JPH0842060A - Concrete reinforcing bar made of frp - Google Patents

Concrete reinforcing bar made of frp

Info

Publication number
JPH0842060A
JPH0842060A JP18106094A JP18106094A JPH0842060A JP H0842060 A JPH0842060 A JP H0842060A JP 18106094 A JP18106094 A JP 18106094A JP 18106094 A JP18106094 A JP 18106094A JP H0842060 A JPH0842060 A JP H0842060A
Authority
JP
Japan
Prior art keywords
bending
reinforcing bar
frp
concrete
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18106094A
Other languages
Japanese (ja)
Inventor
Masao Kikuchi
雅男 菊池
Junji Hosokawa
順二 細川
Akira Sumiya
明 住谷
Haruto Akimoto
治人 秋元
Toshiji Abekawa
利治 安部川
Shuji Shimozono
修司 下薗
Nobuyuki Ozawa
延行 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP18106094A priority Critical patent/JPH0842060A/en
Priority to EP95926535A priority patent/EP0774552A4/en
Priority to PCT/JP1995/001528 priority patent/WO1996004440A1/en
Priority to CA 2195418 priority patent/CA2195418A1/en
Publication of JPH0842060A publication Critical patent/JPH0842060A/en
Priority to NO970411A priority patent/NO970411L/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a sufficient flexural strength by forming a concrete reinforcig bar, bent at one or more point and made of FRPs (fiber-reinforced plastics), and bending the concrete reinforcing bar according to the sectional shape of a concrete structure. CONSTITUTION:A concrete reinforcing bar 1 having sections bent at one or more points and made of FRPs is formed in a flat shape while t/w<1 holds in the relationship of thickness (t) and width (w). R/t>=2.8 holds in the relationship of a bend radius R on the inside of a bending section and thickness (t). When the directions of bending of adjacent bending sections are equalized, L>=3.5XRXtheta+3.5XR'Xtheta' holds in relationship with length L between the adjacent bending sections when the bend radius on the inside and the angle of bending are represented by R, theta and R', theta'. Accordingly, a sufficient flexural strength can be acquired even when a sectional area is large and a curvature radius is large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、FRP(繊維強化プラ
スチック)製のコンクリート補強筋で、詳しくは、スタ
ーラップ筋、フープ筋等、コンクリート構造物の断面形
状に応じて折り曲げ加工を行なったFRP製コンクリー
ト補強筋に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a concrete reinforcing bar made of FRP (fiber reinforced plastic). It relates to concrete reinforcing bars.

【0002】[0002]

【従来の技術】一般に、従来のスターラップ筋やフープ
筋等、折り曲げ形成されるコンクリート補強筋材には鋼
製の筋材が用いられている。しかし、コンクリートに混
入されている海砂のため、また激しい塩分環境でのコン
クリートのひび割れにより、上記筋材が塩分にさらされ
る等による腐食が問題となっている。そこで、近年、鋼
材の代替として耐腐食性に優れたFRP製の筋材が用い
られるようになってきた。
2. Description of the Related Art Generally, a steel reinforcing material is used as a concrete reinforcing reinforcing material to be formed by bending, such as conventional stirrup reinforcing bars and hoop reinforcing bars. However, due to the sea sand mixed in the concrete and due to the cracking of the concrete in a severe salt environment, there is a problem of corrosion due to exposure of the above-mentioned reinforcement to salt. Therefore, in recent years, a FRP reinforced material having excellent corrosion resistance has been used as a substitute for the steel material.

