JPH084237B2 - Receiving machine - Google Patents

Receiving machine

Info

Publication number
JPH084237B2
JPH084237B2 JP63153797A JP15379788A JPH084237B2 JP H084237 B2 JPH084237 B2 JP H084237B2 JP 63153797 A JP63153797 A JP 63153797A JP 15379788 A JP15379788 A JP 15379788A JP H084237 B2 JPH084237 B2 JP H084237B2
Authority
JP
Japan
Prior art keywords
frequency
notch
circuit
intermediate frequency
khz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63153797A
Other languages
Japanese (ja)
Other versions
JPH01320827A (en
Inventor
広司 尾木
Original Assignee
八重洲無線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八重洲無線株式会社 filed Critical 八重洲無線株式会社
Priority to JP63153797A priority Critical patent/JPH084237B2/en
Publication of JPH01320827A publication Critical patent/JPH01320827A/en
Publication of JPH084237B2 publication Critical patent/JPH084237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Noise Elimination (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無線受信機において、通過帯域内に存在する
妨害波を除去するためのノッチ回路を有する受信機回路
に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiver circuit having a notch circuit for removing an interfering wave existing in a pass band in a radio receiver.

〔従来の技術〕[Conventional technology]

無線受信機では希望の受信波のみを復調器に加え、そ
の他の不要の妨害電波を除去するために、スーパーヘテ
ロダイン方式では中間周波増幅段にBPF(バンドパスフ
ィルタ)を設けており、その通過帯域幅は放送用等のDS
B(両サイドバンド)波では7〜15kHz、通信用のSSB
(片サイドバンド)では2〜4kHz、CW(電信)では0.5
〜3kHzに制限し、帯域外減衰の水晶フィルタやセラミッ
クフィルタを使用することにより妨害波の除去に効果を
挙げている。しかしながらアマチュア無線や小形業務無
線では許容バンド内では任意に周波数で送信が出来るた
め、受信帯域内に他の電波が混入する可能性は少なくな
い。またイメージ妨害や高調波妨害、スプリアスビート
の混入といった問題も発生する。
In the radio receiver, only the desired received wave is added to the demodulator, and in order to remove other unnecessary interference waves, the super heterodyne system has a BPF (bandpass filter) in the intermediate frequency amplification stage and its pass band. Width is DS for broadcasting etc.
7 to 15 kHz for B (both sideband) waves, SSB for communication
2-4kHz for (one sideband), 0.5 for CW (telegraph)
Limiting to ~ 3kHz, by using a crystal filter or ceramic filter with out-of-band attenuation, it is effective in removing the interference wave. However, in amateur radio and small business radio, it is possible to transmit at any frequency within the allowable band, so it is not uncommon for other radio waves to be mixed into the reception band. In addition, problems such as image interference, harmonic interference, and spurious beat mixing occur.

このような通過帯域内の不要信号を除去するのには従
来からノッチフィルタが用いられている。これには比較
的低インピーダンス回路による方式の特定周波数でイン
ピーダンスが増加して不要信号の通過を阻止する直列ノ
ッチと、比較的高インピーダンス回路で用いる特定周波
数で並列インピーダンスが低下して不要信号を短絡吸収
する並列ノッチとがあるが、受信機回路は高インピーダ
ンスが多いので、通常並列ノッチが用いられる。そのた
めのノッチ素子としてはLとCの直列回路では不十分な
ので高Qの水晶振動子の直列共振を利用し、さらに第6
図のように直列の微少容量を加減してノッチ周波数を調
整できるので、ノッチで妨害信号を除去するのには前記
微少容量を加減するか、前置ミクサの局部発振周波数を
加減して妨害信号周波数とノッチ周波数とを一致させる
のであるが、妨害周波数が変動したり、受信波の同調を
微調整したりして、妨害周波数とノッチ周波数が少しで
もずれると妨害波の除去効果はなくなるので、その都度
合わせ直さなければならないのであり、それもノッチ特
性がシャープであるほど調整はむつかしく、かつノッチ
周波数のずれも多くなる。
A notch filter has been conventionally used to remove such an unnecessary signal in the pass band. This includes a series notch that increases the impedance at a specific frequency using a relatively low-impedance circuit and blocks the passage of unwanted signals, and the parallel impedance drops at a specific frequency used by a relatively high-impedance circuit to short-circuit unwanted signals. Although there is a parallel notch that absorbs, the parallel notch is typically used because the receiver circuit has a high impedance. Since a series circuit of L and C is not sufficient as a notch element for that purpose, the series resonance of a high Q crystal unit is used.
As shown in the figure, the notch frequency can be adjusted by adjusting the minute capacitance in series.Therefore, in order to remove the interference signal with the notch, the minute capacitance can be adjusted or the local oscillation frequency of the premixer can be adjusted to reduce the interference signal. The frequency and the notch frequency are made to match, but if the interfering frequency fluctuates or the tuning of the received wave is finely adjusted and the interfering frequency and the notch frequency deviate even a little, the effect of removing the interfering wave disappears. It is necessary to adjust each time, and the sharper the notch characteristic is, the more difficult the adjustment is and the more the notch frequency shifts.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述したように、ノッチ特性がシャープであるほど妨
害波の除去効果は大きいが、僅かの周波数差があっても
急速にノッチ効果を失うという問題がある。
As described above, the sharper the notch characteristic is, the greater the interference wave removing effect is, but there is a problem that the notch effect is rapidly lost even if there is a slight frequency difference.

