JPH083976B2 - Heater for electron tube and impregnated cathode assembly including the same - Google Patents

Heater for electron tube and impregnated cathode assembly including the same

Info

Publication number
JPH083976B2
JPH083976B2 JP9566789A JP9566789A JPH083976B2 JP H083976 B2 JPH083976 B2 JP H083976B2 JP 9566789 A JP9566789 A JP 9566789A JP 9566789 A JP9566789 A JP 9566789A JP H083976 B2 JPH083976 B2 JP H083976B2
Authority
JP
Japan
Prior art keywords
heater
particle size
particles
cathode
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9566789A
Other languages
Japanese (ja)
Other versions
JPH02276128A (en
Inventor
大輔 宮崎
毅 好井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9566789A priority Critical patent/JPH083976B2/en
Publication of JPH02276128A publication Critical patent/JPH02276128A/en
Publication of JPH083976B2 publication Critical patent/JPH083976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば陰極線管や撮像管などに使用して
好適な電子管用ヒータ及びそれを備えた含浸型陰極構体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a heater for an electron tube suitable for use in, for example, a cathode ray tube or an image pickup tube, and an impregnated-type cathode assembly including the heater.

(従来の技術) 傍熱型陰極用ヒータは、一般にタングステン或いはレ
ニウム−タングステンからなるコイル状に巻回された金
属線の表面に、粒径1.5μmのアルミナ粒子を電気泳動
法、吹付け法等で被覆後、更にアルミナ粒子とタングス
テン粒子からなるダーク層を被覆し、焼成することで形
成される。
(Prior Art) A heater for an indirectly heated cathode is generally composed of a metal wire wound in a coil shape made of tungsten or rhenium-tungsten on the surface of which alumina particles having a particle diameter of 1.5 μm are subjected to electrophoresis, spraying, etc. After being coated with, a dark layer composed of alumina particles and tungsten particles is further coated and baked.

(発明が解決しようとする課題) ところが、上記のようにして形成された従来のヒータ
は、焼成時に変形が生じ易く、又、アルミナ層にクラッ
クが生じ易い。これは第10図(b)に示すように、金属
線とダーク層との距離が近くなっており、凹凸を有する
アルミナ層は強度が弱く、クラックの原因となる。特
に、含浸型陰極用として用いる場合には、ヒータ温度が
従来より数百度高いため、変形或いはクラックに起因し
てヒータ・カソード間の絶縁不良が生じ、ヒータ断線が
起こるという問題があった。
(Problems to be Solved by the Invention) However, in the conventional heater formed as described above, deformation is likely to occur during firing, and cracks are likely to occur in the alumina layer. As shown in FIG. 10 (b), this is because the distance between the metal wire and the dark layer is short, and the alumina layer having irregularities has a weak strength and causes cracks. In particular, when it is used for an impregnated cathode, the heater temperature is several hundreds higher than in the prior art, so that there is a problem in that insulation failure between the heater and the cathode occurs due to deformation or cracks, and heater breakage occurs.

この発明は、変形やクラックが生じ難く、絶縁耐圧が
優れたヒータ及びそれを備えた含浸型陰極構体を提供す
ることを目的とする。
An object of the present invention is to provide a heater that is not easily deformed or cracked and has an excellent withstand voltage, and an impregnated-type cathode assembly including the heater.

[発明の構成] (課題を解決するための手段) この発明は、ダブルヘリカルに巻回された金属線と、
この金属線に被覆された絶縁アルミナ層と、この絶縁ア
ルミナ層に被覆されたダーク層とを有する電子管用ヒー
タにおいて、絶縁アルミナ層の混合アルミナ粒子は、9
9.8%以上の純度で平均粒径が7乃至12μmの範囲であ
り且つ粒度分布は粒径15μm以上の粒子及び粒径6μm
以下の粒子がそれぞれ10乃至30重量%の範囲であって残
部が6μmを超え15μm未満の範囲の粒子である電子管
用ヒータである。
[Structure of the Invention] (Means for Solving the Problems) The present invention relates to a metal wire wound in a double helix,
In an electron tube heater having an insulating alumina layer coated with this metal wire and a dark layer coated with this insulating alumina layer, mixed alumina particles of the insulating alumina layer are 9
The purity is 9.8% or more, the average particle size is in the range of 7 to 12 μm, and the particle size distribution is 15 μm or more in particle size and 6 μm in particle size.
The heater for an electron tube has the following particles in the range of 10 to 30% by weight, and the balance being particles in the range of more than 6 μm and less than 15 μm.