【0003】従来のFRP製のスターラップ筋やフープ
筋等折り曲げ加工される補強材は、例えば、特願平4−
282806号公報に示されるように、(1)マトリッ
クス樹脂を含浸させた炭素繊維をフレキシブルチューブ
に挿入し、(2)曲げ加工を行ない、(3)マトリック
ス樹脂を加熱硬化させた後、(4)フレキシブルチュー
ブを除去して製品とされたものがある。
Conventional reinforcing materials such as FRP stirrup bar and hoop bar which are bent are disclosed in, for example, Japanese Patent Application No. 4-
As disclosed in Japanese Patent No. 282806, (1) carbon fibers impregnated with a matrix resin are inserted into a flexible tube, (2) bending is performed, (3) the matrix resin is heat-cured, and then (4). Some products are made by removing the flexible tube.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のコンクリート補強筋では、これの曲率が大きい場
合、曲げ加工部付近での強度を強くすることが困難であ
った。すなわち、 (1)強度を強くするためには、断面積を大きくするこ
とが必要であるが、このとき、曲げ加工部の内側付近を
通る繊維束が圧縮力を受けてしわになり、繊維配向が乱
れる。その結果、曲げ加工部の強度が著しく低下してい
た。 (2)さらに、繊維配向の乱れが、直線部にも波及し、
その結果、直線部の引張り強度までも低下していた。 (3)また、曲げ加工時に、曲げ加工部がつぶれて直線
部の円形を保つことができず、断面形状がいびつに変形
して太さが不均一になってしまった。このことが応力集
中の原因となり、強度の低下を引き起こす一因ともなっ
ていた。
However, in the above-mentioned conventional concrete reinforcing bar, when the curvature thereof is large, it is difficult to increase the strength in the vicinity of the bent portion. That is, (1) in order to increase the strength, it is necessary to increase the cross-sectional area, but at this time, the fiber bundle passing near the inside of the bent portion is wrinkled due to the compressive force, and the fiber orientation Is disturbed. As a result, the strength of the bent portion was significantly reduced. (2) Furthermore, the disorder of the fiber orientation spreads to the straight line portion,
As a result, the tensile strength of the straight part was also reduced. (3) Further, at the time of bending, the bent portion was crushed, and the circular shape of the straight portion could not be maintained, and the cross-sectional shape was deformed into irregular shape and the thickness became uneven. This has been a cause of stress concentration, which has been one of the causes of lowering the strength.

【0005】上記従来のものにあっては、従来の鉄筋の
代替とする発想のために、FRP筋材の断面形状を円形
にしていたために、曲げ半径を小さくした場合において
特に顕著に問題が生じていた。
In the above-mentioned conventional one, since the cross-sectional shape of the FRP reinforcing material is circular in order to replace the conventional reinforcing bar, a problem occurs remarkably when the bending radius is made small. Was there.

【0006】本発明は上記のことにかんがみなされたも
ので、断面積が大きく、しかも曲げ半径が小さい、すな
わち、曲率が大きい場合でも、充分な曲げ加工部の強度
を得ることができ、また曲げ加工部に連なる直線部の強
度をも充分とることができるようにしたFRP製コンク
リート補強筋を提供することを目的とするものである。
The present invention has been conceived in view of the above, and it is possible to obtain sufficient strength of a bent portion even when the bending radius is small, that is, the bending radius is large, and the bending strength is sufficient. An object of the present invention is to provide a concrete reinforcing bar made of FRP that is capable of sufficiently obtaining the strength of a straight line portion connected to a processed portion.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るFRP製コンクリート補強筋は、FR
P製筋材の断面形状を偏平状にすることにより、曲げ加
工部付近の強度低下を起りにくくし、またこのFRP製
筋材の幅wに対する厚みtと、曲げ半径Rを規定するこ
とにより上記した問題を解決するものである。すなわ
ち、1ケ所以上の曲げ加工を施した部分を有するFRP
製コンクリート補強筋を偏平状にすると共に、その厚み
tと幅wとの関係をt/w<1となるようにした。
In order to achieve the above object, the FRP concrete reinforcing bar according to the present invention is FR
By making the cross-sectional shape of the P reinforcing bar flat, it is possible to prevent the strength from decreasing in the vicinity of the bent portion, and by defining the thickness t with respect to the width w of the FRP reinforcing bar and the bending radius R, It solves the problem. That is, an FRP having one or more bent parts
The concrete reinforcing bar was made flat and the relationship between the thickness t and the width w was set to t / w <1.

【0008】また上記構成において、曲げ加工部の内側
の曲げ半径Rと厚みtとの関係がR/t≧2.8となる
ようにした。さらに、上記構成において、隣り合う曲げ
加工部の曲げ方向が同一である場合、内側の曲げ半径と
曲げ角度がそれぞれR,θとR′,θ′であるとき、そ
の隣り合う曲げ加工部間の長さLとの関係をL≧3.5
×R×θ+3.5×R′×θ′となるようにした。
Further, in the above structure, the relationship between the bending radius R inside the bent portion and the thickness t is R / t ≧ 2.8. Further, in the above-mentioned configuration, when the bending directions of the adjacent bending portions are the same, and when the inner bending radius and the bending angle are R, θ and R ′, θ ′, respectively, between the adjacent bending portions. Relation with length L is L ≧ 3.5
× R × θ + 3.5 × R ′ × θ ′.