本発明においては妨害波を常にノッチ周波数に引込む
ことにより、前記の問題点を解決しようとするものであ
る。
The present invention is intended to solve the above-mentioned problems by always drawing the interfering wave into the notch frequency.

〔課題を解決するための手段〕[Means for solving the problem]

妨害波をノッチ周波数に引込むにはノッチ周波数を妨
害波周波数に合わせるのと、妨害波をノッチ周波数に合
わせるのと2つの方法がある。本発明は後者の妨害波の
周波数を常にノッチ周波数に合致させる方法で行う。即
ち、第1図につき説明すると、ノッチ回路を有する中間
周波増幅段1に前置するミクサ段2の局部発振器はVC
O電圧制御発振器31、位相検波器32、基準発振器33とよ
り成り、基準発振周波数をノッチ周波数と同一に設定し
て、位相検波器32への比較入力に妨害電波を用いれば、
32の位相差出力がLPF34を通って制御直流電圧となりVCO
31の周波数を制御して位相検波器32に加わる妨害周波数
が(基準周波数=ノッチ周波数)となるように前置ミク
サ2→位相検波器32→VCO31を通る位相制御発振器
構成することにより、妨害波周波数を常にノッチ周波数
に合致させる。
There are two methods of pulling the interference wave to the notch frequency: adjusting the notch frequency to the interference wave frequency and adjusting the interference wave to the notch frequency. The present invention is performed by the latter method of always matching the frequency of the interference wave with the notch frequency. That is, referring to FIG. 1, the local oscillator 3 of the mixer stage 2 preceding the intermediate frequency amplification stage 1 having a notch circuit is a VC.
O voltage controlled oscillator 31, consisting of a phase detector 32, a reference oscillator 33, if the reference oscillation frequency is set to be the same as the notch frequency, and the interference radio wave is used for comparison input to the phase detector 32,
The phase difference output of 32 passes through LPF34 and becomes a control DC voltage, and VCO
By configuring the phase-controlled oscillator 3 that passes through the premixer 2-> phase detector 32-> VCO 31 so that the interference frequency applied to the phase detector 32 by controlling the frequency of 31 becomes (reference frequency = notch frequency), Make the jammer frequency always match the notch frequency.

位相検波器32に加える妨害周波数は前置ミクサ段2の
出力を分周・逓倍または周波数変換したものでもよく、
基準周波数を同一割合で増減することにより妨害電波周
波数をノッチ周波数に合致させる位相制御の条件は成立
する。
The interfering frequency applied to the phase detector 32 may be the output of the premixer stage 2 divided / multiplied or frequency-converted,
The phase control condition for matching the jamming frequency with the notch frequency by increasing or decreasing the reference frequency at the same rate is satisfied.

