JPH0841544A - Quenching of steel pipe - Google Patents

Quenching of steel pipe

Info

Publication number
JPH0841544A
JPH0841544A JP19459994A JP19459994A JPH0841544A JP H0841544 A JPH0841544 A JP H0841544A JP 19459994 A JP19459994 A JP 19459994A JP 19459994 A JP19459994 A JP 19459994A JP H0841544 A JPH0841544 A JP H0841544A
Authority
JP
Japan
Prior art keywords
steel pipe
quenching
water
dipping
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19459994A
Other languages
Japanese (ja)
Inventor
Takeshi Shimamoto
健 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19459994A priority Critical patent/JPH0841544A/en
Publication of JPH0841544A publication Critical patent/JPH0841544A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent ununiform cooling caused by float-up of a steel pipe without damaging the steel pipe, in a dipping axial flow quenching method of the inner and the outer surfaces of the steel pipe. CONSTITUTION:In this dipping axial flow quenching method of the steel pipe 21, the water quantity supplied to a dipping vessel 22 is rapidly increased until the one end of the steel pipe 21 charged in the dipping vessel 22 floats up to form a high water level advancing flow 32. When the water surface level of the dipping vessel 22 at one end thereof becomes higher than the level of the floated upper end of the steel pipe, the cross sectional area in the dipping vessel 22 is reduced at the float-up part side of the steel pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、浸漬方式の鋼管の焼入
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quenching method for steel pipes of the immersion type.

【0002】[0002]

【従来の技術】鋼管を高張力、高靱性化するために焼入
れ、焼戻し処理を施すことが行なわれている。鋼管の焼
入方法は、スプレー方式と内外面浸漬軸流焼入方式に大
別される。冷却能力が大きく、装置の構造が単純である
という観点から、内外面浸漬軸流焼入方式が優れてい
る。内外面浸漬軸流焼入方式とは、加熱された鋼管を浸
漬槽に投入して浸漬し、鋼管の内外両面にその軸線方向
に沿う冷却水流(軸流)を与えて焼入れを行なう方式で
ある。この方式の焼入方法の問題点の1つとして、薄肉
鋼管が浸漬槽の水面上に浮上することに起因する焼入ム
ラの発生が挙げられる。即ち、薄肉鋼管においては、浸
漬槽に浸漬した後に槽内に設置された受台(又はロー
ラ)上の所定の位置に収まるまでの間に、浮力のため
に、鋼管の一端が浸漬槽の水面上に浮上する現象が起こ
り、この浮上した部分が冷却不足となり均一な熱処理が
得られないという問題が生じる。
2. Description of the Related Art Quenching and tempering treatments are carried out in order to increase the tensile strength and toughness of steel pipes. Steel pipe quenching methods are roughly classified into a spray method and an inner / outer surface immersion axial flow quenching method. From the viewpoints of high cooling capacity and simple device structure, the inner and outer surface immersion axial flow quenching method is superior. The inner / outer surface immersion axial flow quenching method is a method in which a heated steel pipe is put into a dipping tank and immersed, and quenching is performed by giving a cooling water flow (axial flow) along the axial direction to both the inner and outer surfaces of the steel pipe. . One of the problems of this type of quenching method is the occurrence of uneven quenching due to the thin steel pipe floating above the water surface of the dipping tank. That is, in a thin-walled steel pipe, one end of the steel pipe is immersed in the water surface of the dipping tank due to buoyancy until it falls into a predetermined position on the pedestal (or roller) installed in the dipping tank after being immersed in the dipping tank. There is a problem in that a phenomenon of floating above occurs, and the floating portion is insufficiently cooled, and uniform heat treatment cannot be obtained.

