JPH08333632A - Method for introducing compressive residual stress to metal surface - Google Patents

Method for introducing compressive residual stress to metal surface

Info

Publication number
JPH08333632A
JPH08333632A JP13971695A JP13971695A JPH08333632A JP H08333632 A JPH08333632 A JP H08333632A JP 13971695 A JP13971695 A JP 13971695A JP 13971695 A JP13971695 A JP 13971695A JP H08333632 A JPH08333632 A JP H08333632A
Authority
JP
Japan
Prior art keywords
metal surface
residual stress
compressive residual
treated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13971695A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshida
和夫 吉田
Kenji Hirano
賢治 平野
Shinobu Sasaki
忍 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP13971695A priority Critical patent/JPH08333632A/en
Publication of JPH08333632A publication Critical patent/JPH08333632A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: To prevent the occurrence of defects, such as crack, by introducing compressive residual stress to a metal surface, to prevent the influence of the quality of the material to be treated, and to increase the applicability to the existing material to be treated. CONSTITUTION: The metal surface 1a of a material 1 to be treated is heated into spotted state. Then, a heating point P is successively shifted, and the metal surface 1a in a high-temp. state is cooled rapidly to apply a thermal stress exceeding the yield point. Subsequently, cooling is applied down to uniform temp. to establish compressive residual stress in the metal surface. Spot heating is performed by laser beam, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属表面に対する圧縮
残留応力の導入方法に係り、特に、スポット状の加熱と
その直後の急冷とによって、金属表面に圧縮残留応力を
導入するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for introducing a compressive residual stress to a metal surface, and more particularly to introducing a compressive residual stress to a metal surface by spot-like heating and immediately followed by rapid cooling.

【0002】[0002]

【従来技術】従来、ステンレス鋼の耐食性を向上させる
技術として、特開平1−199919号、特開平1−1
99920号、特開平1−199921号及び特開平6
−073556号が提案されており、これら技術にあっ
ては、いずれもステンレス鋼の表面にクラッド層をレー
ザ焼成することによって、耐食性を飛躍的に向上させる
ようにしている。
2. Description of the Related Art Conventionally, as a technique for improving the corrosion resistance of stainless steel, JP-A-1-199919 and JP-A-1-1-1.
99920, JP-A-1-199921 and JP-A-6-1999.
No. -073556 has been proposed, and in all of these techniques, the clad layer is laser-baked on the surface of stainless steel to dramatically improve the corrosion resistance.

【0003】[0003]

【発明が解決しようとする課題】しかし、クラッド層の
部分は、金属材料等を溶融状態にして付着形成するもの
であるために、溶融の金属材料等が固化する際に熱収縮
が伴って、表面に引張残留応力が付与された状態とな
り、クラックが発生した場合にクラックの成長が促進さ
れるものとなる。
However, since the clad layer portion is formed by depositing a metal material or the like in a molten state, thermal contraction occurs when the molten metal material or the like solidifies, A tensile residual stress is applied to the surface, and when a crack occurs, the growth of the crack is promoted.

【0004】本発明は、かかる事情に鑑みてなされたも
ので、以下の目的を達成するものである。 金属表面に圧縮残留応力を導入して、クラック等の欠
陥の発生を防止すること。 被処理材の材質による影響を受けにくく、応用範囲が
大きく実用性を高めること。 既存の被処理材に対しての適用性を高めること。
The present invention has been made in view of the above circumstances, and achieves the following objects. Introduce compressive residual stress to the metal surface to prevent the occurrence of defects such as cracks. It is not easily affected by the material of the material to be processed, has a wide range of applications, and is highly practical. Improve applicability to existing materials to be processed.

【0005】[0005]