電波形式がSSB受信の場合は、妨害電波周波数が変動
して、その分だけVCO31の発振周波数が移動して妨害周
波数をノッチ周波数に引きもどすと、同時に信号周波数
も同量の移動をするので、復調段においてBFO周波数と
のズレを生じて復調が不可能になるので、BFO周波数を
合わせ直さなければならないという副作用を生じる。そ
のため、ノッチ回路1を有する中間周波段に後置ミクサ
4を設け、前置キクサ2とこの後置ミクサ4にVCO31よ
り共通の局部発振周波数を供給する構成とし、後置ミク
サ出力を復調段に供給することで、妨害電波周波数の変
動に伴う受信周波数の移動があっても後置ミクサ4にお
いて補償されて復調には影響を及ぼさないノッチ周波数
制御の構成である。
When the radio wave format is SSB reception, the interfering radio frequency fluctuates, the oscillation frequency of the VCO 31 moves by that amount, and if the interfering frequency is returned to the notch frequency, the signal frequency also moves at the same amount, so Since there is a deviation from the BFO frequency at the demodulation stage and demodulation is impossible, the side effect is that the BFO frequencies must be adjusted again. Therefore, the rear mixer 4 is provided in the intermediate frequency stage having the notch circuit 1, and a common local oscillation frequency is supplied from the VCO 31 to the front mixer 2 and this rear mixer 4, and the rear mixer output is supplied to the demodulation stage. By the supply, the notch frequency control is configured so that even if the reception frequency moves due to the fluctuation of the interfering radio frequency, it is compensated by the rear mixer 4 and does not affect the demodulation.

〔実施例〕〔Example〕

第2図は本発明を用いたSSB受信機の一実施例を示す
ブロック図である。図中で第1図と同一の記号部分は第
1図と同一の動作部分である。
FIG. 2 is a block diagram showing an embodiment of the SSB receiver using the present invention. In the figure, the same symbol parts as in FIG. 1 are the same operation parts as in FIG.

受信電波はアンテナより(高周波増幅段を通って)第
1ミクサで9000kHzの中間周波数に変換しているが、こ
の部分は本発明のノッチ回路に対しては前置中間周波段
となる。この出力は前置ミクサ2で455kHzに変換し、ノ
ッチ回路1を通って後置ミクサ4にて再び9000kHzに変
換して、出力を後置中間周波数段を通ってプロダクト検
波器により音声を復調している。
The received radio waves are converted from the antenna (through the high-frequency amplification stage) into the intermediate frequency of 9000 kHz by the first mixer, and this portion is a front intermediate frequency stage for the notch circuit of the present invention. This output is converted to 455kHz by the front mixer 2, converted to 9000kHz again by the rear mixer 4 through the notch circuit 1, and the output is demodulated by the product detector through the rear intermediate frequency stage. ing.

前置ミクサ2において9000kHzを455kHzに変換するた
めの局部周波数は9000kHz±455kHzであるから、8545kHz
と9455kHzのいづれでも良いが、後者ではサイドバンド
周波数関係が逆転するので、説明には簡単な8545kHzに
ついて述べる。
Since the local frequency for converting 9000 kHz to 455 kHz in the front mixer 2 is 9000 kHz ± 455 kHz, 8545 kHz
, And 9455kHz, but in the latter case, the sideband frequency relationship is reversed, so a simple explanation of 8545kHz will be described.

次に後置ミクサ4で455kHzを元の9000kHzにもどす変
換をするのに際して、局部周波数を前置ミクサと共通の
8545kHzを使用すると、局部周波数が変化するとそれに
従って中間の455kHzは変化するが、前置中間周波数と後
置中間周波数は全く変化しないばかりでなく、サイドバ
ンドの関係にも変化が生じないものである。このことは
前置中間周波数をf1、後置中間周波数をf2、局部周波数
fLとすれば f1−fL+fL=f2 であり、ここで (−fL+fL)=0 であるから f1=f2 となり、 局部周波数FLの変化の如何にかかわらず、F1とF2とは完
全に一致することが証明できる。以上の関係を利用して
フィルタと信号の相対位置を変化させる周波数シフト方
式は当業者間では周知であるが、本発明では別の目的に
利用している。第3図は中間周波のノッチ回路を通した
時の通過帯域を示した図である。第3図(A)で前置中
間周波数f1の中心周波数9000kHzのフィルタの帯域特性
を示し、9000−1.5=8998.5(kHz)がSSB信号のキャリ
アポイントであり、SSB信号は300〜2700Hzの上側サイド
バンドのみを通過増幅している。このフィルタの通過帯
域幅は約2.4kHzである。
Next, when converting the 455 kHz back to the original 9000 kHz with the rear mixer 4, the local frequency is the same as that of the front mixer.
When 8545kHz is used, when the local frequency changes, the intermediate 455kHz changes accordingly, but not only the front intermediate frequency and the post intermediate frequency do not change at all, but also the sideband relationship does not change. . This means that the front intermediate frequency is f 1 , the rear intermediate frequency is f 2 , and the local frequency is
if f L is f 1 -f L + f L = f 2, regardless where (-f L + f L) = 0 a is from f 1 = f 2, and the how to change the local frequency F L , F 1 and F 2 can be proved to be an exact match. The frequency shift method for changing the relative position of the filter and the signal by utilizing the above relationship is well known to those skilled in the art, but is used for another purpose in the present invention. FIG. 3 is a diagram showing a pass band when passing through the intermediate frequency notch circuit. FIG. 3 (A) shows the band characteristic of the filter with the center frequency 9000 kHz of the pre-intermediate frequency f 1 , 9000−1.5 = 8998.5 (kHz) is the carrier point of the SSB signal, and the SSB signal is in the upper side of 300-2700 Hz. Only sideband is amplified. The passband width of this filter is about 2.4 kHz.