【0003】図6を参照して説明する。図6(a)に示
すように、浸漬槽1内に冷却水供給管2から冷却水を供
給し、冷却水3内に、鋼管10の軸方向に沿う冷却水流
4を形成しておき、焼入すべき鋼管10を水平の姿勢で
この浸漬槽に矢印5に示すように投入する。図6(b)
に示すように、冷却水流4は鋼管10の内外面を冷却す
るが、鋼管内に気泡6を生じ、この気泡6が鋼管10に
浮力を与えて浮上させる。図6(c)に示すように、気
泡は、冷却水流4により、鋼管10の一方の端部に寄せ
られ、特に薄肉鋼管では、鋼管10の端部11が浸漬槽
1の水面7の上に浮上する。従って、この端部11は冷
却が十分でなく、焼入ムラが発生する。
Description will be made with reference to FIG. As shown in FIG. 6 (a), cooling water is supplied from the cooling water supply pipe 2 into the immersion tank 1, and a cooling water flow 4 along the axial direction of the steel pipe 10 is formed in the cooling water 3 for firing. The steel pipe 10 to be put is put in this dipping tank in a horizontal posture as shown by an arrow 5. Figure 6 (b)
As shown in, the cooling water flow 4 cools the inner and outer surfaces of the steel pipe 10, but bubbles 6 are generated in the steel pipe, and the bubbles 6 give buoyancy to the steel pipe 10 to cause it to float. As shown in FIG. 6 (c), the bubbles are brought to one end of the steel pipe 10 by the cooling water flow 4, and particularly in a thin-walled steel pipe, the end 11 of the steel pipe 10 is above the water surface 7 of the dipping tank 1. Surface. Therefore, the end portion 11 is not sufficiently cooled and uneven quenching occurs.

【0004】この浮上防止策として、例えば特公昭60-3
9734号公報、特開昭60-37859号公報に見られるように、
浸漬前或いは浸漬後に鋼管をクランプする方法や装置、
また特公昭58-55217号公報に見られるように浸漬後にカ
バーする方法や装置が有効であると考えられるが、設備
が複雑になり、費用が高くなるという問題がある。ま
た、浸漬後にクランプ或いはカバーする方法ではタイミ
ングが不適切であると、浮上した鋼管がクランプ又はカ
バーと干渉して疵を生ずる。
As a method for preventing this floating, for example, Japanese Patent Publication No. 60-3
As seen in 9734 and JP-A-60-37859,
Method or device for clamping steel pipe before or after immersion,
Further, as disclosed in Japanese Patent Publication No. 58-55217, a method and an apparatus for covering after immersion are considered to be effective, but there is a problem that the equipment becomes complicated and the cost becomes high. In addition, if the timing of the method of clamping or covering after immersion is inappropriate, the floating steel pipe interferes with the clamp or cover, causing flaws.

【0005】また、この他に特公昭55-32766号公報に開
示されているように、浸漬槽への進入速度を制御して低
速で進入させる方法も開発されているが、設備費用が高
く、焼入ムラの発生が避けられないという問題がある。
In addition to this, as disclosed in Japanese Patent Publication No. 55-32766, a method has been developed in which the speed of entry into the dipping tank is controlled to allow entry at a low speed, but the equipment cost is high. There is a problem that uneven quenching is inevitable.

【0006】そこで、本出願人は、内外面浸漬軸流焼入
方式により鋼管を焼入れする際に、薄肉鋼管の浮上によ
る冷却不均一を防止する方法として、浸漬槽に投入した
鋼管の一端が浮上するまでに浸漬槽に供給する水量を急
速増加して高水位進行流を形成し、鋼管浮上端よりその
部分の浸漬槽の水面を高くするものを既に提案してい
る。
[0006] Therefore, the applicant of the present invention, when quenching a steel pipe by the inner and outer surface immersion axial flow quenching method, as a method for preventing uneven cooling due to floating of a thin-walled steel pipe, one end of the steel pipe put into a dipping tank floats. It has already been proposed that the amount of water supplied to the immersion tank be increased rapidly to form a high-level progressive flow, and the water level of the immersion tank at that portion is made higher than the floating top of the steel pipe.

【0007】[0007]

【発明が解決しようとする課題】然るに、本出願人が既
に提案している先願技術では、鋼管の浮上を防止するた
めの高水位進行流を形成するため、浸漬槽に供給する水
量を多量に急速増加する必要がある。この多量の水流
は、浸漬槽内で鋼管を長手方向に流すものとなり、その
管端が浸漬槽の内壁面に衝突して疵つく等の不都合があ
る。
However, in the prior application technology already proposed by the present applicant, a large amount of water is supplied to the dipping tank in order to form a high water level advancing flow for preventing the floating of the steel pipe. Need to increase rapidly. This large amount of water flow causes the steel pipe to flow in the longitudinal direction in the dipping tank, and there is a disadvantage that the pipe end collides with the inner wall surface of the dipping tank and is scratched.