【課題を解決するための手段】被処理材の金属表面を、
レーザビーム等の熱源によりスポット状に加熱して、加
熱点と被加熱箇所との間に大きな温度差を付与する。こ
の際の加熱点の回りは、シールドガスの介在による不活
性ガス雰囲気としておくことが望ましく、かつ加熱点
は、溶融状態とされる。加熱点を順次ずらすことによ
り、金属表面を連続して加熱するとともに、加熱点から
ずれた高温状態の金属表面に、速やかに冷媒を接触させ
て加熱された箇所を急冷し、加熱点とその近傍の金属表
面の近傍に降伏点を越えた熱応力を発生させる。加熱と
急冷とが行なわれた被処理材にあっては、引き続き冷却
を続行する等によって全体を均一温度とし、金属表面に
圧縮残留応力を発生させる。被処理材にあっては、水中
雰囲気で加熱及び冷却を行なうことが有効であり、ま
た、加熱を気体雰囲気中で行なう場合には、シャワー状
の冷媒を金属表面に噴出して急冷することが望ましい。
被処理材の耐食性が要求される場合には、加熱時に溶加
棒を使用して、クラッド層を形成する技術が付加され
る。
[Means for Solving the Problems]
A spot-like heat is applied by a heat source such as a laser beam to give a large temperature difference between the heating point and the heated portion. At this time, it is desirable to keep an atmosphere of an inert gas around the heating point by interposing a shield gas, and the heating point is in a molten state. By sequentially shifting the heating points, the metal surface is continuously heated, and the metal surface in a high temperature state deviated from the heating point is quickly brought into contact with the refrigerant to rapidly cool the heated point, and the heating point and its vicinity. A thermal stress exceeding the yield point is generated in the vicinity of the metal surface of. For the material to be treated that has been heated and rapidly cooled, the cooling is continued to bring the entire temperature to a uniform temperature, and compressive residual stress is generated on the metal surface. For the material to be treated, it is effective to heat and cool it in a water atmosphere, and in the case of heating it in a gas atmosphere, a shower-like refrigerant may be jetted onto the metal surface to quench it. desirable.
When the corrosion resistance of the material to be treated is required, a technique of forming a clad layer by using a filler rod during heating is added.

【0006】[0006]

【作用】レーザビーム等によって金属表面をスポット状
に加熱すると、加熱点が溶融状態に至るとともに、外径
が小さく比較的深い溶融池が形成され、溶融池とその回
りの被加熱箇所との間に大きな温度差が生じる。加熱点
の回りをシールドガスの介在雰囲気としておくと、加熱
点が周囲の環境から隔離され、加熱点と被加熱箇所との
間が非冷却状態となり、被処理材が水中雰囲気で処理さ
れる場合にあっても、温度差の付与が行なわれる。加熱
点を順次ずらして、加熱された箇所の金属表面を冷媒に
より急冷すると、加熱点と冷却箇所との間に発生する過
渡的な温度差に基づく熱応力が、降伏点を越えて塑性変
形を生じる。この過渡時にあって、表面部分は、引張り
応力が働くことにより塑性変形を生じようとするととも
に、その直下近傍の高温部分は、圧縮応力が働くことに
よる塑性変形を生じる。したがって、処理後の被処理材
にあっては、常温状態に戻る等の冷却時に全体が均一温
度となることにより、塑性変形を生じた部分に、過渡時
と逆の応力が作用して、金属表面に圧縮残留応力が付与
される。また、圧縮残留応力の導入処理を気体雰囲気中
で行なった場合にあっては、加熱点を直後にシャワー状
の冷媒で急冷することが行なわれ、その後、暫時冷却を
続行することにより、所望の導入処理がなされる。加熱
時に溶加棒を使用すると、クラッド層が同時に形成され
るとともに、クラッド層の表面に圧縮残留応力が導入さ
れる。
[Function] When a metal surface is heated in a spot shape by a laser beam or the like, the heating point reaches a molten state, and a molten pool having a small outer diameter and a relatively deep depth is formed. A large temperature difference occurs. When the surrounding atmosphere of the shield gas is set around the heating point, the heating point is isolated from the surrounding environment, the area between the heating point and the heated area becomes uncooled, and the material to be processed is processed in an underwater atmosphere. Even in this case, the temperature difference is provided. When the heating points are sequentially shifted and the metal surface at the heated point is rapidly cooled by the refrigerant, thermal stress due to the transient temperature difference between the heating point and the cooling point causes plastic deformation beyond the yield point. Occurs. At the time of this transition, tensile stress acts on the surface portion to cause plastic deformation, and at the high temperature portion immediately below the surface portion, plastic deformation occurs due to the action of compressive stress. Therefore, in the material to be treated after the treatment, the temperature becomes uniform during cooling such as returning to the normal temperature state, so that stress opposite to that at the time of transition acts on the portion where plastic deformation occurs, and Compressive residual stress is applied to the surface. Further, when the process of introducing the compressive residual stress is performed in a gas atmosphere, the heating point is immediately cooled immediately with a shower-like refrigerant, and then the desired temperature is reduced by continuing the temporary cooling. Installation processing is performed. When a filler rod is used during heating, a clad layer is simultaneously formed and a compressive residual stress is introduced into the surface of the clad layer.

【0007】[0007]

【実施例】以下、本発明に係る金属表面に対する圧縮残
留応力の導入方法の第1実施例について、図1ないし図
5に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a method for introducing a compressive residual stress to a metal surface according to the present invention will be described below with reference to FIGS.