前置ミクサ2で変換された周波数は、第3図(B)の
ように中心周波数は455kHzで、キャリア周波数は453.5k
Hzである。いま前置中間周波段に9000.5kHz妨害波が存
在したとすると、ミクサ2の出力では455.5kHzとなるか
ら、この周波数のノッチを入れて妨害波の大部分を除去
することができる。後置ミクサ4で再び変換された後置
中間周波段の周波数は第3図(C)のように中心周波数
9000kHz、キャリア周波数8998.5kHz、妨害波はノッチで
減衰された残りのみが9000.5kHzに残存する。
The frequency converted by the front mixer 2 has a center frequency of 455kHz and a carrier frequency of 453.5k as shown in Fig. 3 (B).
Hz. If there is a 9000.5kHz interfering wave in the pre-intermediate frequency stage, the output of the mixer 2 is 455.5kHz, so a notch of this frequency can be inserted to remove most of the interfering wave. The frequency of the rear intermediate frequency stage converted again by the rear mixer 4 is the center frequency as shown in FIG. 3 (C).
9000kHz, carrier frequency 8998.5kHz, interference wave is attenuated at the notch, and only the rest remains at 9000.5kHz.

ノッチ回路は水晶振動子の直列共振を利用するもので
あって、水晶振動子Yの電気等価回路は第5図(A)
(B)で示され、その直列共振周波数は であり、Loは極めて大きく、Coは極めて小さく、Roも小
さい値となるため共振の尖鋭度を示す は数1000以上と他の素子では得られない高い値となるの
で、これを伝送路間に並列に入れて共振周波数のみを吸
収して減衰するのであるが、実用上は第6図(A)のよ
うに水晶振動子Yに可変容量Csを直列に入れて共振周波
数を微調整するが、Coが極めて小さな値であるので、Cs
の変化による共振周波数の変化量は小さくて、455kHz付
近で1kHz程度に過ぎない。第6図(B)のようにCsとイ
ンピーダンスLs′を直列に入れることにより若干は変化
量を増すことができるが、妨害周波数が変動した場合に
完全に追従するのは困難である。
The notch circuit utilizes the series resonance of the crystal unit, and the electrical equivalent circuit of the crystal unit Y is shown in FIG.
(B), the series resonance frequency is , L o is extremely large, C o is extremely small, and R o is also a small value, which indicates the sharpness of resonance. Is a few thousand or more, which is a high value that cannot be obtained with other elements, so it is inserted in parallel between transmission lines to absorb and attenuate only the resonance frequency. However, in practice, it is shown in FIG. 6 (A). As shown in, the variable capacitance C s is put in series with the crystal unit Y to finely adjust the resonance frequency, but since C o is an extremely small value, C s
The amount of change in the resonance frequency due to the change in is small, only about 1kHz near 455kHz. Although it is possible to slightly increase the amount of change by inserting C s and the impedance L s ′ in series as shown in FIG. 6 (B), it is difficult to completely follow up when the interference frequency changes.