【0008】本発明は、鋼管の内外面浸漬軸流焼入方式
において、鋼管に疵をつけることなく、鋼管の浮上りに
よる冷却不均一を防止することを目的とする。
It is an object of the present invention to prevent uneven cooling due to floating of the steel pipe in the axial-flow quenching method of immersing the inner and outer surfaces of the steel pipe without scratching the steel pipe.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の本発明
は、鋼管を浸漬槽中に水平姿勢で投入し管軸方向の水流
により内外面浸漬軸流焼入処理するに当り、浸漬槽に投
入した鋼管の一端が浮上するまでに浸漬槽に供給する水
量を急速増加して高水位進行流を形成し、鋼管浮上端よ
りその部分の浸漬槽の水面を高くする鋼管の焼入方法に
おいて、浸漬槽の槽内断面積を鋼管浮上部側で小さくす
るようにしたものである。
According to the present invention as set forth in claim 1, when a steel pipe is put in a horizontal position in a dipping tank and a water flow in the axial direction of the pipe is used to perform inner and outer surface dipping axial flow quenching treatment, the dipping tank is used. In the quenching method of the steel pipe, the amount of water supplied to the dipping tank is rapidly increased until one end of the steel pipe put in The cross-sectional area of the immersion tank is reduced on the floating side of the steel pipe.

【0010】請求項2に記載の本発明は、請求項1に記
載の本発明において更に、前記浸漬槽の槽内断面幅を鋼
管浮上部側で小さくするようにしたものである。
The present invention according to claim 2 is the same as the invention according to claim 1, wherein the internal cross-sectional width of the dipping tank is made smaller on the floating side of the steel pipe.

【0011】請求項3に記載の本発明は、請求項1に記
載の本発明において更に、前記浸漬槽の槽内断面深さを
鋼管浮上部側で小さくするようにしたものである。
According to a third aspect of the present invention, in addition to the first aspect of the present invention, the depth of the internal cross section of the dipping bath is made smaller on the floating side of the steel pipe.

【0012】[0012]

【作用】本発明は、鋼管の内外面浸漬軸流焼入方式によ
る焼入処理において、鋼管を浸漬槽内に浸漬した後、浸
漬槽に供給する水量を急速増加して高水位進行流を形成
し、鋼管浮上端の部分の水位が高くなるように、所定の
水量Q2 (m3/H)、圧力P2 (MPa)及び所定の噴
射開始時刻TF に軸流水流の水量を急速増加して噴射す
る。このとき、噴射開始時刻TF が下記条件を満たすよ
うにする。
According to the present invention, in the quenching treatment of the inner and outer surfaces of the steel pipe by the axial flow quenching method, after the steel pipe is immersed in the immersion tank, the amount of water supplied to the immersion tank is rapidly increased to form a high water level progressive flow. Then, the water amount of the axial water flow is rapidly increased at a predetermined water amount Q 2 (m 3 / H), a pressure P 2 (MPa) and a predetermined injection start time T F so that the water level at the floating top of the steel pipe becomes high. And then jet. At this time, the injection start time T F is set to satisfy the following condition.

【0013】0<fT1(D,t,v)−(TF −Tin
−fT2(Q,P,L) 但し、 Tin:鋼管を浸漬槽に浸漬する時刻 TF :水量Q2 、圧力P2 で噴射開始する時刻 D :鋼管外径 t :鋼管肉厚 v :鋼管が浸漬液に侵入する速度 L :噴射口から鋼管の他端までの距離 fT1:鋼管が浸漬液に侵入してから浮き上がるまでの時
間(D,t,v)の関数 fT2:水量Q2 、圧力P2 で噴射開始してから、距離L
位置の水位が高くなるまでの時間(Q,P,L)の関数 である。以上の条件により、浸漬槽に投入した鋼管の一
端が浮上するまでに、高水位進行流が鋼管浮上端より高
い水位となるようにする。
[0013] 0 <f T1 (D, t , v) - (T F -T in)
-F T2 (Q, P, L) However, T in : Time of immersing the steel pipe in the dipping tank TF : Time of injection start with water amount Q 2 and pressure P 2 D: Steel pipe outer diameter t: Steel pipe wall thickness v: Velocity of Steel Pipe Penetration into Immersion Liquid L: Distance from Jet Port to Other End of Steel Pipe f T1 : Function of Time (D, t, v) from Immersion of Steel Pipe to Immersion Liquid f T2 : Water Quantity Q 2 , after starting the injection at pressure P 2 , distance L
It is a function of the time (Q, P, L) until the water level at the position rises. Under the above conditions, the high water level advancing flow is set to have a higher water level than the floating upper end of the steel pipe before one end of the steel pipe put into the immersion tank floats.

