in the flame combustion section (F) becomes substantially uniform as a whole, and the high temperature region that causes NO x generation becomes small.

【0009】[0009]

【実施例】以下、この発明をバーナに適用した具体的な
実施例について図面に基づいて詳細に説明する。尚、図
1は、この発明に係る触媒燃焼方法を適用した触媒燃焼
バーナの一実施例の断面構造を概略的に示した説明図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete embodiment in which the present invention is applied to a burner will be described in detail below with reference to the drawings. 1 is an explanatory view schematically showing the cross-sectional structure of one embodiment of the catalytic combustion burner to which the catalytic combustion method according to the present invention is applied.

【0010】この発明に係る触媒燃焼方法は、空気比を
1未満に調整した予混合気を触媒反応部に供給し、触媒
反応部の触媒の作用によって予混合気中の燃料を炭化水
素、CO、H2 等の可燃成分を含む部分反応ガスに分解
し、前記部分反応ガスを火炎燃焼部に導入し、この火炎
燃焼部において前記部分反応ガスに二次空気導入手段に
よって二次空気を導入することにより火炎燃焼させるも
のである。
In the catalytic combustion method according to the present invention, the premixed gas whose air ratio is adjusted to less than 1 is supplied to the catalytic reaction section, and the fuel in the premixed gas is converted into hydrocarbon and CO by the action of the catalyst in the catalytic reaction section. , H 2 and the like into a partial reaction gas containing a combustible component, the partial reaction gas is introduced into the flame combustion section, and secondary air is introduced into the partial reaction gas by the secondary air introduction means in the flame combustion section. By doing so, the flame is burned.

【0011】従って、図示する触媒燃焼バーナ(B) は、
予混合気の供給を行う予混合気導入手段(P) と、予混合
気中の燃料を分子量の小さいHC(炭化水素),CO,
2等の可燃成分を含む部分反応ガスに分解する触媒反
応部(C) と、触媒反応部(C)からの部分反応ガスに二次
空気導入手段(A) からの燃焼用2次空気を供給し、火炎
燃焼を行わせる火炎燃焼部(F) とを備えている。前記予
混合気導入手段(P) は、内筒(10)の上流端に予混合気の
供給口(11)を設けることによって構成される。前記触媒
反応部(C) は、前記内筒(10)の下流側に触媒(12)を取付
けることにより構成される。この触媒(12)は、予混合気
中の燃料を燃焼用空気を利用して分子量の小さいHC
(炭化水素),CO,H2 等の可燃成分を含む部分反応
ガスに分解するものである。この触媒(12)としては、例
えば、セラミック製等の担持体に、Ag,Pt,Pd等
の貴金属、Ce,La,Y等の希土類元素、或は両者の
混合物を担持した触媒、若しくは、金属酸化物触媒,複
合酸化物触媒を担持したものを用いる。そして、この触
媒(12)によって触媒反応を生じさせるためには、前記の
ように、触媒(12)自体、或は予混合気を触媒燃焼が開始
する温度(例えば 300〜 350℃)にまで昇温させる必要
があり、そのための予熱手段を触媒反応部(C) 或は予混
合気供給手段(P) に取付けるのが好ましい。
Therefore, the illustrated catalytic combustion burner (B) is
The premixed gas introducing means (P) for supplying the premixed gas and the fuel in the premixed gas are used as HC (hydrocarbon), CO,
A catalytic reaction part (C) that decomposes into a partial reaction gas containing combustible components such as H 2 and secondary air for combustion from the secondary air introduction means (A) to the partial reaction gas from the catalytic reaction part (C). And a flame combustion unit (F) for supplying and performing flame combustion. The premixed gas introduction means (P) is configured by providing a premixed gas supply port (11) at the upstream end of the inner cylinder (10). The catalytic reaction part (C) is configured by mounting a catalyst (12) on the downstream side of the inner cylinder (10). This catalyst (12) uses the combustion air to burn the fuel in the premixed gas as an HC with a small molecular weight.
It decomposes into partial reaction gases containing combustible components such as (hydrocarbons), CO, and H 2 . Examples of the catalyst (12) include a catalyst made of a carrier made of ceramic or the like and a precious metal such as Ag, Pt, or Pd, a rare earth element such as Ce, La, or Y, or a mixture thereof, or a metal. An oxide catalyst or a composite oxide catalyst is used. Then, in order to cause a catalytic reaction with this catalyst (12), as described above, the catalyst (12) itself or the premixed gas is raised to a temperature (for example, 300 to 350 ° C) at which catalytic combustion starts. It is necessary to heat it, and it is preferable to attach a preheating means therefor to the catalytic reaction section (C) or the premixed gas supply means (P).