【0009】[0009]

【作 用】直線状の棒材を曲げるとき、曲げ加工部の
内外に長さの差が生じるが、鉄筋のような単一材料の曲
げ加工では強度の低下は起こらないことは自明である。
しかし、連続繊維で補強したFRP製筋材のような複合
材料の場合、上記のように、繊維の乱れが発生して曲げ
加工部付近の強度の低下が生じる。これは、曲げ加工部
の内外の長さの差が大きいほど、すなわち、厚みが大き
いほど強度の低下が大きいことが判る。そこで、横長の
偏平状の断面にして、FRPの断面積を変えることなく
厚みを小さくすることにより、曲げ加工による強度低下
を抑える効果が現われる。
[Operation] When bending a linear bar, there is a difference in length between the inside and outside of the bent part, but it is self-evident that bending of a single material such as rebar does not reduce the strength.
However, in the case of a composite material such as FRP reinforcing material reinforced with continuous fibers, as described above, the fibers are disturbed and the strength near the bent portion is reduced. It can be seen that the greater the difference between the inner and outer lengths of the bent portion, that is, the greater the thickness, the greater the decrease in strength. Therefore, an effect of suppressing a decrease in strength due to bending appears by making the cross section of the oblong flat shape and reducing the thickness without changing the cross-sectional area of the FRP.

【0010】図1(a)に示すように、厚みt、幅wの
FRP製コンクリート補強筋1を図1(b)に示すよう
に、内側の曲げ半径R、曲げ角度θで曲げ加工すると、 (1)この曲げ加工部Aの中立面2より内側では圧縮力
が作用し、t/2×θだけ縮むが、繊維3は縮むことが
できないので、座屈してしわとなる。これが繊維配向の
乱れとなる (2)この繊維3の乱れは直線部にまで波及する。そし
てその波及する距離Xは種々の実験により曲げ半径Rと
曲げ角θとであらわされ、それは X=3.5×R×θ であることが判明した。図1(b)に示す中立面2より
内側の繊維3の長さは図2(a)に示すようにLBB′と
すると、曲げ加工により図2(b)に示すようにしわに
なって長さLAA′になる。従ってこの部分の繊維3の繊
維配向角αは、下式のように与えられる(図2
(c))。 cosα=LAA′/LBB
As shown in FIG. 1A, when an FRP concrete reinforcing bar 1 having a thickness t and a width w is bent at an inner bending radius R and a bending angle θ as shown in FIG. 1B, (1) A compressive force acts on the inside of the neutral surface 2 of the bent portion A to shrink it by t / 2 × θ, but the fiber 3 cannot shrink, and buckles and wrinkles. This becomes disorder of the fiber orientation. (2) The disorder of the fiber 3 spreads to the straight line portion. Then, the spillover distance X is represented by a bending radius R and a bending angle θ by various experiments, and it has been found that X = 3.5 × R × θ. If the length of the fiber 3 inside the neutral surface 2 shown in FIG. 1 (b) is L BB ′ as shown in FIG. 2 (a), bending causes wrinkles as shown in FIG. 2 (b). Becomes the length L AA ′. Therefore, the fiber orientation angle α of the fiber 3 in this portion is given by the following equation (FIG. 2).
(C)). cos α = L AA ′ / L BB

【0011】(3)しわによる繊維配向角αは、 cosα=(R×θ+2×X)/{(R+t/2)×θ+2×X} =(R×θ+2×3.5×R×θ)/{(R+t/2)×θ+2× 3.5×R×θ} =8×R/(8×R+t/2)…(1) で与えられる。(3) The fiber orientation angle α due to wrinkles is cos α = (R × θ + 2 × X) / {(R + t / 2) × θ + 2 × X} = (R × θ + 2 × 3.5 × R × θ) / {(R + t / 2) × θ + 2 × 3.5 × R × θ} = 8 × R / (8 × R + t / 2) ... (1)