【0014】上記噴射開始時刻TF の式のうち、鋼管が
浸漬液に侵入してから浮き上がるまでの時間fT1及び、
水量Q2 、圧力P2 で噴射開始してから距離L位置の水
位が高くなるまでの時間fT2は、浸漬槽の形状、寸法、
鋼管の寸法、鋼管が浸漬液に侵入する速度、鋼管浸漬前
後の水量、圧力、及び噴射口から鋼管の他端までの距離
等により異なる。然し、これらは浸漬槽及び鋼管につい
て、シミュレーション又は実験により定めることができ
る。従って、上記噴射開始時刻TF を定めることができ
る。
In the above formula of the injection start time T F , the time f T1 from the time when the steel pipe enters the immersion liquid to the time when it floats up, and
The time f T2 from the start of injection with the water amount Q 2 and the pressure P 2 to the rise of the water level at the distance L position is
It depends on the size of the steel pipe, the speed at which the steel pipe penetrates the immersion liquid, the amount of water before and after the immersion of the steel pipe, the pressure, the distance from the injection port to the other end of the steel pipe, and the like. However, these can be determined for the immersion tank and the steel pipe by simulation or experiment. Therefore, the injection start time T F can be determined.

【0015】図4は、上記噴射開始時刻を示すタイムチ
ャートである。鋼管を浸漬槽に浸漬する時刻Tinを始点
とし、鋼管が浸漬槽に浸漬してから浮き上がるまでの時
間fT1を経過した時刻TE を終点とする。この終点時刻
E に対して微小時間ΔTだけ早い到達時刻TM に間に
合うような噴射開始時刻TF に水量Q2 、圧力P2 で噴
射開始する。この噴射開始時刻TF は、水量Q2 、圧力
2 で噴射開始してから、距離L位置の水位が高くなる
までの時間fT2を知ることによって決定される。
FIG. 4 is a time chart showing the injection start time. The time T in when the steel pipe is dipped in the dipping tank is the starting point, and the time T E after the time f T1 from the time when the steel pipe is dipped in the dipping tank until the steel pipe floats is the end point. The injection is started with the water amount Q 2 and the pressure P 2 at the injection start time T F which is in time for the arrival time T M which is earlier than the end time T E by a minute time ΔT. The injection start time T F is determined by knowing the time f T2 from when the injection is started with the water amount Q 2 and the pressure P 2 until the water level at the distance L increases.

【0016】時間fT1は、鋼管外径D、鋼管肉厚t、鋼
管が浸漬液に侵入する速度vの関数であるから、これら
の条件が定まれば決定することができる。時間fT2は、
浸漬槽の寸法、水量Q、圧力P、噴射口から鋼管の他端
までの距離Lの関数であるから、これらが決まれば、決
定することができる。従って、2つの時刻TinとTF
の関係は、条件に応じて一義的に定まる。実際には、こ
れらをシミュレーションによって定めても良いし、実験
によって定めても良い。これらの条件のデータを制御コ
ンピュータに記憶させておけば、容易に、正確に条件に
応じた水量制御、噴射開始時刻制御をすることができ
る。
The time f T1 is a function of the outer diameter D of the steel pipe, the wall thickness t of the steel pipe, and the speed v at which the steel pipe penetrates into the immersion liquid, and can be determined if these conditions are determined. The time f T2 is
Since it is a function of the dimensions of the immersion tank, the amount of water Q, the pressure P, and the distance L from the injection port to the other end of the steel pipe, it can be determined if these are determined. Therefore, the relationship between the two times T in and T F is uniquely determined according to the conditions. In practice, these may be determined by simulation or experiment. By storing the data of these conditions in the control computer, it is possible to easily and accurately control the water amount and the injection start time according to the conditions.