【0012】前記二次空気導入手段(A) は、前記内筒(1
0)の外周に、外筒(20)を配置することにより構成されて
いる。尚、この実施例においては、前記外筒(20)は、内
筒(10)との間に空気流路(21)を形成するように、所定の
間隔をおいて配置される。尚、この実施例においては、
前記外筒(20)の更に外側に空気導入管(22)を配置し、外
筒(20)の上流端において空気の流れを急激に変更するこ
とにより、空気流路(21)に流入する燃焼用二次空気を整
流している。また、外筒(20)の上流側端部の外周には絞
り板(24)を設け、外筒(20)と空気導入管(22)と間の流路
を絞ってある。即ち、この絞り板(24)によって燃焼用二
次空気が空気導入管(22)から外筒(20)に流入する際の偏
流を防止している。
The secondary air introducing means (A) includes the inner cylinder (1
It is configured by arranging an outer cylinder (20) around the outer circumference of (0). In addition, in this embodiment, the outer cylinder (20) is arranged at a predetermined interval so as to form an air flow path (21) between the outer cylinder (20) and the inner cylinder (10). In this example,
Combustion flowing into the air flow path (21) by arranging the air introduction pipe (22) further outside the outer cylinder (20) and rapidly changing the flow of air at the upstream end of the outer cylinder (20). The secondary air for use is rectified. A diaphragm plate (24) is provided on the outer periphery of the upstream end of the outer cylinder (20) to narrow the flow path between the outer cylinder (20) and the air introduction pipe (22). That is, the throttle plate (24) prevents uneven flow of the secondary air for combustion from the air introduction pipe (22) into the outer cylinder (20).

【0013】前記火炎燃焼部(F) は、内筒(10)の先端に
取付けられた末広がり状の保炎体(30)の下流側に形成さ
れる。この保炎体(30)には、その表裏を貫通する孔(31)
が複数個穿孔されている。また、この保炎体(30)の下流
側には、前記外筒(20)の先端から延びるバッフル板(23)
を配置している。このバッフル板(23)は、前記保炎体(3
0)の下流端と所定の間隔をおいて配置されており、この
バッフル板(23)の開口部の内径は、前記保炎体(30)の下
流端の開口部を若干覆うように設定してある。尚、前記
内筒(10)における触媒(12)の上流側には、逆火防止のた
めのフレームアレスタ(13)を取付けてある。
The flame burning section (F) is formed on the downstream side of the flaming flame holder (30) attached to the tip of the inner cylinder (10). This flame holder (30) has holes (31) that penetrate the front and back of the flame holder.
Are perforated. Further, on the downstream side of the flame stabilizer (30), a baffle plate (23) extending from the tip of the outer cylinder (20).
Has been arranged. This baffle plate (23) is provided with the flame stabilizer (3
The baffle plate (23) has an inner diameter that is set so as to slightly cover the downstream end opening of the flame stabilizer (30). There is. A flame arrester (13) for preventing flashback is attached on the upstream side of the catalyst (12) in the inner cylinder (10).

【0014】前記の構成の触媒燃焼バーナにおいて、そ
の作用を以下に説明する。尚、以下の実施例では、触媒
(12)を予熱することによって触媒反応を開始する構成と
して説明している。まず、触媒反応部(C) の触媒(12)
を、適宜の加熱手段によって、触媒反応が開始する温度
(例えば、 300〜 350℃程度)まで予め加熱しておく。
この状態で、予混合気導入手段(P) によって予混合気を
供給すると同時に、二次空気導入手段(A) によって燃焼
用の二次空気を導入する。この際、前記予混合気導入手
段(P) によって供給する予混合気の空気比は1未満に調
整し、また二次空気導入手段(A) によって供給する二次
空気量は、前記の予混合気と混合した時点で空気比が
1.5以下(好ましくは1.1〜1.3)となるように
調整する。尚、前記予混合気に含まれる燃料の量は、そ
の触媒燃焼バーナに要求される発生熱量によって決定す
る。
The operation of the catalytic combustion burner having the above construction will be described below. In the examples below, the catalyst
It is described as a configuration in which the catalytic reaction is started by preheating (12). First, the catalyst (12) in the catalytic reaction section (C)
Is preheated to a temperature (for example, about 300 to 350 ° C.) at which the catalytic reaction starts by an appropriate heating means.
In this state, the premixed gas introducing means (P) supplies the premixed air, and at the same time, the secondary air introducing means (A) introduces the secondary air for combustion. At this time, the air ratio of the premixed gas supplied by the premixed gas introducing means (P) is adjusted to less than 1, and the amount of secondary air supplied by the secondary air introducing means (A) is The air ratio is adjusted to 1.5 or less (preferably 1.1 to 1.3) when mixed with air. The amount of fuel contained in the premixed air is determined by the amount of heat generated by the catalytic combustion burner.