又、この発明は、陰極基体と、この陰極基体を支持す
る陰極スリーブと、この陰極スリーブ内に内装されるこ
の発明のヒータを備えてなる含浸型陰極構体である。
Further, the present invention is an impregnated-type cathode assembly comprising a cathode base, a cathode sleeve supporting the cathode base, and the heater of the present invention installed in the cathode sleeve.

(作用) この発明によるヒータを用いれば、ヒータ・カソード
間の絶縁耐圧性が著しく向上し、含浸型陰極の動作温度
が高いことに起因する耐圧不良を未然に防止することが
出来る。
(Operation) By using the heater according to the present invention, the withstand voltage between the heater and the cathode is significantly improved, and the withstand voltage defect due to the high operating temperature of the impregnated cathode can be prevented.

(実施例) 以下、図面を参照して、この発明の一実施例を詳細に
説明する。
Embodiment An embodiment of the present invention will be described in detail below with reference to the drawings.

この発明のヒータ1は第1図に示すように構成され、
ダブルヘリカルに巻回された芯線となる金属線2と、こ
の金属線2に被覆された絶縁アルミナ層3と、この絶縁
アルミナ層3に被覆されたダーク層4とからなってい
る。
The heater 1 of the present invention is configured as shown in FIG.
A metal wire 2 serving as a core wire wound in a double helix, an insulating alumina layer 3 covered with the metal wire 2, and a dark layer 4 covered with the insulating alumina layer 3.

この場合、絶縁アルミナ層3は、アルミナ粒子が99.8
%以上の純度で平均粒径が7〜12μmであり、且つアル
ミナ粒子の粒度分布が粒径15μm以上の粒子及び粒径6
μm以下の粒子をそれぞれ10〜30重量%含み、残部が6
μmを超え15μm未満である。又、このような絶縁アル
ミナ層3の厚さは、70〜150μmの範囲に設定されてい
る。そして、絶縁アルミナ層3の充填密度は、50〜70%
の範囲に設定されている。尚、このアルミナ粒子は、溶
融アルミナを粉砕して作られている。
In this case, the insulating alumina layer 3 contains 99.8 alumina particles.
% Or more, the average particle size is 7 to 12 μm, and the particle size distribution of alumina particles is 15 μm or more.
10 to 30% by weight of particles each having a size of less than μm, and the balance of 6
It is more than μm and less than 15 μm. The thickness of such an insulating alumina layer 3 is set in the range of 70 to 150 μm. The packing density of the insulating alumina layer 3 is 50 to 70%.
Is set in the range. The alumina particles are made by crushing fused alumina.

又、上記のダーク層4は、タングステンとアルミナの
混合粒子からなっている。
The dark layer 4 is composed of mixed particles of tungsten and alumina.

次に、上記の数値に設定した理由について、述べるこ
とにする。
Next, the reason why the above numerical values are set will be described.

使用するアルミナ粒子の純度について、99.8%以上
が必要な理由は、第3図に示す通りである。即ち、純度
以外の因子をこの発明の実施例と同様にして純度と耐圧
不良発生率との関係を調べた結果、99.8%以上で耐圧不
良発生率が0%となった。
The reason why the purity of the alumina particles used is required to be 99.8% or more is as shown in FIG. That is, as a result of investigating the relationship between the purity and the withstand voltage failure occurrence rate with respect to factors other than the purity in the same manner as the embodiment of the present invention, the withstand voltage failure occurrence rate was 0% at 99.8% or more.

尚、耐圧不良発生率は、各々の純度でコーティングし
たヒータを各50個測定して求めた。耐圧不良試験は、ヒ
ータ温度について、定格6.3Vに対し7Vで実施し、ヒータ
・陰極間の電圧はDC100Vから1分間に100V毎ずつ高めて
実施し、1000V以下で絶縁破壊したものを不良とした。
The withstand voltage failure rate was obtained by measuring 50 heaters coated with each purity. The withstand voltage defect test was conducted at a heater temperature of 7V against a rated voltage of 6.3V, and the voltage between the heater and the cathode was increased by 100V per 100V for 1 minute, and insulation breakdown at 1000V or less was regarded as a defect. .