【0017】然るに、本発明では、「浸漬槽の槽内断面
積を鋼管浮上部側で小さくすること」、具体的には「浸
漬槽の槽内断面積を鋼管浮上部側で小さくすること」、
或いは「浸漬槽の槽内断面深さを鋼管浮上部側で小さく
すること」を特徴とする。これによれば、鋼管の浮上を
防止するための高水位進行流を形成するために、浸漬槽
に供給する水量Q2 を少なくできる。即ち、少ない水量
2 で鋼管の浮き上がり防止に必要十分な高水位進行流
を形成できる。そして、水量Q2 が少なくなることによ
り、鋼管が浸漬槽内で長手方向に流れる搬送トラブルを
生ずることがなく、鋼管の管端が浸漬槽の内壁面に衝突
して傷つく等を防止できる。
However, in the present invention, "to reduce the internal cross-sectional area of the immersion tank on the floating side of the steel pipe", specifically "to reduce the internal cross-sectional area of the immersion tank on the floating side of the steel pipe". ,
Alternatively, it is characterized in that "the depth of the cross section of the immersion tank is reduced on the floating side of the steel pipe". According to this, in order to form the high water level advancing flow for preventing the floating of the steel pipe, the amount Q 2 of water supplied to the immersion tank can be reduced. That is, a high water level advancing flow necessary and sufficient to prevent the floating of the steel pipe can be formed with a small amount of water Q 2 . The decrease in the amount of water Q 2 prevents the steel pipe from traveling in the longitudinal direction in the dipping tank, and prevents the pipe end from colliding with the inner wall surface of the dipping tank and being damaged.

【0018】[0018]

【実施例】図1は本発明の一実施例を示す模式図、図2
は浸漬槽の横断面を示す模式図、図3は浸漬槽の縦断面
を示す模式図、図4は噴射開始時刻チャート、図5は内
外面浸漬軸流焼入装置を示す模式図、図6は従来例を示
す模式図である。焼入装置20は、図5に示す如く、加
熱された鋼管21を浸漬槽22に投入して浸漬し、鋼管
21の内外両面にその軸方向に沿う冷却水流(軸流)を
与えて焼入れを行なうものである。図5において、23
は鋼管キックイン装置、24は水噴射口、25は水循環
路、26は軸流カバーである。
1 is a schematic view showing an embodiment of the present invention, FIG.
Is a schematic view showing a transverse section of the immersion tank, FIG. 3 is a schematic view showing a vertical section of the immersion tank, FIG. 4 is a jet start time chart, FIG. 5 is a schematic view showing an inner and outer surface immersion axial flow quenching apparatus, and FIG. [Fig. 6] is a schematic view showing a conventional example. As shown in FIG. 5, the quenching apparatus 20 puts a heated steel pipe 21 into a dipping tank 22 to immerse the steel pipe 21 and applies quenching to both inner and outer surfaces of the steel pipe 21 by applying a cooling water flow (axial flow) along the axial direction thereof. It is something to do. In FIG. 5, 23
Is a steel pipe kick-in device, 24 is a water injection port, 25 is a water circulation path, and 26 is an axial flow cover.

【0019】即ち、焼入装置20にあっては、浸漬槽2
2内に水噴射口24から冷却水を供給し、浸漬槽22内
に鋼管21の軸方向に沿う冷却水流27を形成してお
き、焼入れすべき鋼管21を水平姿勢でキックイン装置
23により浸漬槽22に投入する。鋼管21は、後に詳
述の浮き上がり防止方法を適用されて浸漬槽22内の浸
漬姿勢を水平化された状態で、軸流カバー26によりカ
バーされ、冷却水流30よりその内外面を冷却されて焼
入れされる。
That is, in the quenching apparatus 20, the immersion tank 2
2 is supplied with cooling water from a water injection port 24 to form a cooling water flow 27 along the axial direction of the steel pipe 21 in the immersion tank 22, and the steel pipe 21 to be quenched is horizontally immersed in the immersion tank by a kick-in device 23. Put in 22. The steel pipe 21 is covered with an axial flow cover 26 in a state in which the floating posture prevention method described in detail later is applied and the immersion posture in the immersion tank 22 is leveled, and the inner and outer surfaces of the steel pipe 21 are cooled by a cooling water flow 30 and quenched. To be done.

【0020】このとき、浸漬槽22は、槽内断面積を鋼
管浮上部側で小さくなるように設定される。具体的に
は、(1) 浸漬槽22の槽内断面幅を鋼管浮上部側で小さ
くする(図2)、或いは(2) 浸漬槽22の槽内断面深さ
を鋼管浮上部側で小さくする(図3)である。
At this time, the immersion tank 22 is set so that the internal cross-sectional area of the immersion tank 22 becomes smaller on the floating side of the steel pipe. Specifically, (1) reduce the cross-sectional width of the immersion tank 22 on the floating side of the steel pipe (Fig. 2), or (2) decrease the cross-sectional depth of the immersion tank 22 on the floating side of the steel pipe. (FIG. 3).