【0008】図1は、前述の導入方法の第1実施例にお
ける実施状況を示すもので、被処理材(母材)1の金属
表面1aについて圧縮残留応力を導入する場合、レーザ
ヘッド2によるレーザビームLの照射、シールドガスカ
ーテン3による加熱点Pの隔離、溶加棒4の供給による
クラッド層5の形成、冷媒(水)Wによる加熱点Pの急
冷等を組み合わせて実施される。なお、図1にあって、
符号6は溶融池であり、レーザビームLの焦点が小さい
場合は、加熱径が小さな深い(いわゆるワイングラス状
の)金属の溶融部分が形成される。
FIG. 1 shows a state of implementation of the above-described introduction method in the first embodiment. When introducing a compressive residual stress to the metal surface 1a of the material (base material) 1 to be processed, the laser by the laser head 2 is used. The irradiation of the beam L, the isolation of the heating point P by the shield gas curtain 3, the formation of the cladding layer 5 by the supply of the filler rod 4, the rapid cooling of the heating point P by the refrigerant (water) W, etc. are performed in combination. In addition, in FIG.
Reference numeral 6 is a molten pool, and when the laser beam L has a small focal point, a deep (so-called wine glass-like) molten metal portion having a small heating diameter is formed.

【0009】前記被処理材1にあっては、例えばインコ
ネル材やステンレス鋼(SUS304材)が適用され、
この場合の材料の厚さは、例えば6mm以上で、レーザ
出力や加熱深さに対応して相対的に厚いもの(厚肉材)
が適用される。そして、被処理材1にあっては、金属表
面1aに水(冷媒)Wに接触させた状態の水没状態とさ
れるとともに、金属表面1aにレーザヘッド2が対向状
態に配される。
For the material 1 to be treated, for example, Inconel material or stainless steel (SUS304 material) is applied,
In this case, the material has a thickness of, for example, 6 mm or more, and is relatively thick in correspondence with the laser output and the heating depth (thick material).
Is applied. Then, in the material 1 to be treated, the metal surface 1a is brought into contact with the water (refrigerant) W, and the laser head 2 is placed opposite to the metal surface 1a.

【0010】レーザヘッド2にあっては、例えばレーザ
出力が3kW程度のYAGレーザが適用され、レーザヘ
ッド2と金属表面1aとの間には、レーザビームLの照
射範囲を取り囲むように、He等のシールドガスの供給
によるシールドガスカーテン3が形成される。
For the laser head 2, for example, a YAG laser having a laser output of about 3 kW is applied, and He or the like is provided between the laser head 2 and the metal surface 1a so as to surround the irradiation range of the laser beam L. The shielding gas curtain 3 is formed by supplying the shielding gas.

【0011】溶加棒4は、金属表面1aの耐食性の要求
に応じて、クラッド層5を形成するもので、例えばCr
合金等が選定される。
The filler rod 4 forms the clad layer 5 in accordance with the demand for corrosion resistance of the metal surface 1a.
Alloys, etc. are selected.

【0012】圧縮残留応力の導入方法の実施工程につい
て、図2ないし図5を参照して以下説明する。
The steps of implementing the method of introducing the compressive residual stress will be described below with reference to FIGS.

【0013】レーザ照射前の被処理材1にあっては、図
2に示すように、材料の板厚方向に温度(TM )が一定
となる温度分布になっている。
As shown in FIG. 2, the material 1 to be processed before laser irradiation has a temperature distribution in which the temperature (T M ) is constant in the plate thickness direction of the material.

【0014】被処理材1の金属表面1aをレーザビーム
Lの照射によりスポット状に加熱すると、金属表面1a
が溶融状態となること等により、図3(a)において右
方を高温として示すように、金属表面1aの温度が著し
く高くなるとともに、被処理材1の大部分にあっては、
当初の温度(TM )をほぼ維持する。図3(a)に示す
温度分布時には、被処理材1が、各所の温度に基づいて
図3(b)の左右方向の長さで示すように自由膨張する
ことになる。しかし、前述したように被処理材1が厚肉
材である場合には、金属表面1aの自由膨張を、当初の
温度(TM )を保持している被処理材1の大部分で抑制
するため、金属表面1aの溶融部分に図3(c)におい
て右方を引張応力として示すように圧縮応力が付与さ
れ、その直下近傍に引張応力が付与されることになり、
シールドガスカーテン3の形成範囲であって、溶融池6
の急速な温度低下が生じない範囲では、図3(c)の状
態が維持される。
When the metal surface 1a of the material 1 to be processed is heated in a spot shape by irradiation with the laser beam L, the metal surface 1a
3 is in a molten state, the temperature of the metal surface 1a becomes extremely high as shown by the high temperature on the right side in FIG.
The initial temperature (T M ) is almost maintained. At the time of the temperature distribution shown in FIG. 3A, the material 1 to be processed will freely expand based on the temperature of each place as shown by the length in the left-right direction of FIG. 3B. However, as described above, when the material 1 to be processed is a thick material, the free expansion of the metal surface 1a is suppressed by most of the material 1 to be processed that retains the initial temperature (T M ). Therefore, a compressive stress is applied to the molten portion of the metal surface 1a as shown by a tensile stress on the right side in FIG. 3 (c), and a tensile stress is applied immediately below the stress.
It is the formation range of the shield gas curtain 3 and the molten pool 6
In the range where the rapid temperature drop of No. does not occur, the state of FIG. 3C is maintained.