本発明ではノッチ周波数は455kHz付近(第2図〜第4
図では455.5kHz)に固定し、局部信号用の位相制御発振
の周波数を変えることにより容易に妨害電波の中間
周波数をノッチ回路の周波数に合わせられるものであ
る。従ってノッチ用の水晶振動子の定数はさほど厳密さ
を要さないのである。ただし、ノッチ周波数と基準発振
器33の周波数は厳密に一致させる必要があるが、ノッチ
回路1と基準発振器33の両方で微調整ができるし、絶対
値は制約されないので量産の際は多数の振動子で一致す
るペアを組めば良いので楽である。
In the present invention, the notch frequency is around 455 kHz (see FIGS. 2 to 4).
The frequency is fixed to 455.5 kHz in the figure) and the frequency of the local signal phase control oscillator 3 is changed to easily adjust the intermediate frequency of the jamming radio wave to the frequency of the notch circuit. Therefore, the constant of the notch crystal unit does not need to be so strict. However, the notch frequency and the frequency of the reference oscillator 33 must be exactly the same, but both the notch circuit 1 and the reference oscillator 33 can be finely adjusted, and the absolute value is not restricted. It's easy because you can form a matching pair with.

位相制御発振器の基本は基準周波数445.5kHzと比較
周波数(この場合は妨害波)を位相検波器32に加えて、
その位相差出力をLPFで積分して直流電圧としてVCO31の
周波数制御を行い、妨害周波数と基準周波数が一致した
状態でVCO31はロックされるのであるから、前置中間周
波数段で妨害周波数が移動しても前置ミクサ2からノッ
チ回路1への出力では妨害周波数が必ずノッチ周波数に
一致するように追従するのである。
The basis of the phase-controlled oscillator 3 is to add a reference frequency of 445.5 kHz and a comparison frequency (in this case, an interfering wave) to the phase detector 32,
The phase difference output is integrated by the LPF to control the frequency of the VCO31 as a DC voltage, and the VCO31 is locked when the interference frequency and the reference frequency match.Therefore, the interference frequency moves in the front intermediate frequency stage. However, the output from the premixer 2 to the notch circuit 1 follows so that the interference frequency always matches the notch frequency.

妨害波が前置中間周波段の通過帯域端の9000±1.5kHz
まで変化した場合の周波数関係を第4図に示す。妨害波
aがキャリアと同じ8998.5kHzに移動したとすると、前
置ミクサ2の出力では妨害波aの周波数が455.5kHzのノ
ッチ周波数と一致するように位相制御発振器が動作
し、VCO31の発振周波数は8998.5−455.5=8543kHzとな
る。従って中心周波数は9000−8543=457kHzとなり、後
置ミクサ4では457+8543=9000kHzとなるので、キャリ
ア周波数も455.5+8543=8998.5kHzと前置中間周波数と
完全に一致する。
9000 ± 1.5kHz at the end of the pass band of the front intermediate frequency stage
FIG. 4 shows the frequency relationship in the case of changes up to. If the disturbing wave a moves to 8998.5 kHz, which is the same as the carrier, the phase control oscillator 3 operates so that the frequency of the disturbing wave a coincides with the notch frequency of 455.5 kHz at the output of the front mixer 2, and the oscillation frequency of the VCO 31 Is 8998.5−455.5 = 8543kHz. Therefore, the center frequency is 9000-8543 = 457 kHz, and the rear mixer 4 has 457 + 8543 = 9000 kHz, so the carrier frequency is also 455.5 + 8543 = 8998.5 kHz, which is exactly the same as the front intermediate frequency.

また、妨害波bが反対帯域端の9001.5kHzに出た場合
には前記と同じで原理により、VCO31の発振周波数は900
1.5−455.5=8546kHzとなり、中心周波数は9000−8546
=454kHzとなる。後置ミクサの動作については前記と同
じであるから説明は省略する。
Also, if the interfering wave b is output at 9001.5kHz at the opposite band end, the oscillation frequency of VCO31 is 900
1.5−455.5 = 8546kHz, center frequency is 9000−8546
= 454kHz. The operation of the post-mixer is the same as that described above, so a description thereof will be omitted.

前記妨害波aとbとは両極端周波数であるから、ノッ
チ回路で必要な通過帯域は第4図(B)の〔通過帯域a
+通過帯域b〕となり、452.5〜458.5kHzの範囲をカバ
ーすれば十分である。その際のVCO周波数は8543〜8546k
Hzであるから、妨害波不在で位相制御発振器がロック
されない場合でもVCO31のフリーラン周波数をこの範囲
に設定しておけば受信上の支障は生じないのである。
Since the disturbing waves a and b are both extreme frequencies, the pass band required in the notch circuit is [pass band a in FIG. 4 (B)].
+ Pass band b], and it is sufficient to cover the range of 452.5 to 458.5 kHz. VCO frequency at that time is 8543 ~ 8546k
Since the frequency is Hz, even if the phase-controlled oscillator 3 is not locked due to the absence of an interfering wave, setting the free-run frequency of the VCO 31 within this range will not cause any trouble in reception.