【0015】前記燃料過剰の予混合気は、内筒(10)内を
流通し、フレームアレスタ(13)を経て、予め昇温された
触媒(12)を通過し、この際に触媒反応によって予混合気
中の燃料が空気と反応して、燃料が、より分子量の小さ
なHC(炭化水素),CO,H2 等の可燃成分に分解さ
れる。尚、この際の触媒反応においては、予混合気の一
部がH2O,CO2 にまで分解される場合があり、ま
た、前記燃料が未反応のまま残留する場合もある。前記
触媒(12)による燃料の分解反応の際には発熱を伴うた
め、前記の部分反応ガス(部分燃焼ガス)は、所定の温
度にまで昇温するが、この際には比較的高温(略 1,200
℃以下)で反応するためサーマルNOx の発生は殆ど無
い。そして、この部分反応ガスは、この状態で前記触媒
(12)から火炎燃焼部(F) に流入する。
The excess fuel premixture flows through the inner cylinder (10), passes through the flame arrester (13), and passes through the preheated catalyst (12). The fuel in the air-fuel mixture reacts with air, and the fuel is decomposed into combustible components such as HC (hydrocarbon), CO, H 2 having a smaller molecular weight. In the catalytic reaction at this time, part of the premixed gas may be decomposed into H 2 O and CO 2 , and the fuel may remain unreacted. Since heat is generated during the decomposition reaction of the fuel by the catalyst (12), the partial reaction gas (partial combustion gas) rises to a predetermined temperature. 1,200
Since it reacts at (° C or lower), almost no thermal NO x is generated. Then, the partial reaction gas is the catalyst in this state.
It flows from (12) into the flame combustion part (F).

【0016】火炎燃焼部(F) には、前記の二次空気導入
手段(A) からの燃焼用二次空気が供給されている。即
ち、燃焼用二次空気は、前記空気導入管(22)に流入した
後、外筒(20)の内側の空気流路(21)の上流側に向けて流
通し、前記絞り板(24)によって整流作用を受けた後、前
記空気流路(21)内に流入する。そして、この空気流路(2
1)から保炎体(30)に向けて流通し、複数の孔(31)から火
炎燃焼部(F) に噴出する。火炎燃焼部(F) では、前記触
媒反応部(C) で生成された部分反応ガスに対して、燃焼
用の二次空気が供給されることになる。ここで、前記の
部分反応ガスは、触媒(12)による分解反応によって所定
の温度に昇温しているため燃焼用二次空気が供給された
時点で燃焼反応が始まり、火炎を形成しながらの燃焼を
行う。尚、この火炎燃焼部(F) に関して、部分反応ガス
への着火の確実性を増すために、好ましくは、公知の点
火手段、例えば、スパークプラグ等の火花点火手段を用
いる。この火炎燃焼部(F) における燃焼反応は、部分反
応ガスが比較的高温であり、主にHC(炭化水素)C
O,及びH2 等の可燃成分によって構成されたものであ
るため、燃焼反応が促進され、完全燃焼が容易に行なわ
れる。従って、COは、残留すること無く略完全に燃焼
してCO2 に変化し、また、燃焼ガス温度が全体的に略
均一になり、局所的な高温領域が形成され難いためサー
マルNOx の生成量も少ない。
The secondary combustion air from the secondary air introduction means (A) is supplied to the flame combustion section (F). That is, the secondary air for combustion, after flowing into the air introduction pipe (22), flows toward the upstream side of the air flow path (21) inside the outer cylinder (20), and the throttle plate (24). After being rectified by the air flow, the air flows into the air flow path (21). And this air flow path (2
It circulates from 1) toward the flame stabilizer (30) and is ejected from the plurality of holes (31) to the flame combustion section (F). In the flame combustion section (F), secondary air for combustion is supplied to the partial reaction gas generated in the catalytic reaction section (C). Here, since the partial reaction gas is heated to a predetermined temperature by the decomposition reaction by the catalyst (12), the combustion reaction starts when the secondary air for combustion is supplied, and a flame is formed. Burn. In order to increase the certainty of ignition of the partial reaction gas in the flame combustion section (F), a known ignition means, for example, a spark ignition means such as a spark plug is preferably used. In the combustion reaction in this flame combustion section (F), the partial reaction gas is at a relatively high temperature, and mainly HC (hydrocarbon) C
Since it is composed of combustible components such as O and H 2 , the combustion reaction is promoted and complete combustion is easily performed. Therefore, CO is burned almost completely without being left behind and changed into CO 2 , and the temperature of the combustion gas becomes substantially uniform as a whole, and it is difficult to form a local high temperature region, so that thermal NO x is generated. The quantity is also small.