平均粒径と耐圧の関係について、実験により求め
た。条件はヒータ温度について、定格6.3Vに対し7Vで実
施し、ヒータ・カソード間の電圧はDC100Vから1分間に
100V毎ずつ高めて実施した。このときの充填率、コーテ
ィング厚は、同一条件とした。その結果を、第4図に示
す。この結果より、平均粒径は7〜12μmが絶縁耐圧に
優れていることが判明した。12μm以上では、焼成強度
不足、7μm以下では変形、クラックに起因して絶縁耐
圧が劣化することが判明した(第5図、第6図において
充填率が50〜70%の時、粉落ち発生率は0%で、クラッ
ク発生率は低い値を示している)。
The relationship between the average particle size and the pressure resistance was experimentally determined. The condition is that the heater temperature is 7V against the rated 6.3V, and the voltage between the heater and the cathode is 100VDC for 1 minute.
It carried out by raising every 100V. The filling rate and coating thickness at this time were the same. The results are shown in FIG. From this result, it was found that the average particle size of 7 to 12 μm was excellent in withstand voltage. It was found that the insulation breakdown voltage deteriorates due to insufficient firing strength at 12 μm or more and deformation and cracks at 7 μm or less (in FIGS. 5 and 6, when the filling rate is 50 to 70%, the powder drop occurrence rate Is 0% and the crack occurrence rate is low).

この7〜12μmの平均粒径を用いて、充填率を50〜70
%にするには第7図に示すように、6μm以下の粒子と
15μm以上の粒子を各々10〜30重量%含んでいることが
必要である(第7図は、平均粒径を9.0μmに保って6
μm以下の粒子と15μm以上の粒子を各々同じ重量%添
加した時の充填率を示す実験データ)。
Using the average particle size of 7 to 12 μm, the filling rate is 50 to 70
As shown in FIG. 7, in order to set the
It is necessary to contain 10 to 30% by weight of particles each having a size of 15 μm or more (Fig. 7 shows that the average particle size should be kept at 9.0 μm.
(Experimental data showing the filling rate when particles of not more than μm and particles of not less than 15 μm were added in the same weight%).

コーティングの厚さに関しては、第8図にコーティ
ング厚と絶縁耐圧の関係を示す。この第8図から明らか
なように、70μm以下では急激に耐圧が劣化する。そし
て、70μm以上では、ほぼ耐圧値は比例することが明ら
かである。しかし、コーティング厚は陰極径の大きさか
ら制約を受け、且つコーティング厚が厚くなればなる
程、陰極温度の上昇スピードが遅くなる。例えば、出画
時間(ヒータをオンしてから出画するのに十分なエミッ
ションが出る時間を言い、温度上昇が速いほど出画時間
は短い)とコーティング厚との関係は、120μmで5.7
秒、150μmで7.0秒、200μmで10.0秒である。
Regarding the thickness of the coating, Fig. 8 shows the relationship between the coating thickness and the withstand voltage. As is clear from FIG. 8, the breakdown voltage sharply deteriorates below 70 μm. And, it is clear that the breakdown voltage values are almost proportional when the thickness is 70 μm or more. However, the coating thickness is limited by the size of the cathode diameter, and the thicker the coating thickness, the slower the cathode temperature rise speed. For example, the relationship between the image output time (the time when the heater is turned on and the emission that is sufficient to output an image, where the faster the temperature rises, the shorter the image output time) and the coating thickness is 5.7.
Seconds, 150 μm is 7.0 seconds, and 200 μm is 10.0 seconds.

このことを考慮すると、コーティング厚は70〜150μ
mの範囲が妥当である。
Considering this, the coating thickness is 70-150μ
The range of m is appropriate.

充填密度に関しては、粒度調合により充填密度を変
化させることが出来る。充填密度とクラック発生率(変
形発生率)、絶縁破壊電圧、コーティング粉落ち発生率
の関係をそれぞれ第5図、第9図、第6図に示す。この
結果より、充填率50〜70%がクラック発生率、コーティ
ング剥がれ発生率が少なく、その結果、絶縁破壊電圧が
高くなっていることが明らかである。
Regarding the packing density, the packing density can be changed by adjusting the particle size. The relationship between the packing density, the crack occurrence rate (deformation rate), the dielectric breakdown voltage, and the coating powder falling occurrence rate are shown in FIGS. 5, 9, and 6, respectively. From this result, it is clear that the cracking rate and the coating peeling rate are low at the filling rate of 50 to 70%, and as a result, the dielectric breakdown voltage is high.