【0012】(4)図3は直径10mmのロッドにおけ
る繊維の乱れによる配向角と引張り強度(荷重)の関係
を示した線図である。この図3に示すように、繊維の配
向角αが大略12度以上になると引張り強度が著しく低
下することがわかる (5)ここで、上記したように、本発明に係るFRP製
コンクリート補強筋1は幅が広く、厚みが曲げ半径方向
に対して充分薄い、つまりR/t≧2.8であるため、
式(1)よりα<12度となり、よって繊維配向が乱れ
ることによって強度低下は殆どあらわれない。
(4) FIG. 3 is a diagram showing the relationship between the orientation angle and the tensile strength (load) due to the disorder of the fibers in a rod having a diameter of 10 mm. As shown in FIG. 3, it can be seen that the tensile strength is remarkably reduced when the orientation angle α of the fiber is approximately 12 degrees or more. (5) Here, as described above, the FRP concrete reinforcing bar 1 according to the present invention Is wide and the thickness is sufficiently thin in the bending radius direction, that is, R / t ≧ 2.8,
According to the formula (1), α <12 degrees, and therefore, the fiber orientation is disturbed, so that the strength hardly appears.

【0013】(6)また、図1(b)に示すところの、
隣接する曲げ加工部A,Bは3.5Rθ+3.5R′
θ′以上離れているので、一方の曲げ加工部の繊維の乱
れが他方の曲げ加工部の繊維に影響を及ぼさない。 (7)また断面形状が偏平状であるため、、曲げ加工部
はつぶれることがないので、太さが不均一であることに
よる応力集中も起きず、よって強度低下もおこらない。 以上のことにより、本発明に係るFRP製コンクリート
補強筋は曲げ加工部及び直線部とも充分な強度が得られ
る。
(6) Further, as shown in FIG. 1 (b),
Adjacent bending parts A and B are 3.5Rθ + 3.5R '
Since they are separated by θ'or more, the disorder of the fibers in one bending portion does not affect the fibers in the other bending portion. (7) Further, since the cross-sectional shape is flat, the bent portion does not collapse, so that stress concentration due to uneven thickness does not occur and therefore strength does not decrease. From the above, the FRP concrete reinforcing bar according to the present invention can obtain sufficient strength in both the bent portion and the straight portion.

【0014】なお、断面形状がいかなる形であっても、
曲げ半径Rが大きい場合にはR/t>2.8の条件を満
たす。このため本発明にあっては、従来の断面形状が円
形の場合に強度低下が発生してしまうような曲げ半径R
においても充分な強度を有するために、断面形状がt/
w<1として偏平にした。
Even if the sectional shape is any shape,
When the bending radius R is large, the condition of R / t> 2.8 is satisfied. For this reason, in the present invention, the bending radius R is such that strength reduction occurs when the conventional cross-sectional shape is circular.
The cross-sectional shape is t /
Flattened with w <1.

【0015】また上記条件以外に次のような条件を付加
してもよい。すなわち、従来の断面形状(断面円形)で
は強度が低下してしまうほど曲げ半径Rが小さい場合、
すなわち、 R/t<2.8 で、かつ、断面形状が円形の場合の断面積をS=πr2
としたときに、 S=π(t/2)2 >π(R/2/2.8)2 =0.100178>0.1R2 の条件を加える。
In addition to the above conditions, the following conditions may be added. That is, when the bending radius R is so small that the strength decreases in the conventional cross-sectional shape (circular cross-section),
That is, the cross-sectional area when R / t <2.8 and the cross-sectional shape is circular is S = πr 2
Then, the condition of S = π (t / 2) 2 > π (R / 2 / 2.8) 2 = 0.100178> 0.1R 2 is added.

【0016】一方、上記(1),(2)式は曲げ加工部
が独立している場合に成り立つ式であり、2つ以上曲げ
加工部がある場合は、1つの曲げ加工部が他の曲げ加工
部に影響を及ぼさない場合である。そこで、図1(b)
に示すように、曲げ半径R、曲げ角度θの第1の曲げ加
工部Aと曲げ半径R′曲げ角度θ′の第2の曲げ加工部
Bが隣接している場合を考える。
On the other hand, the above equations (1) and (2) are established when the bending portions are independent, and when there are two or more bending portions, one bending portion is the other bending portion. This is the case where the processed part is not affected. Therefore, FIG. 1 (b)
Consider a case where a first bending portion A having a bending radius R and a bending angle θ is adjacent to a second bending portion B having a bending radius R ′ and a bending angle θ ′, as shown in FIG.