【0021】浸漬槽22における鋼管21の浮き上がり
防止方法は下記(a) 〜(d) の如くになされる。 (a) 浸漬槽22内の冷却水の水面28の水位を冷却水供
給管の噴射口24の上端より150mm 以下に調整してお
き、浸漬槽22内に鋼管21の軸方向の冷却水流27を
形成させておく。
The method of preventing the steel pipe 21 from rising in the immersion tank 22 is as follows (a) to (d). (a) The water level of the cooling water surface 28 in the immersion tank 22 is adjusted to 150 mm or less from the upper end of the injection port 24 of the cooling water supply pipe, and the cooling water flow 27 in the axial direction of the steel pipe 21 is set in the immersion tank 22. Let it form.

【0022】(b) 焼入れすべき鋼管21を水平の姿勢で
この浸漬槽22に投入する。冷却水流27は鋼管21の
内外面を冷却するが、前述のように鋼管21内に気泡2
9を生じ、この気泡29が鋼管21に浮力を与えて浮上
させようとする。このとき、予め定めた噴射開始時刻
で、浸漬槽に冷却水供給管の噴射口24から供給する冷
却水流30を急増させ、高い水位で矢印31の方向に進
行する高水位進行流32を発生させる。このときの水量
2 (m3/H)、圧力P2 (MPa)、噴射開始時刻T
F は、条件に応じて予めコンピュータに記憶させてお
く。
(B) The steel pipe 21 to be quenched is placed in the immersion tank 22 in a horizontal posture. The cooling water flow 27 cools the inner and outer surfaces of the steel pipe 21.
9, and the bubbles 29 give buoyancy to the steel pipe 21 to try to float. At this time, at a predetermined injection start time, the cooling water flow 30 supplied from the injection port 24 of the cooling water supply pipe to the immersion tank is rapidly increased to generate the high water level advancing flow 32 that advances in the direction of the arrow 31 at a high water level. . Water amount Q 2 (m 3 / H), pressure P 2 (MPa), injection start time T at this time
F is stored in the computer in advance according to the conditions.

【0023】(c) 鋼管21内に発生した気泡29は、鋼
管21の端部を浸漬槽22の水面28の上に浮上させよ
うとするが、このとき、矢印31の方向に進行している
高水位進行流32は、鋼管21の端部が水面上に出ない
ように鋼管端部の水位を上昇させる。従って、鋼管21
はその端部を水面28上に浮上させることなく矢印33
で示す方向に沈下する。
(C) The bubbles 29 generated in the steel pipe 21 try to float the end of the steel pipe 21 above the water surface 28 of the dipping tank 22, but at this time, they are traveling in the direction of the arrow 31. The high water level advancing flow 32 raises the water level of the steel pipe end so that the end of the steel pipe 21 does not come out above the water surface. Therefore, the steel pipe 21
Does not allow its end to float above the water surface 28, and the arrow 33
Settle in the direction indicated by.

【0024】(d) 従って、図1(d)に示すように、鋼
管21は水中において冷却水流30により均一に焼入れ
され、焼入ムラが発生しない。
(D) Therefore, as shown in FIG. 1 (d), the steel pipe 21 is uniformly quenched in the water by the cooling water flow 30, and uneven quenching does not occur.

【0025】本発明例1、2について、従来例、比較例
とともに表1に示した。
Inventive Examples 1 and 2 are shown in Table 1 together with a conventional example and a comparative example.

【表1】 [Table 1]

【0026】本発明例1は、外径406.44mmφ、肉厚9.52
mmの炭素鋼の鋼管を本発明方法で焼入れし、特に浸漬槽
22の横断面幅を図2の如くとし、L1 =2860mm、L2
=1800mmとしたものである。
Example 1 of the present invention has an outer diameter of 406.44 mmφ and a wall thickness of 9.52.
A steel pipe of carbon steel of mm was quenched by the method of the present invention, and in particular, the cross sectional width of the dipping tank 22 was set as shown in FIG. 2, and L 1 = 2860 mm, L 2
= 1800 mm.

【0027】本発明例2は、外径406.44mmφ、肉厚9.52
mmの炭素鋼の鋼管を本発明方法で焼入れし、特に浸漬槽
22の槽内断面深さを図3の如くとし、H=500mm とし
たものである。
Inventive Example 2 has an outer diameter of 406.44 mmφ and a wall thickness of 9.52.
A steel pipe of carbon steel of mm was quenched by the method of the present invention, and in particular, the depth of the internal cross section of the dipping bath 22 was as shown in FIG. 3, and H = 500 mm.