又、焼成時の変形の発生は、クラック発生率とほぼ一
致することが明らかとなった。
Further, it was revealed that the occurrence of deformation during firing almost coincides with the crack occurrence rate.

アルミナ粒子の製造方法には、溶融アルミナを粉砕
する以外に、バイヤー法、アンモニウム明ばんの熱分解
法(水酸化アルミを硫酸と反応させ、硫酸アルミにした
後、硫安と反応させてアンモニウム明ばんを作り焼成す
る方法)等があるが、焼成時の粒子の収縮を考慮する
と、粒子の収縮がない溶融アルミナを粉砕方法で作った
粉末を用いるのが、クラック発生即ち変形がなく、耐圧
も優れた結果が得られる。
In addition to crushing fused alumina, the alumina particles are manufactured by a Bayer method, a thermal decomposition method of ammonium alum (reacting aluminum hydroxide with sulfuric acid to form aluminum sulfate, and then reacting with ammonium sulfate to react with ammonium alum. However, considering the shrinkage of particles during firing, it is preferable to use a powder made of pulverized fused alumina that has no particle shrinkage, which does not cause cracking or deformation, and has excellent pressure resistance. The result is obtained.

さて次に、上記のような絶縁アルミナ層3の製造方法
について述べておく。
Next, a method for manufacturing the insulating alumina layer 3 as described above will be described.

平均粒径9.0μm、30μm以上が2.3重量%、30〜15μ
mが15.3重量%、15〜6μmが57.4重量%、6μm以下
が25.0重量%の粒度分布を有する溶融アルミナの粉砕粒
で、純度99.85%以上を有するものを用いた。
Average particle size 9.0μm, 2.3μ% over 30μm, 30 ~ 15μ
Pulverized particles of fused alumina having a particle size distribution in which m is 15.3% by weight, 15 to 6 μm is 57.4% by weight, and 6 μm or less is 25.0% by weight and has a purity of 99.85% or more.

このアルミナ粒子の粒度分布は、吹付け法により被覆
した場合、55%の密度になるように調整してある。この
アルミナ粒子を酢酸エステルに2重量%のニトロセルロ
ースを添加した溶媒重量比で1:1.4(=アルミナ:溶
媒)に混合し、この混合物を吹付け法により片厚100μ
mに被覆した。
The particle size distribution of the alumina particles is adjusted so as to have a density of 55% when coated by the spraying method. The alumina particles were mixed at a solvent weight ratio of 1% (= alumina: solvent) in which 2% by weight of nitrocellulose was added to acetate, and the mixture was sprayed to give a thickness of 100 μ.
m coated.

吹付けは均一な厚み(肉厚が偏らないように)に付着
するよう、吹付けノズルを様々な角度に取付けてある。
The spray nozzles are attached at various angles so that the spray adheres to a uniform thickness (without uneven thickness).

この後、更に平均粒径1μmのタングステンと平均粒
径2μmのアルミナ粉とバインダーが重量比で1:4:5に
混合してある混合物を吹付け法によりダーク層4に片厚
20μm被覆する。
After this, a mixture of tungsten having an average particle size of 1 μm, alumina powder having an average particle size of 2 μm and a binder in a weight ratio of 1: 4: 5 is applied to the dark layer 4 with a single thickness by a spraying method.
20 μm coating.

このダーク層4は、ヒータ1の熱を効率良く陰極へ供
給するのに効果がある。
The dark layer 4 is effective in efficiently supplying the heat of the heater 1 to the cathode.

このように、アルミナを塗布したヒータを乾燥した
後、約1700℃の水素中で焼結させた。
In this way, the alumina-coated heater was dried and then sintered in hydrogen at about 1700 ° C.

但し、焼結時間は、従来例の場合の2倍とした。 However, the sintering time was twice as long as that in the conventional example.