【0017】第1の曲げ加工部Aが影響を及ぼす直線部
の長さは3.5θである。この範囲に第2の曲げ加工部
Bの影響を受けている直線部があってはならない。従っ
て、第1・第2の両曲げ加工部A,B間の直線Lの長さ
は L>3.5Rθ+3.5R′θ′ でなくてはならない。ただし、隣接する両曲げ加工部
A,Bが図4に示すように、互いに曲がり方向が異なる
場合には、第1の曲げ加工部Aで圧縮力を受ける繊維が
第2の曲げ加工部Bに引張り力を受けることになって、
上記直線部は上記のような距離をとる必要はない。
The length of the straight line portion affected by the first bending portion A is 3.5θ. There should be no straight part affected by the second bending part B in this range. Therefore, the length of the straight line L between the first and second bent portions A and B must be L> 3.5Rθ + 3.5R′θ ′. However, as shown in FIG. 4, when adjacent bending parts A and B have different bending directions, the fibers that receive the compressive force in the first bending part A are transferred to the second bending part B. To be subject to tensile forces,
It is not necessary for the straight line portion to have the above distance.

【0018】[0018]

【実 施 例】【Example】

(第1実施例)図5(a),(b)は本発明の第1実施
例を示すもので、エポキシ樹脂が含浸している炭素繊維
からなる補強筋4は一方向(長手方向)に配向してお
り、これの断面形状が幅w厚みtの偏平になっており、
これの両面に凸状部5が等間隔をあけて多数設けてあ
る。そしてこの補強筋4は厚みt=3mm、幅w=1
2.8mm、半径R=15mmであり、曲げ加工部間の
直線部の距離L=200mmに成形して加熱硬化してフ
ープ状のFRP製コンクリート補強筋としてある。
(First Embodiment) FIGS. 5 (a) and 5 (b) show a first embodiment of the present invention, in which the reinforcing bar 4 made of carbon fiber impregnated with epoxy resin is unidirectional (longitudinal direction). It is oriented and its cross-sectional shape is flat with width w and thickness t,
A large number of convex portions 5 are provided at equal intervals on both surfaces thereof. The reinforcing bar 4 has a thickness t = 3 mm and a width w = 1.
2.8 mm, radius R = 15 mm, and formed into a hoop-shaped FRP concrete reinforcing bar by molding to a linear portion distance L = 200 mm between the bent portions and heat curing.

【0019】この補強筋4は、曲げ加工部間の直線部の
距離Lが L=200>3.5×R×θ+3.5×R′×θ′=1
65 かつ曲げ半径Rと厚みtの関係が、 R/t=5>2.8 であるため、 α=9.0°<12° である。よって、繊維配向角αが充分小さく、充分な曲
げ加工部の強度、直線部の引張り強度が得られた。
In this reinforcing bar 4, the distance L of the straight line portion between the bent portions is L = 200> 3.5 × R × θ + 3.5 × R ′ × θ ′ = 1
65 and the relationship between the bending radius R and the thickness t is R / t = 5> 2.8, so α = 9.0 ° <12 °. Therefore, the fiber orientation angle α was sufficiently small, and sufficient strength of the bent portion and tensile strength of the straight portion were obtained.

【0020】さらに、曲げ加工部がつぶれていないた
め、(1)厚さtが不均一による応力集中がなく、
(2)曲げ加工部においての主筋に接触している面積が
広く、かつ均一であるため、主筋から曲げ加工部にかか
る応力が小さい。これらのことも、曲げ加工部の強度を
大きくする要因となっている。
Furthermore, since the bent portion is not crushed, (1) there is no stress concentration due to uneven thickness t,
(2) Since the area in contact with the main bar in the bent portion is wide and uniform, the stress applied from the main bar to the bent portion is small. These factors are also factors that increase the strength of the bent portion.

【0021】またこの補強筋はコンクリート付着力に対
しても優れている。すなわち、コンクリート付着力は表
面の凸状部による凹凸によって得られるが、このとき、
断面形状が円形のものに比べて補強筋の断面積に対して
表面積が大きいため、同じ引張り強度に対して大きな付
着強度が得られる。
This reinforcing bar is also excellent in concrete adhesion. That is, the concrete adhesive force is obtained by the unevenness due to the convex portion of the surface, at this time,
Since the surface area is larger than the cross-sectional area of the reinforcing bar as compared with a circular cross-sectional shape, a large adhesive strength can be obtained for the same tensile strength.