ノッチ動作が不要の場合はVCO31の制御電圧回路はス
イッチ34で切換えて安定化電圧を電圧調整器を通して加
え、発振周波数を8545kHz付近に固定し、同時にノッチ
回路を開放するか、第4図(B)のようにノッチ周波数
を通過帯域端に位置するようにすればノッチの影響を完
全に除去することができるのである。
If notch operation is not required, the control voltage circuit of VCO 31 is switched by switch 34 and a stabilizing voltage is applied through a voltage regulator to fix the oscillation frequency to around 8545kHz and open the notch circuit at the same time, or If the notch frequency is located at the pass band edge as in (1), the effect of the notch can be completely eliminated.

帯域内に妨害波が2周波以上存在するときは通常最も
強力な妨害波をノッチ周波数にロックする。また、SSB
信号のサイドバンドは雑音に近い不特定周波数の集合な
ので、これによりロックされることはない。
When there are two or more frequencies in the band, the most powerful one is usually locked at the notch frequency. Also, SSB
The sidebands of the signal are a set of unspecified frequencies close to noise, so they are not locked by this.

〔発明の効果〕〔The invention's effect〕

ノッチ回路を備えた無線受信機において、本願発明で
は、ノッチ回路の前段に前置ミクサを設け、前置ミクサ
に供給する局部信号は、前置ミクサの出力と、ノッチ回
路の周波数を同じ周波数に調整できる基準発振器の発振
周波数により位相検波器で位相検波してLPFを通した直
流電圧でVCOの発振周波数を制御する位相制御発振器の
出力とすることで、ノッチ回路へ入力する周波数はノッ
チ周波数と同じになり妨害波周波数が変化しても前置ミ
クサの出力は常にノッチ周波数を保持するので、周波数
変化のある妨害波に対して特に有効である。また、SSB
受信に対してはノッチ回路の後段に後置ミクサ段を設け
て、前置ミクサと同じ局部信号を供給することで復調に
は支障をきたさないので利用効果は大きい。
In the radio receiver provided with the notch circuit, in the present invention, the premixer is provided in the preceding stage of the notch circuit, and the local signal supplied to the premixer is equal to the output of the premixer and the frequency of the notch circuit. The frequency input to the notch circuit is the notch frequency by using the output of the phase-controlled oscillator that controls the oscillation frequency of the VCO with the DC voltage that passes through the LPF and the phase detection is performed by the phase detector that can be adjusted. Since the output of the premixer always holds the notch frequency even if the interference wave frequency changes and the interference wave frequency changes, it is particularly effective for an interference wave with a frequency change. Also, SSB
For reception, a post-mixer stage is provided after the notch circuit and the same local signal as that of the pre-mixer is supplied, so that demodulation is not hindered, and therefore the utilization effect is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の基本構成のブロック図、第2図は本発
明を用いたSSB受信機の一実施例のブロック図、第3
図、第4図は第2図の回路の各中間周波段の周波数関係
を示す図、第5図は水晶発振子の電気等価回路、第6図
は水晶振動子のノッチ回路である。 1……ノッチ回路、2,4……ミクサ、……位相制御発
振器、31……VCO、32……位相検波器、33……基準発振
器、34……切換えスイッチ。
FIG. 1 is a block diagram of the basic configuration of the present invention, FIG. 2 is a block diagram of an embodiment of an SSB receiver using the present invention, and FIG.
4 and FIG. 4 are diagrams showing the frequency relationship of each intermediate frequency stage of the circuit of FIG. 2, FIG. 5 is an electrical equivalent circuit of a crystal oscillator, and FIG. 6 is a notch circuit of a crystal oscillator. 1 notch circuit, 2, 4 mixer, 3 phase control oscillator, 31 VCO, 32 phase detector, 33 reference oscillator, 34 changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第2中間周波回路にノッチ回路を設けたス
ーパヘテロダイン受信機において、前記ノッチ回路は第
2中間周波数に近接した周波数の水晶フィルタからな
り、ノッチ選択スイッチをオンにするとノッチ動作とな
るノッチ回路とし、該ノッチ回路前段の前置ミクサに局
部信号を供給するVCO発振器の周波数制御は、通常の中
間周波数に変換する固定電圧回路と、前記前置ミクサの
出力をノッチ周波数と同じ発振周波数の基準発振器の出
力により位相検波器で位相検波して、LPFを通して出力
する回路とを、前記ノッチ選択スイッチと連動するスイ
ッチで選択するよう構成し、受信信号中に妨害電波があ
り、前記ノッチ選択スイッチをオンにすると妨害電波が
ノッチ周波数になるよう第2中間周波数がシフトして前
記ノッチ回路で妨害電波が減衰されることを特徴とする
受信機。
1. A super-heterodyne receiver having a second intermediate frequency circuit provided with a notch circuit, wherein the notch circuit comprises a crystal filter having a frequency close to the second intermediate frequency, and a notch operation occurs when a notch selection switch is turned on. The frequency control of the VCO oscillator that supplies a local signal to the premixer in the preceding stage of the notch circuit consists of a fixed voltage circuit for converting to a normal intermediate frequency and the oscillation of the output of the premixer equal to the notch frequency. The circuit that detects the phase by the phase detector by the output of the frequency reference oscillator and outputs it through the LPF is configured by the switch that works in conjunction with the notch selection switch, and there is an interfering radio wave in the received signal. When the selection switch is turned on, the second intermediate frequency shifts so that the interference wave becomes the notch frequency, and the interference wave is generated by the notch circuit. Receiver characterized in that it is attenuated.
JP63153797A 1988-06-22 1988-06-22 Receiving machine Expired - Lifetime JPH084237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63153797A JPH084237B2 (en) 1988-06-22 1988-06-22 Receiving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63153797A JPH084237B2 (en) 1988-06-22 1988-06-22 Receiving machine