尚、上記のようなこの発明のヒータ1において、絶縁
アルミナ層のアルミナ粒子中の不純物を構成する主な元
素はNaであり、当然Na+イオンとして、アルミナ粒子中
を動くので、Naは少ない方が絶縁耐圧は向上する。
In the heater 1 of the present invention as described above, the main element that constitutes impurities in the alumina particles of the insulating alumina layer is Na, which naturally moves in the alumina particles as Na + ions. However, the dielectric strength is improved.

又、平均粒径・粒度分布・粒子の姿様の項目を、既述
のようなアルミナ粒子を用いることにより、焼成時の強
度は十分な物が得られ、且つ焼成時の変形は少ない。即
ち、平均粒径を大きく且つ溶融アルミナ粉砕品を用いる
ことで、焼成時の収縮を抑えることが出来、その結果、
ヒータ変形を防止することが出来る。
Further, by using the alumina particles as described above for the items of average particle size, particle size distribution, and appearance of particles, it is possible to obtain a product having sufficient strength during firing and little deformation during firing. That is, by using a fused alumina crushed product having a large average particle size, it is possible to suppress shrinkage during firing, and as a result,
The deformation of the heater can be prevented.

更に、粒度分布を幅広く、即ち、充填率が50〜70%の
充填になるような分布粒子を用いることで、焼成時の絶
縁アルミナ層強度を十分な物に出来る。
Furthermore, by using a distribution particle having a wide particle size distribution, that is, a packing rate of 50 to 70%, a sufficient strength of the insulating alumina layer at the time of firing can be obtained.

尚、完成品は、第10図(a)に示すように、金属線と
ダーク層との距離が離れており、従来例である同図
(b)に比べ凹凸がない。
In the finished product, as shown in FIG. 10 (a), the metal wire and the dark layer are separated from each other, and there is no unevenness as compared with the conventional example shown in FIG. 10 (b).

又、この実施例では、吹付け法によりアルミナ粒子を
塗布したが、これに限らず電着法でも行なえる。
Further, in this embodiment, the alumina particles were applied by the spraying method, but not limited to this, the electrodeposition method may be used.

さて最後に、上記のような電子管用ヒータ1を備えた
含浸型陰極構体の一実施例について説明すると、この発
明の含浸型陰極構体は第2図に示すように構成され、図
中の符号5は陰極基体であり、例えば粒径3μm程度の
タングステン粉末を比重16程度になるように焼結し、そ
の多孔質タングステン基体にBaO、CaO、Al2O3よりなる
電子放射物質を含浸して得られるもので、カップ状固定
部材6内に設けられている。この固定部材6は、高融点
金属よりなる陰極スリーブ7の一端にろう材により接合
されている。この陰極スリーブ7内には、陰極基体5が
所望の動作温度になるように、加熱するためのヒータ1
が配設されている。勿論、このヒータ1は上記のこの発
明によるヒータである。
Now, finally, an example of the impregnated type cathode assembly provided with the above-described electron tube heater 1 will be described. The impregnated type cathode assembly of the present invention is configured as shown in FIG. Is a cathode substrate, which is obtained, for example, by sintering tungsten powder having a particle size of about 3 μm so as to have a specific gravity of about 16 and impregnating the porous tungsten substrate with an electron emitting substance made of BaO, CaO, Al 2 O 3. And is provided inside the cup-shaped fixing member 6. The fixing member 6 is joined to one end of a cathode sleeve 7 made of a high melting point metal by a brazing material. In the cathode sleeve 7, a heater 1 for heating the cathode substrate 5 to a desired operating temperature.
Is provided. Of course, the heater 1 is the heater according to the present invention described above.

又、陰極スリーブ7の外側には、所定間隔をおいて同
軸的に筒状ホルダー8が配設され、陰極スリーブ7は複
数例えば3個の短冊状ストラップ9を介してこのホルダ
ー8に支持されている。この場合、ストラップ9の一端
が陰極スリーブ7の下端部に取付けられ、他端がホルダ
ー8の上端部に取付けられている。
A cylindrical holder 8 is coaxially arranged at a predetermined interval outside the cathode sleeve 7, and the cathode sleeve 7 is supported by the holder 8 via a plurality of, for example, three strip-shaped straps 9. There is. In this case, one end of the strap 9 is attached to the lower end of the cathode sleeve 7, and the other end is attached to the upper end of the holder 8.