【0017】以上のように、この発明に係る触媒燃焼方
法では、前記予混合気の空気比を1未満としているた
め、触媒(12)における予混合気の空間速度は小さくな
り、触媒反応時間を長くできる。そのため、従来方法に
比べて、触媒自体或は予混合気の予熱に要する熱量を小
さくできる。更に、触媒層での圧力損失を小さくでき、
触媒燃焼の安定性を向上できる。また、予混合気の空気
比を大きく設定して触媒燃焼温度を制御する従来法で
は、空気流量の低下によって触媒温度が急激に上昇し、
触媒の熱劣化及び焼損の原因となる。しかしながら、本
発明方法によれば、燃料過剰域で触媒温度を制御するこ
とにより、予混合気の空気比の変化による理論火炎温度
の変化と、空間速度の変化による触媒での反応率の変化
が拮抗して働くため、触媒燃焼温度の変化を小さくで
き、触媒の熱劣化及び焼損を低減できる。例えば、空気
量の低下(空気比が小さくなる)によって触媒燃焼温度
は低下するものの、空間速度の低下によって触媒での反
応割合が増加することにより、触媒反応温度の急激な低
下を抑制できる。逆に、空気量が増加すると理論空気比
(1)に近づくため触媒燃焼温度は上昇する方向にある
が、空間速度の増大による触媒での燃料反応割合が低下
するため、触媒燃焼温度はあまり増加せず、触媒の耐熱
限界を超えにくい。従って、この発明に係る触媒燃焼方
法においては、触媒での反応温度を安定化させて触媒の
熱的問題を回避できると共に、大気汚染物質の排出を抑
制することが可能となる。
As described above, in the catalytic combustion method according to the present invention, since the air ratio of the premixed gas is less than 1, the space velocity of the premixed gas in the catalyst (12) is small and the catalyst reaction time is reduced. Can be long Therefore, the amount of heat required for preheating the catalyst itself or the premixed gas can be reduced as compared with the conventional method. Furthermore, the pressure loss in the catalyst layer can be reduced,
The stability of catalytic combustion can be improved. Further, in the conventional method of controlling the catalyst combustion temperature by setting a large air ratio of the premixed gas, the catalyst temperature rises sharply due to the decrease in the air flow rate,
It causes thermal deterioration and burning of the catalyst. However, according to the method of the present invention, by controlling the catalyst temperature in the excess fuel region, a change in the theoretical flame temperature due to a change in the air ratio of the premixed gas and a change in the reaction rate at the catalyst due to a change in the space velocity are caused. Since they work in antagonism, it is possible to reduce the change in the catalyst combustion temperature and reduce the thermal deterioration and burnout of the catalyst. For example, although the catalyst combustion temperature decreases as the air amount decreases (air ratio decreases), the rapid decrease in the catalyst reaction temperature can be suppressed by increasing the reaction ratio in the catalyst due to the decrease in space velocity. On the contrary, when the air amount increases, the catalytic combustion temperature tends to rise because it approaches the theoretical air ratio (1), but since the fuel reaction ratio in the catalyst decreases due to the increase in space velocity, the catalyst combustion temperature increases too much. Without, it is hard to exceed the heat resistance limit of the catalyst. Therefore, in the catalytic combustion method according to the present invention, it is possible to stabilize the reaction temperature of the catalyst, avoid thermal problems of the catalyst, and suppress emission of air pollutants.