【0015】レーザヘッド2を、図1の矢印の方向に相
対移動させて、レーザビームLの照射による加熱点Pを
順次ずらしていくと、シールドガスカーテン3から外れ
た部分に冷媒(水)Wが接触して、高温状態(溶融状
態)の金属表面1aが急冷(急激に冷却)されることに
より、図4に示すような過渡的現象が発生する。つま
り、図4(a)に示すように、金属表面1aが急冷され
ることにより、被処理材1の内部の最高温度よりも温度
が低下した部分が発生する。図4(a)に示す温度分布
時には、被処理材1が、各所の温度に基づいて図4
(b)に示すように自由膨張することになるが、前述し
たように、当初の温度(TM )を維持している部分が自
由膨張を抑制することにより、図4(c)に示すよう
に、最高温度の近傍部分に圧縮応力が付与され、金属表
面1aではその影響を受けて引張応力が付与されるとと
もに、温度(TM )の部分に引張応力が付与される。
When the laser head 2 is relatively moved in the direction of the arrow in FIG. 1 to sequentially shift the heating points P due to the irradiation of the laser beam L, the refrigerant (water) W is placed on the portion outside the shield gas curtain 3. Contact with each other to rapidly cool (rapidly cool) the metal surface 1a in a high temperature state (molten state), so that a transient phenomenon as shown in FIG. 4 occurs. That is, as shown in FIG. 4A, when the metal surface 1a is rapidly cooled, a portion having a temperature lower than the maximum temperature inside the processing target material 1 is generated. At the time of the temperature distribution shown in FIG. 4A, the material 1 to be processed is based on the temperatures at various points in FIG.
As shown in FIG. 4 (c), free expansion occurs as shown in FIG. 4 (b), but as described above, the portion that maintains the initial temperature (T M ) suppresses free expansion, and as shown in FIG. 4 (c). In addition, a compressive stress is applied to a portion near the maximum temperature, a tensile stress is applied to the metal surface 1a under the influence of the compressive stress, and a tensile stress is applied to the temperature (T M ) portion.

【0016】図4(c)に示すような応力分布にあっ
て、圧縮及び引張応力が、それぞれの温度に対応する降
伏点を越えた熱応力であると、これらの応力に基づいて
塑性変形が発生する。
In the stress distribution as shown in FIG. 4 (c), if the compressive and tensile stresses are thermal stresses exceeding the yield points corresponding to the respective temperatures, plastic deformation is caused based on these stresses. appear.

【0017】次いで、図1に示すレーザヘッド2の移動
にしたがって、塑性変形を生じた部分が冷媒Wにより引
き続き冷却されて、被処理材1が常温状態に戻される
等、全体が均一温度となると、被処理材1の温度低下に
よる全体の収縮力に加えて、金属表面1aに引張り方向
の塑性変形が生じた部分が圧縮されることに基づき、図
5に示すように、金属表面1aに圧縮残留応力を導入し
た状態とすることができる。なお、クラッド層5を形成
した場合にあっても、線膨張係数が近似している条件下
では、その表面に圧縮残留応力を導入することができ
る。
Then, as the laser head 2 shown in FIG. 1 moves, the plastically deformed portion is continuously cooled by the coolant W and the workpiece 1 is returned to a normal temperature state. As shown in FIG. 5, the metal surface 1a is compressed based on the fact that the portion of the metal surface 1a that has undergone plastic deformation in the tensile direction is compressed in addition to the overall shrinkage force due to the temperature decrease of the material 1 to be processed. The residual stress can be introduced. Even when the clad layer 5 is formed, a compressive residual stress can be introduced to the surface thereof under the condition that the linear expansion coefficient is similar.