【0028】比較例は、浸漬槽22の槽内断面積を一定
とし、高水位進行流を形成しただけのものである。従来
例は、高水位進行流も形成しないものである。
In the comparative example, the internal cross-sectional area of the dipping tank 22 is made constant, and a high water level advancing flow is formed. The conventional example does not form a high water level advancing flow.

【0029】本発明例1では、鋼管浸漬時刻Tinに対し
て高水位進行流32を発生する噴射開始時刻TF を0.2
秒とし、水量Q1 =1500m3/Hを水量Q2 =5000m3/H
に急増した。ΔT=0.2 秒となっている。
In Example 1 of the present invention, the injection start time T F at which the high water level advancing flow 32 is generated with respect to the steel pipe immersion time T in is 0.2.
Seconds, water quantity Q 1 = 1500 m 3 / H, water quantity Q 2 = 5000 m 3 / H
Has rapidly increased. ΔT = 0.2 seconds.

【0030】本発明例2では、鋼管浸漬時刻Tinに対し
て高水位進行流32を発生する噴射開始時刻TF を0.1
秒とし、水量Q1 =1500m3/Hを水量Q2 =6000m3/H
に急増した。ΔT=0.2 秒となっている。
In Example 2 of the present invention, the injection start time T F at which the high water level advancing flow 32 is generated with respect to the steel pipe immersion time T in is 0.1.
Seconds, water quantity Q 1 = 1500 m 3 / H water quantity Q 2 = 6000 m 3 / H
Has rapidly increased. ΔT = 0.2 seconds.

【0031】比較例では、鋼管浸漬時刻Tinに対して高
水位進行流32を発生する噴射開始時刻TF を 0秒と
し、水量Q1 =1500m3/Hを水量Q2 =8000m3/Hに急
増した。ΔT=0.2 秒となっている。
In the comparative example, the injection start time T F for generating the high water level advancing flow 32 with respect to the steel pipe immersion time T in is 0 seconds, and the water amount Q 1 = 1500 m 3 / H is the water amount Q 2 = 8000 m 3 / H. Has rapidly increased. ΔT = 0.2 seconds.

【0032】本発明例1、2では、水量Q2 を比較例に
対し大幅に低減できた。そして、本発明例1、2では、
鋼管の端部及び中間部のテンパ処理後の引張り強度TS
及び降伏強度YSについて、比較例におけると同様の強
度を確保できた。即ち、水量Q2 を低減しながら、焼入
ムラのない一様な焼入れを実現できた。
In Examples 1 and 2 of the present invention, the amount of water Q 2 could be greatly reduced as compared with the comparative example. And in the invention examples 1 and 2,
Tensile strength TS after tempering at the end and middle of the steel pipe
Regarding the yield strength YS, the same strength as in the comparative example could be secured. That is, uniform quenching without quenching unevenness could be realized while reducing the water amount Q 2 .

【0033】[0033]

【発明の効果】以上のように本発明によれば、鋼管の内
外面浸漬軸流焼入方式において、鋼管に疵をつけること
なく、鋼管の浮上りによる冷却不均一を防止することが
できる。
As described above, according to the present invention, it is possible to prevent uneven cooling due to floating of the steel pipe in the axial immersion quenching method of the inner and outer surfaces of the steel pipe without causing any flaws in the steel pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示す模式図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】図2は浸漬槽の横断面を示す模式図である。FIG. 2 is a schematic view showing a cross section of an immersion tank.

【図3】図3は浸漬槽の縦断面を示す模式図である。FIG. 3 is a schematic view showing a vertical section of an immersion tank.

【図4】図4は噴射開始時刻チャートである。FIG. 4 is an injection start time chart.

【図5】図5は内外面浸漬軸流焼入装置を示す模式図で
ある。
FIG. 5 is a schematic view showing an inner and outer surface immersion axial flow quenching apparatus.

【図6】図6は従来例を示す模式図である。FIG. 6 is a schematic view showing a conventional example.