【0018】また、以上の説明においては、気体燃料を
用いたものであるが、この発明に係る触媒燃焼方法にお
いては、気体燃料以外にも、灯油等の液体燃料でもよ
く、特に、液体燃料を用いる場合は、気化させてガス状
にして用いるのが触媒燃焼をする上では有利である。
Further, in the above description, a gas fuel is used, but in the catalytic combustion method according to the present invention, a liquid fuel such as kerosene may be used in addition to the gas fuel. When it is used, it is advantageous to vaporize it and use it in a gaseous state for catalytic combustion.

【0019】[0019]

【発明の効果】以上説明したように、この発明に係る触
媒燃焼方法によれば、最終的な燃焼排ガス中のNOx
度を大幅に低減することができ、このようにNOx やC
O等の大気汚染物質の低減化が図れるため、大気汚染の
防止に貢献できるほか、燃焼排ガスの人体への悪影響を
軽減できる。
As described above, according to the catalytic combustion method of the present invention, the final NO x concentration in the combustion exhaust gas can be significantly reduced, and thus, the NO x and C
Since it is possible to reduce air pollutants such as O, it is possible to contribute to the prevention of air pollution and reduce the adverse effects of combustion exhaust gas on the human body.

【0020】更に、従来方法では空気比を大きく設定す
ることにより触媒燃焼温度を触媒の耐熱温度以下に制御
していたが、この発明に係る触媒燃焼方法では空気比を
1以下にするため触媒に導入される予混合気の空間速度
は小さくなり、予混合気の触媒反応時間を長くできるた
め、使用する触媒量は少なくできる。また、触媒、或は
予混合気の予熱に要する熱量は小さくできる。また、触
媒層での圧力損失を小さくでき、触媒燃焼の安定性を向
上できる。
Further, in the conventional method, the catalyst combustion temperature was controlled to be equal to or lower than the heat resistant temperature of the catalyst by setting the air ratio to a large value, but in the catalytic combustion method according to the present invention, since the air ratio is set to 1 or less, Since the space velocity of the premixed gas introduced becomes small and the catalytic reaction time of the premixed gas can be extended, the amount of catalyst used can be reduced. Further, the amount of heat required for preheating the catalyst or the premixed gas can be reduced. Moreover, the pressure loss in the catalyst layer can be reduced, and the stability of catalyst combustion can be improved.

【0021】更に、従来方法では、予混合気の空気比の
変動によって触媒の熱的劣化及び焼損の原因となるが、
この発明に係る触媒燃焼方法では、空気比を1未満(燃
料過剰)に設定して触媒温度を制御することにより、予
混合気の空気比(空気の供給量)の変化による触媒温度
の変化が少ないため、触媒の熱劣化及び焼損を効果的に
防止できる。
Further, in the conventional method, the fluctuation of the air ratio of the premixed gas causes thermal deterioration and burnout of the catalyst.
In the catalytic combustion method according to the present invention, the catalyst temperature is controlled by setting the air ratio to less than 1 (fuel excess), so that the change of the catalyst temperature due to the change of the air ratio (air supply amount) of the premixed gas is suppressed. Since the amount is small, thermal deterioration and burnout of the catalyst can be effectively prevented.

【0022】以上のように、この発明によれば、触媒反
応による低NOx の利点を有効に利用でき、従来のよう
な燃焼用触媒の熱的耐久性の問題を解決した高効率の触
媒燃焼方法を提供することができる。
As described above, according to the present invention, the advantage of low NO x due to the catalytic reaction can be effectively utilized, and the highly efficient catalytic combustion that solves the problem of the thermal durability of the conventional combustion catalyst is solved. A method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る触媒燃焼方法を適用した触媒燃
焼バーナの概略構成を例示する図面である。
FIG. 1 is a diagram illustrating a schematic configuration of a catalytic combustion burner to which a catalytic combustion method according to the present invention is applied.