【0022】(第2実施例)必要により、コンクリート
補強筋の厚みを大きくしなければならない場合には、積
層することにより問題を解決できる。図6はその実施例
を示すもので、第1実施例に示したものと同型の補強筋
4の厚み方向にこの補強筋4より1回り大きな他の補強
筋4aが、それぞれの凹凸を合わせて重ねてある。
(Second Embodiment) If it is necessary to increase the thickness of the concrete reinforcing bar, the problem can be solved by stacking the concrete reinforcing bars. FIG. 6 shows an embodiment thereof. Another reinforcing bar 4a, which is one size larger than the reinforcing bar 4 in the thickness direction of the reinforcing bar 4 of the same type as that shown in the first example, has its irregularities aligned. Stacked.

【0023】両補強筋4,4aを厚み方向に積層するこ
とによって強度は大きくなるが、曲げ加工は各補強筋ご
とに行なわれるので、曲げ加工部における繊維配向の乱
れ、断面形状の不均一はない。よって、幅を大きくする
ことなく、強度を上げることができる。また重ねる補強
筋の数は2つに限らず、いくつでもよい。
The strength is increased by laminating both the reinforcing bars 4 and 4a in the thickness direction, but since the bending is performed for each reinforcing bar, the fiber orientation is not disturbed in the bending portion and the cross-sectional shape is not uniform. Absent. Therefore, the strength can be increased without increasing the width. Further, the number of reinforcing bars to be overlapped is not limited to two, and any number may be used.

【0024】(第3実施例)上記第1,第2の実施例に
おいてはFRPのみの場合を示したが、成形性、曲げ加
工性、耐衝撃強さ、等を考慮して、図7に示すようにF
RPを芯材6として熱可塑性樹脂によるコーティング層
7を設けてもよい。この場合考慮すべきことは、上述し
てきた厚みtと幅wは芯材6のFRP部の厚みt1 と幅
1 であり、曲げ半径Rはコーティング層7の厚みdも
含めた(R+d)としてそれぞれの関係を算出する必要
がある。
(Third Embodiment) Although only the FRP is shown in the first and second embodiments, FIG. 7 is taken into consideration in consideration of formability, bending workability, impact resistance and the like. F as shown
A coating layer 7 made of a thermoplastic resin may be provided using RP as the core material 6. In this case, the thickness t and width w described above are the thickness t 1 and width w 1 of the FRP portion of the core material 6, and the bending radius R includes the thickness d of the coating layer 7 (R + d). It is necessary to calculate each relationship as.

【0025】なお、コーティング層としては図7に示す
ような熱可塑性樹脂でなくてもよい。例えば、FRPに
テープを螺旋状に巻き付けた状態のものや、2枚のフィ
ルムでFRPをサンドイッチにした状態のものなどが考
えられる。
The coating layer need not be a thermoplastic resin as shown in FIG. For example, the tape may be wound around the FRP in a spiral shape, or the FRP may be sandwiched between two films.

【0026】また、本発明によるコンクリート補強筋を
構成する材料としては、FRPの強化繊維として、カー
ボン繊維、ガラス繊維等の無機繊維や、アラミド繊維等
の有機繊維が用いられる。そしてマトリックス樹脂とし
ては、エポキシ樹脂、不飽和ポリエステル、フェノール
樹脂等の熱硬化性樹脂が用いられる。
In addition, as the material constituting the concrete reinforcing bar according to the present invention, inorganic fibers such as carbon fibers and glass fibers, and organic fibers such as aramid fibers are used as FRP reinforcing fibers. As the matrix resin, thermosetting resin such as epoxy resin, unsaturated polyester and phenol resin is used.

【0027】[0027]

【発明の効果】本発明によれば、断面積が大きく、しか
も曲率が大きい場合でも充分な曲げ強度を有することが
できる。またこの曲げ加工部に連なる直線部分の強度を
も充分とることができる。
According to the present invention, sufficient bending strength can be obtained even when the cross-sectional area is large and the curvature is large. Further, the strength of the straight line portion connected to the bent portion can be sufficiently secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るFRP製コンクリート補強筋を示
すもので、(a)は断面図、(b)は側面図である。
FIG. 1 shows a FRP concrete reinforcing bar according to the present invention, in which (a) is a sectional view and (b) is a side view.

【図2】曲げ加工部における繊維の曲げ作用時における
変化及び配向角を示すもので、(a)は曲げ前の状態、
(b)は曲げによりしわがよった状態、(c)は配向角
の計算を示す線図である。
FIG. 2 shows changes and orientation angles during bending of fibers in a bent portion, (a) shows a state before bending,
(B) is a diagram showing wrinkles due to bending, and (c) is a diagram showing calculation of orientation angle.