Publications (2)

Publication Number Publication Date
JPH01320827A JPH01320827A (en) 1989-12-26
JPH084237B2 true JPH084237B2 (en) 1996-01-17

Family

ID=15570339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63153797A Expired - Lifetime JPH084237B2 (en) 1988-06-22 1988-06-22 Receiving machine

Country Status (1)

Country Link
JP (1) JPH084237B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8077795B2 (en) 2005-10-03 2011-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for interference mitigation
JP4717675B2 (en) * 2006-03-27 2011-07-06 パナソニック株式会社 Wireless receiver
EP2080369B1 (en) 2006-11-01 2013-10-09 Thomson Licensing A co-channel interference remover

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374307A (en) * 1976-12-15 1978-07-01 Saibanetsuto Kougiyou Kk Phase synchronization tuning receiver
JPS63142726A (en) * 1986-12-04 1988-06-15 Japan Radio Co Ltd Receiver

Also Published As

Publication number Publication date
JPH01320827A (en) 1989-12-26

Similar Documents

Publication Publication Date Title
EP0546088B1 (en) Frequency modulated synthesizer using low frequency offset mixed vco
EP0196697B1 (en) Am receiver
JPH07154287A (en) Direct conversion receiver
EP0742973A1 (en) Local oscillator phase noise cancelling modulation technique
JPH09121315A (en) Apparatus and method for restoring digital carrier wave in television signal receiver
US5710993A (en) Combined TV/FM receiver
CA1299249C (en) Receiver comprising parallel signal paths
JPH1065566A (en) Small sized radio equipment
US4628270A (en) Frequency-agile synchronous demodulator
JPH084237B2 (en) Receiving machine
KR950022207A (en) Receiver in Satellite Communication Using El-Band Phase Shift Keying Modulation
US6259315B1 (en) FM demodulator being tuned to reference frequency by auxiliary detector
JP3652821B2 (en) Band edge frequency detection device of predetermined bandwidth of filter, and SSB transmitter and SSB receiver using the device
JP4245268B2 (en) Angle demodulation apparatus, angle demodulation method, and recording medium
JP3105381B2 (en) QPSK modulator and QPSK demodulator
JP3399135B2 (en) High frequency digital signal receiver
JP3334292B2 (en) AFC device
JP2002353835A (en) Receiver
JPS6089155A (en) Phase locked loop system
JPH077921B2 (en) FM transmitter circuit
JPH07177051A (en) Fm radio telephone equipment
JPH0897638A (en) High frequency digital signal receiver
JPH0730332A (en) Fm modulator
KR930001829B1 (en) Circuit for removing noise
JPH03196719A (en) Radio transmitter-receiver

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13