【0018】図6は、本発明に係る金属表面に対する圧
縮残留応力の導入方法の第2実施例を示すもので、被処
理材1が、例えば6mm未満の薄肉材である場合の実施
状況を示している。薄肉状の被処理材1をレーザビーム
Lで加熱した場合の温度分布は、図6(a)に示すよう
に、被処理材1の厚さ全域に及んでなだらかに形成さ
れ、レーザ照射直後に金属表面1aを冷却すると、金属
表面1aが急激に冷却されることにより、図6(b)に
示すように、冷却表面の温度が低く、被処理材1の内部
に温度の高い部分が残された温度分布となり、この図6
(b)の温度分布により被処理材1が、図6(c)に示
すように自由膨張することになるものの、相互に自由膨
張を抑制しようとすることにより応力が発生し、これら
の応力(例えば高温部分の膨張が抑制されることによっ
て生じる圧縮応力)が降伏点を越えると、全体が均一温
度となる冷却後には、被処理材1の内部で生じた圧縮方
向の塑性変形に基づき、図6(d)に示すように、金属
表面1aに圧縮残留応力を導入した状態とすることがで
きる。
FIG. 6 shows a second embodiment of the method for introducing a compressive residual stress to a metal surface according to the present invention, and shows an implementation situation when the material to be treated 1 is a thin material having a thickness of less than 6 mm, for example. ing. As shown in FIG. 6A, the temperature distribution when the thin material 1 to be processed is heated by the laser beam L is gently formed over the entire thickness of the material 1 to be processed, and immediately after laser irradiation. When the metal surface 1a is cooled, the metal surface 1a is rapidly cooled, so that the temperature of the cooling surface is low and a high temperature portion is left inside the workpiece 1 as shown in FIG. 6 (b). The resulting temperature distribution is shown in Fig. 6
Due to the temperature distribution of (b), the material 1 to be processed will expand freely as shown in FIG. 6 (c), but stress is generated by mutually suppressing free expansion, and these stresses ( For example, when the compressive stress generated by suppressing the expansion of the high temperature part) exceeds the yield point, after cooling, the whole is brought to a uniform temperature, based on the plastic deformation in the compression direction generated inside the material 1 to be treated, As shown in FIG. 6 (d), a compressive residual stress can be introduced into the metal surface 1a.

【0019】図7は、本発明に係る金属表面に対する圧
縮残留応力の導入方法の第3実施例を示すもので、被処
理材1が、例えば2mm以下の極めて薄肉材である場
合、あるいは熱伝導性の高い材料で形成されている場合
の実施状況を示している。被処理材1をレーザビームL
で加熱した場合の温度分布は、図7(a)に示すように
変化の少ないものとなるが、レーザ照射直後における金
属表面1aの急激な冷却により、図7(b)に示すよう
に、冷却表面の温度が低く被処理材1のその他の部分の
温度が高くなる温度分布となり、この図7(b)の温度
分布により被処理材1が、図7(c)に示すように自由
膨張しようとして、自由膨張を抑制しようとする応力の
発生により、これらの応力が降伏点を越えた際に、図7
(d)に示すように、金属表面1aに圧縮残留応力を導
入した状態とするものである。
FIG. 7 shows a third embodiment of the method for introducing a compressive residual stress to a metal surface according to the present invention, in which the material 1 to be treated is an extremely thin material having a thickness of, for example, 2 mm or less, or heat conduction. It shows the implementation status when it is formed of a highly flexible material. Laser beam L for the workpiece 1
The temperature distribution in the case of being heated by means of a small change as shown in FIG. 7 (a), but the rapid cooling of the metal surface 1a immediately after the laser irradiation causes the cooling as shown in FIG. 7 (b). The temperature distribution is such that the temperature of the surface is low and the temperature of the other parts of the material to be processed 1 is high, and the material to be processed 1 is allowed to expand freely as shown in FIG. 7 (c) due to the temperature distribution of FIG. 7 (b). As a result, when these stresses exceed the yield point due to the generation of stresses that suppress free expansion,
As shown in (d), the metal surface 1a is brought into a state in which a compressive residual stress is introduced.

【0020】一方、図8は、本発明に係る金属表面に対
する圧縮残留応力の導入方法の第4実施例を示すもの
で、図1例におけるレーザヘッド2の回りの雰囲気を冷
媒(水)Wとする方法に代えて、レーザヘッド2の回り
を気体雰囲気中としておいて、給水系7からの給水によ
り、スプレーノズル8からシャワー状の冷媒(水)Wを
金属表面1aに噴出して急冷するものである。なお、図
8にあって、符号9はレーザ光発生手段、10はシール
ドガス供給系、11はワイヤ供給系である。
On the other hand, FIG. 8 shows a fourth embodiment of the method of introducing the compressive residual stress to the metal surface according to the present invention, in which the atmosphere around the laser head 2 in the example of FIG. In place of the method described above, the surroundings of the laser head 2 are kept in a gas atmosphere, and the shower-like refrigerant (water) W is jetted from the spray nozzle 8 to the metal surface 1a by water supply from the water supply system 7 to rapidly cool it. Is. In FIG. 8, reference numeral 9 is a laser beam generating means, 10 is a shield gas supply system, and 11 is a wire supply system.