【図3】配向角に対する引張り強度を示す線図である。FIG. 3 is a diagram showing tensile strength with respect to orientation angle.

【図4】隣接する曲げ加工部の曲げ方向が異なるFRP
製コンクリート補強筋を示す側面図である。
FIG. 4 is an FRP in which adjacent bending parts have different bending directions.
It is a side view which shows the concrete reinforcement bar.

【図5】本発明の第1の実施例を示すもので、(a)は
側面図、(b)は(a)図のC−C線に沿う断面図であ
る。
5A and 5B show a first embodiment of the present invention, in which FIG. 5A is a side view and FIG. 5B is a sectional view taken along the line CC of FIG.

【図6】本発明の第2の実施例を示す側面図である。FIG. 6 is a side view showing a second embodiment of the present invention.

【図7】本発明の第3の実施例を示す側面図である。FIG. 7 is a side view showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…FRP製コンクリート補強筋、2…中立面、3…繊
維、4,4a…補強筋、5…凸状部、6…芯材、7…コ
ーティング層、A,B…曲げ加工部。
DESCRIPTION OF SYMBOLS 1 ... FRP concrete reinforcing bar, 2 ... Neutral surface, 3 ... Fiber, 4, 4a ... Reinforcing bar, 5 ... Convex part, 6 ... Core material, 7 ... Coating layer, A, B ... Bending part.

フロントページの続き (72)発明者 住谷 明 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 秋元 治人 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 安部川 利治 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 下薗 修司 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 小沢 延行 千葉県市原市潤井戸2082番地Front page continued (72) Inventor Akira Sumitani 1200 Manda, Hiratsuka, Kanagawa Prefecture Komatsu Ltd. (72) Inventor Haruto Akimoto Manda 1200, Hiratsuka, Kanagawa Ltd. Komatsu Ltd. (72) Inventor Toshiharu Abekawa 1200, Manda, Hiratsuka, Kanagawa Prefecture Komatsu Seisakusho Laboratory (72) Inventor Shuji Shimozono 1200, Hiratsuka, Kanagawa Komatsu Seisakusho Laboratory (72) Inventor Nobuyuki Ozawa Chiba Prefecture Hara-shi Junido 2082

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1ケ所以上の曲げ加工を施した部分を有
し、かつFRPにて構成されるFRP製コンクリート補
強筋において、厚みtと幅wとの関係がt/w<1とな
るように断面形状を偏平にしたことを特徴とするFRP
製コンクリート補強筋。
1. A concrete reinforcing bar made of FRP, which has at least one bent portion and is made of FRP, so that the relationship between the thickness t and the width w is t / w <1. FRP with flat cross section
Made concrete reinforcing bar.
【請求項2】 曲げ加工部の内側の曲げ半径Rと厚みt
との関係がR/t≧2.8であることを特徴とする請求
項1記載のFRP製コンクリート補強筋。
2. The bending radius R and the thickness t inside the bent portion.
The FRP concrete reinforcing bar according to claim 1, characterized in that the relationship with R / t ≧ 2.8.
【請求項3】 隣り合う曲げ加工部A,Bの曲げ方向が
同一である場合において、内側の曲げ半径と曲げ角度の
それぞれがR,θとR′,θ′であるときに、その隣り
合う曲げ加工部A,Bの間の直線部の長さLが、 L≧3.5×R×θ+3.5×R′×θ′ であることを特徴とする請求項2記載のFRP製コンク
リート補強筋。
3. When adjacent bending parts A and B have the same bending direction, and when the inside bending radius and bending angle are R, θ and R ′, θ ′, respectively, they are adjacent to each other. The FRP concrete reinforcement according to claim 2, wherein the length L of the straight line portion between the bent portions A and B is L ≧ 3.5 × R × θ + 3.5 × R ′ × θ ′. muscle.
JP18106094A 1994-08-02 1994-08-02 Concrete reinforcing bar made of frp Pending JPH0842060A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18106094A JPH0842060A (en) 1994-08-02 1994-08-02 Concrete reinforcing bar made of frp
EP95926535A EP0774552A4 (en) 1994-08-02 1995-08-01 Reinforcing bar for frp concrete
PCT/JP1995/001528 WO1996004440A1 (en) 1994-08-02 1995-08-01 Reinforcing bar for frp concrete
CA 2195418 CA2195418A1 (en) 1994-08-02 1995-08-01 Reinforcing bar for frp concrete
NO970411A NO970411L (en) 1994-08-02 1997-01-30 FRP reinforcement for concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18106094A JPH0842060A (en) 1994-08-02 1994-08-02 Concrete reinforcing bar made of frp