【符号の説明】[Explanation of symbols]

20 焼入装置 21 鋼管 22 浸漬槽 24 水噴射口 27、30 冷却水流 28 水面 32 高水位進行流 20 Quenching device 21 Steel pipe 22 Immersion tank 24 Water injection port 27, 30 Cooling water flow 28 Water surface 32 High water level advancing flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼管を浸漬槽中に水平姿勢で投入し管軸
方向の水流により内外面浸漬軸流焼入処理するに当り、
浸漬槽に投入した鋼管の一端が浮上するまでに浸漬槽に
供給する水量を急速増加して高水位進行流を形成し、鋼
管浮上端よりその部分の浸漬槽の水面を高くする鋼管の
焼入方法において、 浸漬槽の槽内断面積を鋼管浮上部側で小さくすることを
特徴とする鋼管の焼入方法。
1. When a steel pipe is placed in a dipping tank in a horizontal posture and subjected to an axial dipping axial flow quenching treatment by a water flow in the axial direction of the pipe,
Quenching of a steel pipe that increases the amount of water supplied to the immersion tank rapidly until one end of the steel pipe put into the immersion tank rises to form a high-level progressive flow, and raises the water level of the immersion tank above that part of the steel pipe In the method, a method for quenching a steel pipe is characterized in that the internal cross-sectional area of the immersion tank is reduced on the floating side of the steel pipe.
【請求項2】 前記浸漬槽の槽内断面幅を鋼管浮上部側
で小さくする請求項1記載の鋼管の焼入方法。
2. The method for quenching a steel pipe according to claim 1, wherein the internal cross-sectional width of the dipping bath is reduced on the side where the steel pipe floats.
【請求項3】 前記浸漬槽の槽内断面深さを鋼管浮上部
側で小さくする請求項1記載の鋼管の焼入方法。
3. The method for quenching a steel pipe according to claim 1, wherein the depth of the internal cross-section of the dipping bath is reduced on the floating side of the steel pipe.
JP19459994A 1994-07-28 1994-07-28 Quenching of steel pipe Withdrawn JPH0841544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19459994A JPH0841544A (en) 1994-07-28 1994-07-28 Quenching of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19459994A JPH0841544A (en) 1994-07-28 1994-07-28 Quenching of steel pipe

Publications (1)

Publication Number Publication Date
JPH0841544A true JPH0841544A (en) 1996-02-13

Family

ID=16327234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19459994A Withdrawn JPH0841544A (en) 1994-07-28 1994-07-28 Quenching of steel pipe

Country Status (1)

Country Link
JP (1) JPH0841544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029268A1 (en) 2010-09-02 2012-03-08 住友金属工業株式会社 Steel pipe quenching method and steel pipe manufacturing method using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029268A1 (en) 2010-09-02 2012-03-08 住友金属工業株式会社 Steel pipe quenching method and steel pipe manufacturing method using same
US9267186B2 (en) 2010-09-02 2016-02-23 Nippon Steel & Sumitomo Metal Corporation Method for quenching steel pipe and method for producing steel pipe using the same

Similar Documents

Publication Publication Date Title
JP5071537B2 (en) Method of quenching steel pipe and method of manufacturing steel pipe using the same
US11085096B2 (en) Method for preventing cracking along the surface at the inner hole of a hollow shaft during horizontal water quenching
KR840001646A (en) Immersion treatment method of sheet metal component surface and apparatus therefor
JP2021151657A (en) Method of uniformizing wire-coil coat film
JPH0841544A (en) Quenching of steel pipe
JPH0790378A (en) Method for quenching steel pipe
US4052235A (en) Method of preventing oxidation during water quenching of steel strip
KR940018474A (en) Methods for the purification of baths for coating metal products with metal alloys and apparatus for carrying out the methods
US3993236A (en) Methods and apparatus for soldering
JPS5835574B2 (en) How to harden steel pipes
US2525603A (en) Method of making lead coated copper
JPS63186831A (en) Method for hardening inside surface of steel pipe
JP6007952B2 (en) Steel cooling method, steel cooling equipment, steel manufacturing method, and steel manufacturing equipment
JPS5887226A (en) Method and device for cooling steel pipe
JPS6050112A (en) Method for induction hardening member
JPH048487B2 (en)
JP6583327B2 (en) Steel pipe quenching apparatus and quenching method, and steel pipe manufacturing apparatus and manufacturing method
JP2808825B2 (en) Cladding treatment method for steel pipe inner surface
JP2020164922A (en) Hardening method
JPH0734130A (en) Method of quenching and thermal treatment equipment
JPS5976816A (en) Surface hardening method
JPH0225520A (en) Method for tempering cylindrical hollow body made of steel
JP3237510B2 (en) Spray nozzle suitable for preventing quench stain on tin-plated steel sheet and cooling device using this spray nozzle
KR820000983B1 (en) Method for welding protected metal parts
JPH08333632A (en) Method for introducing compressive residual stress to metal surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002