【符号の説明】[Explanation of symbols]

(A) 二次空気導入手段 (C) 触媒反応部 (F) 火炎燃焼部 (12) 触媒 (A) Secondary air introduction means (C) Catalytic reaction part (F) Flame combustion part (12) Catalyst

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二宮 夏彦 愛媛県松山市堀江町7番地 株式会社三浦 研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Natsuhiko Ninomiya 7 Horie-cho, Matsuyama-shi, Ehime Prefecture Miura Laboratory Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 触媒(12)を備えた触媒反応部(C) に対し
て空気比を1未満に調整した予混合気を供給し、前記触
媒反応部(C) の触媒(12)の作用によって予混合気中の燃
料をHC(炭化水素),CO,H2 等の可燃成分を含む
部分反応ガスを発生させ、前記部分反応ガスを二次空気
導入手段(A) を備えた火炎燃焼部(F)に導入し、前記触
媒反応部(C) からの部分反応ガスに対して前記二次空気
導入手段(A) によって二次空気を導入することにより火
炎燃焼させることを特徴とする触媒燃焼方法。
1. The operation of the catalyst (12) of the catalytic reaction section (C), wherein a premixed gas having an air ratio adjusted to less than 1 is supplied to the catalytic reaction section (C) equipped with the catalyst (12). The fuel in the premixed gas is caused to generate a partial reaction gas containing combustible components such as HC (hydrocarbon), CO and H 2 , and the partial reaction gas is equipped with a secondary air introducing means (A) in a flame combustion section. (C), characterized in that flame combustion is carried out by introducing secondary air into the partial reaction gas from the catalytic reaction section (C) by the secondary air introduction means (A). Method.
【請求項2】 前記予混合気中の空気と2次空気とを合
わせた全空気量と予混合気中の燃料量とが、空気比で
1.5以下となるように設定したことを特徴とする請求
項1記載の触媒燃焼方法。
2. The total air amount of the air and secondary air in the premixed air and the fuel amount in the premixed air are set so that the air ratio is 1.5 or less. The catalytic combustion method according to claim 1.
JP6197949A 1994-07-29 1994-07-29 Catalytic burning method Pending JPH0842814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6197949A JPH0842814A (en) 1994-07-29 1994-07-29 Catalytic burning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6197949A JPH0842814A (en) 1994-07-29 1994-07-29 Catalytic burning method

Publications (1)

Publication Number Publication Date
JPH0842814A true JPH0842814A (en) 1996-02-16

Family

ID=16382991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6197949A Pending JPH0842814A (en) 1994-07-29 1994-07-29 Catalytic burning method

Country Status (1)

Country Link
JP (1) JPH0842814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055312A (en) * 1998-06-05 2000-02-22 Matsushita Electric Ind Co Ltd Catalyst combustion device and combustion control method of the same
KR100989955B1 (en) * 2009-07-03 2010-10-26 한국기계연구원 Catalyst-assisted oxy-fuel combustor for low heating value fuels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055312A (en) * 1998-06-05 2000-02-22 Matsushita Electric Ind Co Ltd Catalyst combustion device and combustion control method of the same
KR100989955B1 (en) * 2009-07-03 2010-10-26 한국기계연구원 Catalyst-assisted oxy-fuel combustor for low heating value fuels

Similar Documents

Publication Publication Date Title
CA2449205C (en) Method and device for low-emission non-catalytic combustion of a liquid fuel
EP1650499A2 (en) Method and system for rich-lean catalytic combustion
KR100491330B1 (en) Hybrid(catalyst and flame) type high pressure combustion burner using of staged mixing systems
JPH11270808A (en) Catalyst combustion device
KR102043956B1 (en) Combustor capable of reducing nitrogen oxide contained in boiler combustion gas and increasing energy efficiency
JPH0842814A (en) Catalytic burning method
US20030170581A1 (en) NOx reduction with a combination of radiation baffle and catalytic device
JPS6060411A (en) Catalytic combustion apparatus
US5216968A (en) Method of stabilizing a combustion process
JP2007032398A (en) Exhaust emission control device for internal combustion engine
JPS6053711A (en) Catalytic combustion apparatus
JP3504777B2 (en) Liquid fuel vaporizer
JP2634279B2 (en) Method for burning NOx-containing gas
JPH0828821A (en) Radiant tube burner equipment producing little nitrogen oxide, and burning method thereof
JP3521013B2 (en) Catalytic combustion boiler
JPH08135911A (en) Catalytic combustion apparatus
JPS59202311A (en) Catalytic burner
JPH0771714A (en) Catalyst combustion device
JP2000055312A (en) Catalyst combustion device and combustion control method of the same
JP2720614B2 (en) Catalytic combustion device
JPH09243077A (en) Catalytic combustion equipment
JPS59176509A (en) Catalytic burner
JPH0510508A (en) Catalytic combustion apparatus
JPH07103408A (en) Catalytic combustion boiler
JPS6250723B2 (en)