Publications (1)

Publication Number Publication Date
JPH0842060A true JPH0842060A (en) 1996-02-13

Family

ID=16094088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18106094A Pending JPH0842060A (en) 1994-08-02 1994-08-02 Concrete reinforcing bar made of frp

Country Status (5)

Country Link
EP (1) EP0774552A4 (en)
JP (1) JPH0842060A (en)
CA (1) CA2195418A1 (en)
NO (1) NO970411L (en)
WO (1) WO1996004440A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028387A1 (en) * 2006-09-01 2008-03-13 Shenzhen Oceanpower Industrial Co., Ltd. A method for freparing frp bars

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU720157B2 (en) * 1997-01-23 2000-05-25 Sika Technology Ag Flat strip lamellas for reinforcing building components and method for their production
WO2000006851A1 (en) * 1998-07-27 2000-02-10 Surface Technologies, Inc. Concrete reinforcing system having non-corrosive bendable flanges
US6612085B2 (en) 2000-01-13 2003-09-02 Dow Global Technologies Inc. Reinforcing bars for concrete structures
AU2001229311A1 (en) 2000-01-13 2001-07-24 The Dow Chemical Company Small cross-section composites of longitudinally oriented fibers and a thermoplastic resin as concrete reinforcement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53159115U (en) * 1977-05-20 1978-12-13
JPS6135231A (en) * 1984-07-27 1986-02-19 Mitsui Constr Co Ltd Manufacture of structural irregular-shaped reinforcing material
JPS63221035A (en) * 1987-03-10 1988-09-14 Showa Highpolymer Co Ltd Manufacture of reinforcing bar made of fiber reinforced synthetic resin with profile section
JP2691236B2 (en) * 1987-10-30 1997-12-17 清水建設株式会社 Concrete reinforcement
JP2602706B2 (en) * 1988-10-24 1997-04-23 三井建設株式会社 Method for manufacturing hoop streaks
JPH06136882A (en) 1992-10-21 1994-05-17 Komatsu Kasei Kk Manufacture of concrete reinforcing material made of frp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028387A1 (en) * 2006-09-01 2008-03-13 Shenzhen Oceanpower Industrial Co., Ltd. A method for freparing frp bars

Also Published As

Publication number Publication date
CA2195418A1 (en) 1996-02-15
NO970411D0 (en) 1997-01-30
NO970411L (en) 1997-02-19
EP0774552A1 (en) 1997-05-21
EP0774552A4 (en) 1997-10-22
WO1996004440A1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
EP1457596B1 (en) Reinforcing structure
US5279879A (en) Hybrid prepreg containing carbon fibers and at least one other reinforcing fiber in specific positions within the prepreg
AU745945B2 (en) Composite carbon fibre based armour for flexible pipe
US6511727B1 (en) Flat strip lamella for reinforcing building components and method for their production
CA2390468A1 (en) A pultruded part reinforced by longitudinal and transverse fibers and a method of manufacturing thereof
JPH09300497A (en) Large-sized columnar body made of fiber-reinforced plastic
JPH0322298B2 (en)
CA2003746A1 (en) Elongated lightweight fiber reinforced composite resin pultrusion-formed piece and method of manufacturing the same
JPH0842060A (en) Concrete reinforcing bar made of frp
JP3045659B2 (en) Golf club shaft and method of manufacturing the same
JPS6116170A (en) Fiber reinforced resin construction having forked part
JP4022968B2 (en) CFRP reinforced square pipe
JP3322497B2 (en) FRP structural material
JPS6010840Y2 (en) Composite tensile structure
JP3278097B2 (en) Tubular body
JP2003071941A (en) Frp laminate and frp reinforcing member
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JPH0740488A (en) Fiber reinforced resin tubular material
JPH08267594A (en) Tubular member
JP7156757B2 (en) Vehicle pillar structure
JPH0781566A (en) Curve hat type tube made of fiber reinforced resin composite material and manufacture of tank
JP3109657B2 (en) Fishing rod
JP2904251B2 (en) Fiber reinforced resin pipe and method for producing the same
JP3053567B2 (en) Golf club shaft manufacturing method
JPH08199732A (en) Structural member made of fiber-reinforced plastic