【0021】この場合には、シールドガス供給系10か
らシールドガスを供給して、レーザヘッド2の先端をシ
ールドガス雰囲気としておき、レーザ光発生手段9で発
生させたレーザビームLで金属表面1aを照射するとと
もに、加熱点Pを図8の矢印で示すようにずらしなが
ら、給水系7からの給水により、スプレーノズル8から
冷媒(水)Wをシャワー状に噴出させて加熱点Pを急冷
するものであり、スプレーノズル8からの噴出冷媒
(水)Wによる冷却作用が十分である場合や、被処理材
1が薄肉状である場合に適用される。
In this case, a shield gas is supplied from the shield gas supply system 10 to leave the tip of the laser head 2 in a shield gas atmosphere, and the metal surface 1a is irradiated with the laser beam L generated by the laser light generating means 9. While irradiating, the heating point P is shifted as shown by the arrow in FIG. 8, while the water is supplied from the water supply system 7, the refrigerant (water) W is ejected in a shower shape from the spray nozzle 8 to rapidly cool the heating point P. It is applied when the cooling action by the refrigerant (water) W ejected from the spray nozzle 8 is sufficient or when the material 1 to be processed is thin.

【0022】なお、図8の第4実施例にあっても、被処
理材1の耐食性が要求される場合には、加熱時にワイヤ
供給系11から加熱点Pに溶加棒4を供給して、クラッ
ド層5を形成する技術が付加される。
Even in the fourth embodiment of FIG. 8, when the corrosion resistance of the material 1 to be treated is required, the filler rod 4 is supplied from the wire supply system 11 to the heating point P during heating. , A technique for forming the cladding layer 5 is added.

【0023】[0023]

【発明の効果】本発明に係る金属表面に対する圧縮残留
応力の導入方法にあっては、以下の効果を奏する。 (1) 被処理材の表面をレーザビーム等により加熱し
て溶融状態とするとともに、加熱点をずらしながら冷媒
に接触させて急冷することにより、金属表面に圧縮残留
応力を導入して、クラック等の欠陥の発生を防止するこ
とができる。 (2) 被処理材の表面をスポット状に加熱した際に生
じる温度差及び熱膨張差を利用して圧縮残留応力を導入
するものであるから、被処理材の厚さや熱伝導性の良否
による影響を受けにくく、応用範囲を拡大して実用性を
高めることができる。 (3) 被処理材の加熱時に加熱点の回りをガス雰囲気
とし、かつ、水等の冷媒に接触させるものであるから、
使用する設備や機器が比較的単純で応用が容易であり、
既存の被処理材の補修に対しても適用することができ
る。 (4) 加熱点に溶加棒を供給することによって、クラ
ッド層を形成することができるのに加えて、クラッド層
の表面に圧縮残留応力を簡単に導入することができる。
The method of introducing the compressive residual stress to the metal surface according to the present invention has the following effects. (1) The surface of the material to be treated is heated by a laser beam or the like to be in a molten state, and is brought into contact with a coolant while shifting the heating point to quench the material, thereby introducing compressive residual stress to the metal surface and causing cracks or the like. It is possible to prevent the occurrence of defects. (2) Since the compressive residual stress is introduced by utilizing the temperature difference and the thermal expansion difference generated when the surface of the material to be processed is heated in a spot shape, it depends on the thickness and thermal conductivity of the material to be processed. It is not easily affected, and the range of applications can be expanded to enhance its practicality. (3) When the material to be treated is heated, a gas atmosphere is provided around the heating point and is brought into contact with a refrigerant such as water.
The equipment and equipment used is relatively simple and easy to apply,
It can also be applied to the repair of existing materials to be processed. (4) By supplying the filler rod to the heating point, the cladding layer can be formed, and the compressive residual stress can be easily introduced to the surface of the cladding layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属表面に対する圧縮残留応力の
導入方法の第1実施例の実施状況を示す正断面図であ
る。
FIG. 1 is a front sectional view showing an implementation state of a first embodiment of a method for introducing a compressive residual stress to a metal surface according to the present invention.

【図2】図1における被処理材の加熱前の温度分布図で
ある。
FIG. 2 is a temperature distribution chart of the material to be treated in FIG. 1 before heating.

【図3】図1における被処理材の加熱時の状況を示すも
ので、(a)は温度分布図、(b)は熱膨張のモデル
図、(c)は熱応力分布図である。
3A and 3B show a situation when the material to be treated in FIG. 1 is heated, wherein FIG. 3A is a temperature distribution diagram, FIG. 3B is a thermal expansion model diagram, and FIG. 3C is a thermal stress distribution diagram.

【図4】図1における被処理材の加熱直後に水冷した場
合の状況を示すもので、(a)は温度分布図、(b)は
熱膨張のモデル図、(c)は熱応力分布図である。
4A and 4B show a situation in which the material to be treated in FIG. 1 is water-cooled immediately after heating, (a) is a temperature distribution chart, (b) is a thermal expansion model chart, and (c) is a thermal stress distribution chart. Is.

【図5】図1における被処理材の処理後の状況を示す残
留応力分布図である。
5 is a residual stress distribution diagram showing a situation after the treatment of the material to be treated in FIG. 1. FIG.

【図6】本発明に係る金属表面に対する圧縮残留応力の
導入方法の第2実施例の実施状況を示すもので、(a)
は加熱時の温度分布図、(b)は水冷時の温度分布図、
(c)は水冷時の熱膨張のモデル図、(d)は処理後の
状況を示す残留応力分布図である。
FIG. 6 shows an implementation state of a second embodiment of the method for introducing a compressive residual stress to a metal surface according to the present invention.
Is the temperature distribution diagram during heating, (b) is the temperature distribution diagram during water cooling,
(C) is a model diagram of thermal expansion during water cooling, and (d) is a residual stress distribution diagram showing the state after treatment.

【図7】本発明に係る金属表面に対する圧縮残留応力の
導入方法の第3実施例の実施状況を示すもので、(a)
は加熱時の温度分布図、(b)は水冷時の温度分布図、
(c)は水冷時の熱膨張のモデル図、(d)は処理後の
状況を示す残留応力分布図である。
FIG. 7 shows an implementation status of a third embodiment of the method for introducing a compressive residual stress to a metal surface according to the present invention.
Is the temperature distribution diagram during heating, (b) is the temperature distribution diagram during water cooling,
(C) is a model diagram of thermal expansion during water cooling, and (d) is a residual stress distribution diagram showing the state after treatment.

【図8】本発明に係る金属表面に対する圧縮残留応力の
導入方法の第4実施例を示すブロック図を併記した正断
面図である。
FIG. 8 is a front sectional view with a block diagram showing the fourth embodiment of the method for introducing the compressive residual stress to the metal surface according to the present invention.

【符号の説明】[Explanation of symbols]