[発明の効果] この発明によれば、ヒータは上記のような数値に設定
され、このヒータを備えた含浸型陰極構体を使用した電
子管においては、ヒータ・カソード間の絶縁耐圧特性が
従来より1.5〜2倍程度向上することが出来、含浸型陰
極構体の動作温度が高いことに起因する耐圧不良を防止
することが出来た。
[Advantages of the Invention] According to the present invention, the heater is set to the above-mentioned numerical value, and in the electron tube using the impregnated type cathode assembly provided with this heater, the withstand voltage characteristic between the heater and the cathode is 1.5 times that of the conventional one. It was possible to improve by about 2 times, and it was possible to prevent the breakdown voltage defect due to the high operating temperature of the impregnated cathode structure.

尚、第10図(a)及び(b)はこの発明と従来例との
各ヒータにおける断面を示す35倍の顕微鏡写真である
が、従来例では金属線とダーク層との距離が近くなって
おり、凹凸を有するアルミナ層は強度が弱く、クラック
の原因となる。この結果、、耐圧特性が悪い。
10 (a) and 10 (b) are 35 × micrographs showing the cross section of each heater of the present invention and the conventional example. In the conventional example, the distance between the metal wire and the dark layer is close. However, the alumina layer having irregularities has low strength and causes cracks. As a result, the breakdown voltage characteristic is poor.

しかし、この発明では金属線とダーク層との距離が離
れており、従来例に比べ凹凸がない均一な絶縁アルミナ
層及びダーク層が形成されているので、耐圧特性が優れ
ている。
However, in the present invention, the distance between the metal wire and the dark layer is large, and the uniform insulating alumina layer and the dark layer having no unevenness are formed as compared with the conventional example, so that the withstand voltage characteristic is excellent.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例に係る電子管用ヒータを示
す正面図、第2図はこの発明の別の一実施例に係る電子
管用ヒータを備えた含浸型陰極構体を一部切欠いて示す
斜視図、第3図はこの発明のヒータの絶縁アルミナ層に
使用するアルミナ粒子の純度と耐圧不良発生率との関係
を示す特性図、第4図は同じく平均粒径と絶縁破壊電圧
との関係を示す特性図、第5図は同じくアルミナ充填率
とクラック発生率との関係を示す特性図、第6図は同じ
くアルミナ充填率とコーティングの粉落ち発生率との関
係を示す特性図、第7図は同じくアルミナ粒子とアルミ
ナ充填率との関係を示す特性図、第8図は同じくコーテ
ィングの厚さと絶縁破壊電圧との関係を示す特性図、第
9図は同じくアルミナ充填率と絶縁破壊電圧との関係を
示す特性図、第10図(a)、(b)はそれぞれこの発明
と従来例の各電子管用ヒータにおける断面の粒子構造を
示す顕微鏡写真である。 1……ヒータ、2……金属線、3……絶縁アルミナ層、
4……ダーク層、5……陰極基体、7……陰極スリー
ブ。
FIG. 1 is a front view showing a heater for an electron tube according to an embodiment of the present invention, and FIG. 2 is a partially cutaway view of an impregnated cathode assembly having a heater for an electron tube according to another embodiment of the present invention. 3 is a perspective view, FIG. 3 is a characteristic diagram showing the relationship between the purity of alumina particles used in the insulating alumina layer of the heater of the present invention and the withstand voltage defect occurrence rate, and FIG. 4 is the same as the relationship between the average particle size and the breakdown voltage. 5 is a characteristic diagram showing the relationship between the alumina filling rate and the crack occurrence rate, and FIG. 6 is a characteristic diagram showing the relationship between the alumina filling rate and the powder drop occurrence rate of the coating. The same figure is a characteristic diagram showing the relationship between alumina particles and alumina filling rate, FIG. 8 is a characteristic diagram showing the relationship between coating thickness and dielectric breakdown voltage, and FIG. 9 is similarly showing alumina filling rate and dielectric breakdown voltage. 10 is a characteristic diagram showing the relationship between (A), (b) is a microscopic photograph showing the particle structure of the cross section of the heater each electron tube of the present invention and conventional example, respectively. 1 ... Heater, 2 ... Metal wire, 3 ... Insulating alumina layer,
4 ... Dark layer, 5 ... Cathode base, 7 ... Cathode sleeve.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ダブルヘリカルに巻回された金属線と、こ
の金属線に被覆された絶縁アルミナ層と、この絶縁アル
ミナ層に被覆されたダーク層とを有する電子管用ヒータ
において、 上記絶縁アルミナ層の混合アルミナ粒子は、99.8%以上
の純度で平均粒径が7乃至12μmの範囲であり且つ粒度
分布は粒径15μm以上の粒子及び粒径6μm以下の粒子
がそれぞれ10乃至30重量%の範囲であって残部が6μm
を超え15μm未満の範囲の粒子であることを特徴とする
電子管用ヒータ。
1. A heater for an electron tube comprising a metal wire wound in a double helix, an insulating alumina layer covered with the metal wire, and a dark layer covered with the insulating alumina layer. The mixed alumina particles of are those having a purity of 99.8% or more and an average particle size of 7 to 12 μm, and a particle size distribution of particles having a particle size of 15 μm or more and particles having a particle size of 6 μm or less in the range of 10 to 30% by weight, respectively. And the rest is 6 μm
A heater for an electron tube, characterized in that the particles are in the range of over 15 μm.
【請求項2】陰極構体と、この陰極構体を支持する陰極
スリーブと、この陰極スリーブ内に内装される上記請求
項1の電子管用ヒータを備えたことを特徴とする含浸型
陰極構体。
2. An impregnated cathode assembly comprising a cathode assembly, a cathode sleeve supporting the cathode assembly, and the heater for an electron tube according to claim 1, which is installed in the cathode sleeve.
JP9566789A 1989-04-15 1989-04-15 Heater for electron tube and impregnated cathode assembly including the same Expired - Fee Related JPH083976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9566789A JPH083976B2 (en) 1989-04-15 1989-04-15 Heater for electron tube and impregnated cathode assembly including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9566789A JPH083976B2 (en) 1989-04-15 1989-04-15 Heater for electron tube and impregnated cathode assembly including the same