1 被処理材 1a 金属表面 2 レーザヘッド 3 シールドガスカーテン 4 溶加棒 5 クラッド層 6 溶融池 7 給水系 8 スプレーノズル 9 レーザ光発生手段 10 シールドガス供給系 11 ワイヤ供給系 L レーザビーム P 加熱点 W 冷媒(水) 1 material to be treated 1a metal surface 2 laser head 3 shield gas curtain 4 filler rod 5 clad layer 6 molten pool 7 water supply system 8 spray nozzle 9 laser light generating means 10 shield gas supply system 11 wire supply system L laser beam P heating point W Refrigerant (water)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 2/00 C23C 2/00 (72)発明者 佐々木 忍 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社横浜エンジニアリ ングセンター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C23C 2/00 C23C 2/00 (72) Inventor Shinobu Sasaki 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Address Ishikawajima Harima Heavy Industries Co., Ltd. Yokohama Engineering Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理材(1)の金属表面(1a)をス
ポット状に加熱する工程と、金属表面における加熱点
(P)を順次ずらす工程と、加熱点からずれた高温状態
の金属表面に冷媒(W)を接触させて急冷し金属表面の
近傍に降伏点を越えた熱応力を付与する工程と、被処理
材を均一温度まで冷却して金属表面に圧縮残留応力を発
生させる工程とを有することを特徴とする金属表面に対
する圧縮残留応力の導入方法。
1. A step of heating a metal surface (1a) of a material (1) to be treated in a spot shape, a step of sequentially shifting a heating point (P) on the metal surface, and a metal surface in a high temperature state deviated from the heating point. A step of bringing the refrigerant (W) into contact with the sample and quenching it to give a thermal stress in the vicinity of the metal surface above the yield point, and a step of cooling the material to be treated to a uniform temperature to generate a compressive residual stress on the metal surface. A method for introducing a compressive residual stress to a metal surface, which comprises:
【請求項2】 被処理材(1)の金属表面(1a)を、
レーザビームによりスポット状に加熱することを特徴と
する請求項1記載の金属表面に対する圧縮残留応力の導
入方法。
2. A metal surface (1a) of a material (1) to be treated,
The method of introducing a compressive residual stress to a metal surface according to claim 1, wherein heating is performed in a spot shape by a laser beam.
【請求項3】 加熱点(P)の回りに、シールドガスを
介在させるとともに、該シールドガス雰囲気の近傍に冷
媒(W)を接触させて冷却を行なうことを特徴とする請
求項1または2記載の金属表面に対する圧縮残留応力の
導入方法。
3. The cooling is performed by interposing a shield gas around the heating point (P) and bringing a refrigerant (W) into contact with the vicinity of the shield gas atmosphere for cooling. Method for Introducing Compressive Residual Stress on Metal Surface of Steel.
【請求項4】 被処理材(1)の加熱を気体雰囲気中で
行なうとともに、シャワー状の冷媒(W)を金属表面
(1a)に噴出して冷却を行なうことを特徴とする請求
項1、2または3記載の金属表面に対する圧縮残留応力
の導入方法。
4. The material to be treated (1) is heated in a gas atmosphere, and a shower-like coolant (W) is jetted onto the metal surface (1a) to cool it. 2. The method for introducing a compressive residual stress to a metal surface according to 2 or 3.
JP13971695A 1995-06-06 1995-06-06 Method for introducing compressive residual stress to metal surface Withdrawn JPH08333632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13971695A JPH08333632A (en) 1995-06-06 1995-06-06 Method for introducing compressive residual stress to metal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13971695A JPH08333632A (en) 1995-06-06 1995-06-06 Method for introducing compressive residual stress to metal surface

Publications (1)

Publication Number Publication Date
JPH08333632A true JPH08333632A (en) 1996-12-17

Family

ID=15251757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13971695A Withdrawn JPH08333632A (en) 1995-06-06 1995-06-06 Method for introducing compressive residual stress to metal surface

Country Status (1)

Country Link
JP (1) JPH08333632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893192A1 (en) * 1997-07-25 1999-01-27 The Timken Company Process for imparting residual compressive stresses to steel machine components
WO2004033144A1 (en) * 2002-10-08 2004-04-22 Nippon Steel Corporation Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0893192A1 (en) * 1997-07-25 1999-01-27 The Timken Company Process for imparting residual compressive stresses to steel machine components
WO2004033144A1 (en) * 2002-10-08 2004-04-22 Nippon Steel Corporation Boxing joint with excellent fatigue strength, method of manufacturing the boxing joint, and welded structure
US7695825B2 (en) 2002-10-08 2010-04-13 Nippon Steel Corporation Circularly welded joint featuring excellent fatigue strength, method of producing circularly welded joint and welded structure

Similar Documents

Publication Publication Date Title
Shi et al. A study of microstructure and mechanical properties of aluminum alloy using laser cleaning
US4645547A (en) Loss ferromagnetic materials and methods of improvement
US4456812A (en) Laser treatment of electrical steel
US11590609B2 (en) Laser shock peening apparatuses and methods
EP0102732A2 (en) Laser treatment of electrical steel and optical scanning assembly thereof
US5868878A (en) Heat treatment by plasma electron heating and solid/gas jet cooling
EP0317830B1 (en) A method of bending metal objects
US6482271B2 (en) Grain-oriented electrical steel sheet excellent in magnetic properties
JP3934679B2 (en) Cutting die and method for manufacturing the same
RU2105084C1 (en) Metal oxidation protection method
US6203633B1 (en) Laser peening at elevated temperatures
JPH08333632A (en) Method for introducing compressive residual stress to metal surface
JPH11226757A (en) Friction welding method
CA1335371C (en) Method for treating electrical steel by electroetching and electrical steel having permanent domain refinement
JPH0583615B2 (en)
JPH0741841A (en) Method for strengthening steel products
Dahotre et al. Laser surface melting of W2 tool steel: effects of prior heat treatment
Peyre et al. Laser shock processing of materials: characterization and application of the process
Peyre et al. Laser shock processing with small impacts
Steen Laser surface treatment: an overview
Arnoult et al. HILASE center: development of new-generation lasers for laser shock peening
JPS5852428A (en) Heat treatment for improving stress of shaft
JPH06335792A (en) Method for repairing cracking
JPS6225065B2 (en)
KR102608713B1 (en) Heat treatment simulation test apparatus and heat treatment simulation test method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806