Publications (2)

Publication Number Publication Date
JPH02276128A JPH02276128A (en) 1990-11-13
JPH083976B2 true JPH083976B2 (en) 1996-01-17

Family

ID=14143848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9566789A Expired - Fee Related JPH083976B2 (en) 1989-04-15 1989-04-15 Heater for electron tube and impregnated cathode assembly including the same

Country Status (1)

Country Link
JP (1) JPH083976B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185606A (en) 1997-12-19 1999-07-09 Matsushita Electron Corp Manufacture of cathode-ray tube
US6242854B1 (en) 1998-01-20 2001-06-05 Matsushita Electronics Corporation Indirectly heated cathode for a CRT having high purity alumina insulating layer with limited amounts of Na OR Si

Also Published As

Publication number Publication date
JPH02276128A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
US2287460A (en) Insulated heater and method of manufacture
US3195004A (en) Cathode heater for electron discharge devices
JPH083976B2 (en) Heater for electron tube and impregnated cathode assembly including the same
US3691421A (en) Doubled layer heater coating for electron discharge device
US3328201A (en) Heater for electron tubes
US3246197A (en) Cathode heater having an aluminum oxide and tungesten coating
EP0407104B1 (en) Inorganically insulated heater, process for production thereof and cathode ray tube using the same
US1874542A (en) Insulating coating for filaments and method of applying the same
US2950993A (en) Oxide coated cathodes and method of manufacture
JPS5936381B2 (en) Manufacturing method for electron tube heater
US3206329A (en) Insulation coating for indirectly heated cathode heaters
US4471260A (en) Oxide cathode
JPS6340230A (en) Manufacture of heater of indirectly heated cathode
JPS62291833A (en) Cathode heater for cathode-ray tube
US3808574A (en) Magnesium and magnesium oxide resistor and method of forming
KR100300172B1 (en) Indirectly heated cathode and a cathode ray tube using the same
ES350511A1 (en) Indirectly heated cathode for an electron discharge tube with an insulated heating element
KR100223863B1 (en) Composition of heater coating material of electron gun for crt
JPS6055942B2 (en) Cathode manufacturing method
US2160583A (en) Pool-type discharge device
JPS60124340A (en) Resistor built in cathode ray tube
JP2794068B2 (en) CRT heater
KR20020061361A (en) heater for color cathode ray tube
KR950001077B1 (en) Heater of electron gun for crt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees