JPH0839687A - Production of thermoplastic resin film - Google Patents

Production of thermoplastic resin film

Info

Publication number
JPH0839687A
JPH0839687A JP7159657A JP15965795A JPH0839687A JP H0839687 A JPH0839687 A JP H0839687A JP 7159657 A JP7159657 A JP 7159657A JP 15965795 A JP15965795 A JP 15965795A JP H0839687 A JPH0839687 A JP H0839687A
Authority
JP
Japan
Prior art keywords
film
heat treatment
heat
nozzle
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7159657A
Other languages
Japanese (ja)
Inventor
Jung-Wook Seo
徐廷旭
Wan-Sub Sim
沈▲わん▼變
Young-Jin Lee
李榮珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKC Co Ltd
Original Assignee
SKC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKC Co Ltd filed Critical SKC Co Ltd
Publication of JPH0839687A publication Critical patent/JPH0839687A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE: To obtain a film having physical properties uniform in its lateral direction without lowering a product yield by stretching a thermoplastic resin sheet longitudinally and laterally and specifying the angle formed by the outlet center line of the air jet nozzle of a heat treatment device and a perpendicular line in a thermal fixing section to thermally treat and fix the stretched film. CONSTITUTION: When a biaxially stretched film is heat-treated in a lateral stretcher, the ejection angle of air ejected to the film through the nozzle 2 of a heat-treatment device is adjusted in a section fixing the film thermally after lateral stretching so that the acute angle θ formed by the center line 3 of a nozzle outlet 2a and a perpendicular line becomes 30 deg. or more, pref., 45-60 deg. to perform the heat treatment of the film F. At this time, the ejection speed is regulated so as to become 3 times or more, pref., 4-6 times the running speed of the film F. By this constitution, the shrink force acting on the film F in the direction opposite to the advance direction of the film F is set off by the shearing force generated by the relative speed of the film F and ejected air to act on the film F in the advance direction of the film F.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂フィルム、
特に横方向に均一な物性を有する熱可塑性樹脂フィルム
の製造方法に関するものである。より特に、本発明は横
延伸機(テンター;tenter)上での処理による横
延伸および熱固定過程で惹起するフィルムのボウイング
(bowing)現象を抑制して横方向に均一な物理
的、化学的または物理化学的性質を有する熱可塑性樹脂
フィルムを製造する方法に関するものである。
The present invention relates to a thermoplastic resin film,
In particular, the present invention relates to a method for producing a thermoplastic resin film having uniform physical properties in the lateral direction. More particularly, the present invention suppresses the bowing phenomenon of the film caused by the lateral stretching and the heat setting process by the treatment on the transverse stretching machine (tenter), and the physical, chemical, or physical properties which are uniform in the lateral direction. The present invention relates to a method for producing a thermoplastic resin film having physicochemical properties.

【0002】[0002]

【従来の技術】熱可塑性樹脂フィルム、特にポリエステ
ル系およびその他のポリプロピレン、ポリビニルクロリ
ド、ナイロン、ポリイミド、ポリカーボネート、ポリス
チレン、ポリフェニレンスルファイトのようなフィルム
は包装用、記録媒体用、工業用およびその他の種々の用
途に使用され、横方向に均一な物性を有するフィルムの
生産が切実に求められてきた。フィルムの物性、例え
ば、熱収縮率、機械的強度および密度が横方向に不均一
な場合、コーティング、蒸着、裁断、印刷等のような後
加工処理時表面の歪む現象等を惹起して最終製品の品質
を低下させるようになる。また、フィルムの後加工時許
容できる横方向物性の均一性を満足させようとすると製
品収率が低下する欠点がある。
BACKGROUND OF THE INVENTION Thermoplastic resin films, especially polyester-based and other polypropylene, polyvinyl chloride, nylon, polyimide, polycarbonate, polystyrene, polyphenylene sulphite films, are used for packaging, recording media, industrial and various other applications. There has been an urgent need for the production of a film which is used for the above-mentioned applications and has uniform physical properties in the transverse direction. If the physical properties of the film, such as heat shrinkage, mechanical strength and density are non-uniform in the lateral direction, the final product may cause surface distortion during post-processing such as coating, vapor deposition, cutting and printing. Will deteriorate the quality of. In addition, there is a drawback in that the product yield is lowered when trying to satisfy the homogeneity of the lateral physical properties that can be tolerated during the post-processing of the film.

【0003】このような問題点を解決するための開発さ
れた方法では、横延伸機内でフィルムの両端部をクリッ
ブが挟んでいるので、縦方向延伸および横方向延伸工程
で惹起される縦方向の延伸応力と熱固定工程で惹起され
る収縮応力に対して、フィルムの両端部はクリッブによ
ってその変形が拘束される反面に、フィルムの中央部は
クリッブの影響が少ないので変形に対する拘束力が弱
い。したがって、横延伸機内で両端部と中央部の間の拘
束力の差によって中央部がフィルム進行方向の反対方向
へおされてフィルムのボウイング(bowing)現象
が生じ、この現象は二軸延伸と熱固定過程が伴われるフ
ィルムの製造工程において避けられない問題としてフィ
ルムの横方向物性の不均一を惹起するため、前記方法に
よってはフィルムの横方向物性の均一化が極めて困難で
あった。
In the method developed to solve such a problem, since the both ends of the film are sandwiched by the cribs in the transverse stretching machine, the longitudinal stretching caused by the longitudinal stretching and the transverse stretching is caused. Although the deformation of the film is restrained by both ends of the film against the stretching stress and the contraction stress caused by the heat-setting process, the central portion of the film is less affected by the crib, so that the restraining force against the deformation is weak. Therefore, in the transverse stretching machine, the central portion is pushed in the direction opposite to the film advancing direction due to the difference in the restraining force between the both end portions and the central portion, which causes a bowing phenomenon of the film. As a problem that is unavoidable in the manufacturing process of the film accompanied by the fixing process, it causes non-uniformity of the physical properties of the film in the transverse direction. Therefore, it is extremely difficult to uniformize the physical properties of the film in the transverse direction by the above method.

【0004】したがって、前記のような欠点を防止する
ために種々の方法が試みてきた。例えば、日本特公昭3
9−29214号は加熱ロールを使用して熱処理する方
法を開示しているが、加熱ロールによって両端部が拘束
されず熱処理されて幅方向収縮が生じる欠点があり、日
本特公昭42−9273号ではフィルムの横方向へ温度
勾配を用いて熱処理を行い、日本特開昭62−1833
27および183328号では風速または風量の変化お
よびフィルムの両端部の強制加熱のような方法によって
熱処理工程を行ったが、このような熱処理方法は設備の
複雑化および条件調整時間の長期化による有効可動率の
低下のような欠点がある。また日本特開昭50−739
78号は横延伸機内で横延伸工程と熱処理工程との間に
ニップロール(nip roll)を設けて横延伸終了
後フィルムを熱処理する方法を開示しているし、日本特
公昭63−24459号はニップロールによってフィル
ムの中央部を強制的に前進させる方法を開示している
が、これら二つの方法は全て高温でロールと接触するに
よるフィルムの損傷が致命的であるという問題点があ
る。
Therefore, various methods have been tried in order to prevent the above-mentioned drawbacks. For example, Japan Special Public Sho3
No. 9-29214 discloses a method of heat treatment using a heating roll, but there is a drawback that both ends are not restrained by the heating roll and heat treatment causes widthwise shrinkage. In Japanese Patent Publication No. 42-9273. Heat treatment is carried out in the transverse direction of the film by using a temperature gradient, and the method is disclosed in JP-A-62-1833.
In Nos. 27 and 183328, the heat treatment process was performed by a method such as a change in wind speed or air volume and forced heating of both ends of the film. There are drawbacks such as reduced rates. Also, Japanese Patent Laid-Open No. 50-739
No. 78 discloses a method in which a film is heat-treated after the transverse stretching is completed by providing a nip roll between the transverse stretching process and the heat treatment process in the transverse stretching machine, and Japanese Patent Publication No. 63-24459 discloses a nip roll. Discloses a method of forcibly advancing the central portion of the film, but these two methods all have a problem that damage to the film due to contact with the roll at high temperature is fatal.

【0005】一方、日本特開平3−130126、特開
平3−130127、特開平4−142916および特
開平4−142917号では横延伸工程後冷却工程を経
る熱処理方法を用いたが、フィルムの全幅より長い区間
で冷却処理を行ったにも拘らずフィルムのボウイング現
象を減少させる効果が殆どないだけでなく設備の増加お
よびエネルギの浪費等によって生産性が低下する欠点が
ある。また、日本特開昭61−8324および特開平1
−204723号は横延伸機内での横延伸工程後、フィ
ルムを昇温処理する熱処理方法を開示しているが、この
方法の場合フィルムの全幅に対して均一に熱処理を行う
ために横方向の変形拘束力のばらつきを減らすことがで
きないという問題点がある。
On the other hand, in Japanese Unexamined Patent Publication No. 3-130126, Japanese Unexamined Patent Publication No. 3-130127, Japanese Unexamined Patent Publication No. 4-142916 and Japanese Unexamined Patent Publication No. 4-142917, a heat treatment method in which a cooling step is performed after a transverse stretching step is used. Despite the cooling treatment in a long section, it has almost no effect of reducing the bowing phenomenon of the film, and there is a drawback that productivity is reduced due to increase of equipment and waste of energy. In addition, Japanese Patent Laid-Open Nos. 61-8324 and 1
No. 204723 discloses a heat treatment method in which a film is heated after a transverse stretching step in a transverse stretching machine. In this method, in order to uniformly perform the heat treatment on the entire width of the film, transverse deformation is performed. There is a problem that the variation in binding force cannot be reduced.

【0006】[0006]

【発明が解決しようとする課題】したがって、熱可塑性
樹脂フィルムの製造において、製品収率を低下させず最
終製品の品質を向上させるために、横方向に均一な物性
を有するフィルムを製造することができる新しい方法の
開発が急務となっている。
Therefore, in the production of a thermoplastic resin film, it is necessary to produce a film having uniform physical properties in the transverse direction in order to improve the quality of the final product without lowering the product yield. There is an urgent need to develop new methods that can be used.

【0007】[0007]

【課題を解決するための手段】本発明者等は従来の熱処
理方法によるフィルムのボウイング現象を解決するため
に広範囲な研究を行った結果、横延伸機を用いる熱処理
方法を使用するけれども、熱処理工程の熱固定区間で熱
処理装置のノズルからフィルム面へ垂直に空気を噴出さ
せる従来の方法の代わりに、ノズルの空気噴射角度を調
節し、さらにフィルムの走行速度に対するノズルの空気
噴出速度を調節することによってフィルムの横方向物性
が均一となりフィルムのボウイング現象が著しく減少さ
れた改善された熱可塑性樹脂フィルムを提供できること
を見出した。
The present inventors have conducted extensive research to solve the bowing phenomenon of a film by a conventional heat treatment method, and as a result, although a heat treatment method using a transverse stretching machine is used, Instead of the conventional method of vertically ejecting air from the nozzle of the heat treatment device to the film surface in the heat setting section, the air jet angle of the nozzle is adjusted and the air jet speed of the nozzle relative to the running speed of the film is adjusted. It has been found that an improved thermoplastic resin film can be provided in which the lateral physical properties of the film are uniform and the bowing phenomenon of the film is significantly reduced.

【0008】したがって、本発明はフィルムの横方向物
性が均一でありボウイング現象が著しく減少され改善さ
れた熱可塑性樹脂フィルムの製造方法を提供するもので
ある。
Accordingly, the present invention provides a method for producing a thermoplastic resin film, in which the physical properties in the transverse direction of the film are uniform and the bowing phenomenon is significantly reduced and improved.

【0009】以下、本発明を詳細に説明する。本発明に
よると、二軸延伸された熱可塑性樹脂フィルムの横延伸
機内での熱処理工程時、熱固定区間で熱処理装置の空気
噴出ノズルのフィルム面に向かう角度およびフィルムの
走行速度に対した空気噴出速度を調節することによって
横方向物性が均一でありボウイング現象が減少され改善
された熱可塑性樹脂フィルムが提供される。
The present invention will be described in detail below. According to the present invention, during a heat treatment process of a biaxially stretched thermoplastic resin film in a transverse stretching machine, air jetting is performed in a heat setting section with respect to an angle toward a film surface of an air jetting nozzle of a heat treatment apparatus and a traveling speed of the film. By adjusting the speed, a thermoplastic resin film having uniform lateral properties and reduced bowing phenomenon is provided.

【0010】既存の公知の方法による熱可塑性樹脂フィ
ルムの製造は重合反応によって製造されたポリマーのチ
ップを乾燥および溶融押出させシートに成形した後、該
シートを縦横向および横方向に延伸させ熱処理して最終
の二軸延伸のフィルムを収得する方式によって行われ
る。しかしながら、前記過程を経て得たフィルムは前述
したように熱処理工程での変形に対する拘束力がフィル
ム全体にわたって同一でないためフィルムのボウイング
(弓のように曲がる)現象が惹起する。
The production of a thermoplastic resin film by a known method is carried out by drying and melt extruding polymer chips produced by a polymerization reaction to form a sheet, and then stretching and heat treating the sheet in the longitudinal and transverse directions. And a final biaxially stretched film is obtained. However, as described above, the film obtained through the above process does not have the same constraining force against deformation in the heat treatment process, so that a bowing phenomenon of the film occurs.

【0011】したがって、本発明では、公知の方法によ
って熱可塑性樹脂フィルムを製造するが、横延伸機内で
二軸延伸フィルムを熱処理する際、横延伸後フィルムを
熱固定する区間で、熱処理装置のノズルを通じてフィル
ムへ噴出される空気の噴出角度を、図2(図1の破線で
示される円で囲まれた部分の拡大図)に示されているよ
うにノズル出口の中心線(3)と垂直線がなす鋭角
(θ)が30°以上、好ましくは45°乃至60°とな
るように調整して、フィルムの熱処理を行う。この際、
空気の噴出速度はフィルムの走行速度の3倍以上、好ま
しく4乃至6倍となるように調節する。これによって、
フィルムと噴出空気との相対速度の差に起因して発生す
るフィルムの進行方向へ作用する剪断力によってフィル
ムの進行方向と反対方向へ作用する収縮力が相殺され
て、フィルムのボウイング現象が減少されフィルムの横
方向物性が均一になる。
Therefore, in the present invention, the thermoplastic resin film is manufactured by a known method. When heat treating the biaxially stretched film in the transverse stretching machine, the nozzle of the heat treatment apparatus is used in the section where the film is heat set after the transverse stretching. As shown in FIG. 2 (enlarged view of the portion surrounded by the circle shown by the broken line in FIG. 1), the jet angle of the air jetted to the film through the film is perpendicular to the center line (3) of the nozzle outlet. The film is heat-treated by adjusting the acute angle (θ) of 30 ° or more, preferably 45 ° to 60 °. On this occasion,
The jet speed of air is adjusted to be 3 times or more, preferably 4 to 6 times, the running speed of the film. by this,
The bowing phenomenon of the film is reduced by canceling the shrinking force acting in the direction opposite to the film advancing direction by the shearing force acting in the film advancing direction caused by the difference in the relative velocity between the film and the jet air. The physical properties in the lateral direction of the film become uniform.

【0012】本発明に使用される熱可塑性樹脂の例とし
てはポリエチレンテレフタレート、ポリエチレン−2,
6−ナフタレート、ポリテトラメチレンテレフタレー
ト、ポリテトラメチレン−2,6−ナフタレンカルボキ
シレート、液晶ポリエステル、ポリプロピレン、ポリビ
ニルクロリド、ナイロン、ポリイミド、ポリフェニレン
スルファイトがある。これらの中ポリエチレンテレフタ
レート、ポリエチレン−2、6−ナフタレート、ポリフ
ェニレンスルファイトが特に好ましい。
Examples of the thermoplastic resin used in the present invention include polyethylene terephthalate, polyethylene-2,
There are 6-naphthalate, polytetramethylene terephthalate, polytetramethylene-2,6-naphthalene carboxylate, liquid crystal polyester, polypropylene, polyvinyl chloride, nylon, polyimide, and polyphenylene sulphite. Among these, polyethylene terephthalate, polyethylene-2,6-naphthalate and polyphenylene sulphite are particularly preferable.

【0013】本発明による熱可塑性樹脂フィルムは例え
ば次のように製造することができる。ポリエチレンテレ
フタレートを使用するポリエステルフィルムの場合、ポ
リエチレンテレフタレート単量体を重縮合させ0.6乃
至0.7dl/gの固有粘度を有するポリエチレンテレ
フタレートのチップを製造した後、該チップを290乃
至300℃で溶融押出し、冷却ロールの上で無定形シー
トに成形した後、該シートを100乃至110℃の温度
で縦方向へ3.5倍および100乃至120℃の温度で
横方向へ4.5倍の倍率に各々延伸させ二軸延伸された
ポリエステルフィルムを得る。次いで、該フィルムFを
図1に示したような熱処理装置1に通過させる。前記熱
処理装置1に導入されたフィルムFは前記装置の中心部
を沿って進行されるが、この時フィルムはノズル2の熱
風ファン(fan)4によって加熱し、ノズル出口2a
(図2)を通じて噴出される空気は出口中心線3と垂直
線がなす鋭角(噴出角度;θ)が30°以上、好ましく
は45°乃至60°になるように調節し、空気の噴出速
度はフィルムの走行速度の3倍以上、好ましくは4倍乃
至6倍になるように調節する。前記のように熱固定処理
を行うことによって横方向物性の均一な改善された二軸
延伸フィルムを得ることができる。
The thermoplastic resin film according to the present invention can be manufactured, for example, as follows. In the case of a polyester film using polyethylene terephthalate, a polyethylene terephthalate monomer is polycondensed to produce a polyethylene terephthalate chip having an intrinsic viscosity of 0.6 to 0.7 dl / g, and then the chip is treated at 290 to 300 ° C. After melt-extruding and forming into an amorphous sheet on a cooling roll, the sheet is magnified 3.5 times in the machine direction at a temperature of 100 to 110 ° C. and 4.5 times in the transverse direction at a temperature of 100 to 120 ° C. To obtain a biaxially stretched polyester film. Then, the film F is passed through the heat treatment apparatus 1 as shown in FIG. The film F introduced into the heat treatment apparatus 1 advances along the center of the apparatus, at which time the film is heated by the hot air fan 4 of the nozzle 2 and the nozzle outlet 2a.
The air ejected through (FIG. 2) is adjusted so that the acute angle (ejection angle; θ) formed by the vertical line with the outlet center line 3 is 30 ° or more, preferably 45 ° to 60 °, and the air ejection speed is The traveling speed of the film is adjusted to 3 times or more, preferably 4 to 6 times. By carrying out the heat setting treatment as described above, a biaxially stretched film having uniform physical properties in the transverse direction can be obtained.

【0014】以下、下記実施例によって本発明をより詳
細に説明する。これら実施例は本発明を例示するための
もので、本発明がこれに限定されるものではない。
The present invention will be described in more detail with reference to the following examples. These examples are for the purpose of illustrating the present invention and the present invention is not limited thereto.

【0015】実施例1 ジメチルテレフタレートとエチレングリコールを1対1
の比率に混合してエステル交換反応させポリエチレンテ
レフタレート単量体を生成させた後、該単量体を重縮合
反応させて0.64dl/gの固有粘度を有するポリエ
チレンテレフタレートのチップを製造した。このチップ
を290℃で溶融押出させた後、冷却水温度が20℃に
維持される冷却ロールの上で厚さ200μmの無定形シ
ートに成形させ、生成されたシートを100℃で縦方向
に3.5倍、次いで110乃至120℃の温度で横方向
に4.5倍の倍率に延伸させ二軸延伸されたポリエチレ
ンテレフタレートのフィルムを得た。次いで、該フィル
ムを本発明の熱処理装置に導入させ熱固定部で熱処理装
置のノズルの空気噴出角度(θ)を30°にし、噴出さ
れる空気の温度を220℃にし、フィルムの走行速度を
4m/秒にし、空気の噴出速度を20m/秒に調節して
熱固定処理を行うことによって二軸延伸のポリエチレン
テレフタレートのフィルムを得た。
Example 1 Dimethyl terephthalate and ethylene glycol 1: 1
After mixing in a ratio of 1 to produce a polyethylene terephthalate monomer by transesterification, the polycondensation reaction of the monomer was carried out to produce a polyethylene terephthalate chip having an intrinsic viscosity of 0.64 dl / g. After melt-extruding the chips at 290 ° C., the chips were formed into an amorphous sheet having a thickness of 200 μm on a cooling roll whose cooling water temperature was maintained at 20 ° C. A biaxially stretched polyethylene terephthalate film was obtained by stretching the film at a draw ratio of 0.5 times and then at a temperature of 110 to 120 ° C. to a draw ratio of 4.5 times in the transverse direction. Then, the film is introduced into the heat treatment apparatus of the present invention, the air jet angle (θ) of the nozzle of the heat treatment apparatus is set to 30 ° in the heat fixing section, the temperature of the jetted air is set to 220 ° C., and the running speed of the film is 4 m. / Sec, and the air jet speed was adjusted to 20 m / sec to perform heat setting treatment to obtain a biaxially stretched polyethylene terephthalate film.

【0016】製造されたフィルムのボウイング量、横方
向比重変化率および横方向厚さ変化率を次のように測定
したし、その結果は表1に示した。
The bowing amount, lateral specific gravity change rate and lateral thickness change rate of the produced film were measured as follows, and the results are shown in Table 1.

【0017】1.フィルムのボウイング量 横延伸機の入口でフィルムの表面に幅方向へ黒い基準線
を描いた後フィルムを横延伸機を通過させると、出口を
出たフィルムは図3に示したように弓形のように変形さ
れるが、この際下記式を用いてフィルムのボウイング量
を計算した: B=b/W×100(%) ここで、Bはボウイング量(%)を示し、bは基準線か
ら弓形の頂点までの距離(mm)を示し、Wはフィルムの
幅(mm)を示す。
1. Amount of bowing of the film After drawing a black reference line in the width direction on the surface of the film at the entrance of the transverse stretching machine and passing the film through the transverse stretching machine, the film exiting the outlet looks like an arc as shown in Fig. 3. In this case, the bowing amount of the film was calculated using the following formula: B = b / W × 100 (%) where B is the bowing amount (%), and b is the bow shape from the reference line. Indicates the distance (mm) to the apex of the film, and W indicates the width (mm) of the film.

【0018】2.フィルムの横方向比重変化率 フィルムの横方向比重変化率は密度勾配管法によってA
STM D1505によって先ず比重を求めた後、下記
式によって計算した: 横方向比重変化率={(横方向比重の最大値)−(横方
向比重の最小値)}/(横方向比重の平均値)×100
(%) 3.フィルムの横方向厚さ変化率 フィルムの横方向厚さ変化率は厚さ測定機(米国ウィン
ゼン(Winzen)社製品)を用いてフィルムの横方
向に対してフィルムの厚さを先ず測定した後、下記式に
よって計算した。
2. Rate of change in specific gravity of film in the lateral direction
First, the specific gravity was obtained by STM D1505, and then calculated by the following formula: Lateral specific gravity change rate = {(maximum lateral specific gravity)-(minimum lateral specific gravity)} / (average lateral specific gravity) × 100
(%) 3. Lateral thickness change rate of the film The lateral thickness change rate of the film is obtained by first measuring the film thickness with respect to the lateral direction of the film using a thickness measuring device (product of Winzen, USA). It was calculated by the following formula.

【0019】横方向厚さ変化率={(横方向厚さの最大
値)−(横方向厚さの最小値)}/(横方向厚さの平均
値)×100(%)。
Lateral thickness change rate = {(maximum lateral thickness)-(minimum lateral thickness)} / (average lateral thickness) × 100 (%).

【0020】実施例2 熱処理装置を通過するフィルムの表面に対するノズルの
空気噴出角度(θ)を60°にすることを除いて実施例
1と同じ方法および条件で行って二軸延伸のポリエチレ
ンテレフタレートのフィルムを得た。実施例1でのよう
に、生成されたフィルムのボウイング量および横方向物
性の変化を測定し、その結果を表1に示した。
Example 2 A biaxially stretched polyethylene terephthalate was prepared in the same manner as in Example 1 except that the air jet angle (θ) of the nozzle with respect to the surface of the film passing through the heat treatment apparatus was 60 °. I got a film. As in Example 1, the changes in bowing amount and transverse physical properties of the produced film were measured, and the results are shown in Table 1.

【0021】実施例3 熱処理装置を通過するフィルムの表面に対するノズルの
空気噴出角度(θ)を75°にすることを除いて実施例
1と同じ方法および条件で行って二軸延伸のポリエチレ
ンテレフタレートのフィルムを得た。実施例1における
ように、生成されたフィルムのボウイング量および横方
向物性の変化を測定し、その結果を表1に示した。
Example 3 A biaxially stretched polyethylene terephthalate was prepared by the same method and conditions as in Example 1 except that the air jet angle (θ) of the nozzle with respect to the surface of the film passing through the heat treatment apparatus was 75 °. I got a film. The change in bowing amount and transverse physical properties of the resulting film was measured as in Example 1 and the results are shown in Table 1.

【0022】比較例1 熱処理装置を通過するフィルムの表面に対するノズルの
空気噴出角度(θ)を0°に、即ちフィルム表面に対し
て垂直へ空気を噴出させることを除いて実施例1と同じ
方法および条件で行って二軸延伸のポリエチレンテレフ
タレートのフィルムを得た。実施例1におけるように、
生成されたフィルムのボウイング量および横方向物性の
変化を測定し、その結果を表1に示した。
Comparative Example 1 The same method as in Example 1 except that the air ejection angle (θ) of the nozzle with respect to the surface of the film passing through the heat treatment apparatus was 0 °, that is, air was ejected perpendicularly to the film surface. And a condition to obtain a biaxially stretched polyethylene terephthalate film. As in Example 1,
Changes in the bowing amount and the lateral physical properties of the produced film were measured, and the results are shown in Table 1.

【0023】比較例2 熱処理装置を通過するフィルムの表面に対するノズルの
空気噴出角度(θ)を15°にすることを除いて実施例
1と同じ方法および条件で行って二軸延伸のポリエチレ
ンテレフタレートのフィルムを得た。実施例1における
ように、生成されたフィルムのボウイング量および横方
向物性の変化を測定し、その結果を表1に示した。
Comparative Example 2 A biaxially stretched polyethylene terephthalate was prepared by the same method and conditions as in Example 1 except that the air jet angle (θ) of the nozzle with respect to the surface of the film passing through the heat treatment apparatus was set to 15 °. I got a film. The change in bowing amount and transverse physical properties of the resulting film was measured as in Example 1 and the results are shown in Table 1.

【0024】[0024]

【表1】 前記表1から分かるように、熱処理工程時熱固定区間で
熱処理装置のノズルの空気噴出角度を特定範囲内にして
熱固定処理する本発明の条件を満足させる実施例1乃至
3のフィルムは、縦方向に発生する収縮応力がフィルム
と噴出空気との相対速度の差に起因してフィルムの進行
方向へ作用する剪断力によって相殺されることにより縦
方向収縮が妨害されてボウイング量が減少される。一
方、比較例1のフィルムはフィルム表面に対して垂直へ
空気を噴出させる従来の熱固定方法によって処理された
もので、ボウイング量のみでなくフィルムの横方向物性
の均一度が極めて不良であり、比較例2のフィルムはノ
ズルの空気噴出角度が15°としてかなり小さいので、
縦方向収縮応力がフィルムと噴出空気との相対速度差に
起因する剪断力によって充分に相殺されなくて、ボウイ
ング量、フィルム横方向の比重および厚さのばらつきに
おいて全般的に均一性が不良である。
[Table 1] As can be seen from Table 1, the films of Examples 1 to 3, which satisfy the conditions of the present invention, in which the air ejection angle of the nozzle of the heat treatment apparatus is set within a specific range in the heat setting section during the heat setting process, satisfy the conditions of the present invention, The shrinkage stress generated in the direction is canceled by the shearing force acting in the moving direction of the film due to the difference in relative velocity between the film and the jet air, whereby the longitudinal shrinkage is hindered and the bowing amount is reduced. On the other hand, the film of Comparative Example 1 was processed by a conventional heat setting method in which air was jetted perpendicularly to the film surface, and not only the bowing amount but also the uniformity of the lateral physical properties of the film was extremely poor. In the film of Comparative Example 2, since the air ejection angle of the nozzle is 15 °, which is quite small,
The longitudinal shrinkage stress is not sufficiently offset by the shearing force due to the relative velocity difference between the film and the jet air, and the uniformity in the bowing amount, the specific gravity in the lateral direction of the film, and the variation in the thickness are generally poor. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱可塑性樹脂フィルムを製造するため
の熱処理装置の熱固定部を示した側面図である。
FIG. 1 is a side view showing a heat fixing unit of a heat treatment apparatus for producing a thermoplastic resin film of the present invention.

【図2】図1Aの熱処理装置のノズル出口を拡大して示
した拡大図である。
FIG. 2 is an enlarged view showing an enlarged nozzle outlet of the heat treatment apparatus of FIG. 1A.

【図3】横延伸機内で熱処理されたフィルムのボウイン
グ現象を示す図である。
FIG. 3 is a view showing a bowing phenomenon of a film heat-treated in a transverse stretching machine.

【符号の説明】[Explanation of symbols]

1…熱処理装置、2…ノズル、2a…ノズル出口、4…
熱風ファン、F…フィルム。
1 ... Heat treatment apparatus, 2 ... Nozzle, 2a ... Nozzle outlet, 4 ...
Hot air fan, F ... film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂のシートを縦延伸、横延伸
および熱処理して熱可塑性樹脂のフィルムを製造する方
法において、前記熱処理時熱固定区間で熱処理装置の空
気噴出ノズルの出口中心線と垂直線がなす鋭角(θ)が
30°以上となるように調節して熱固定処理することを
特徴とする熱可塑性樹脂フィルムの製造方法。
1. A method for producing a film of a thermoplastic resin by longitudinally stretching, transversely stretching and heat treating a thermoplastic resin sheet, which is perpendicular to an outlet center line of an air ejection nozzle of a heat treatment apparatus in the heat setting section during the heat treatment. A method for producing a thermoplastic resin film, comprising adjusting the acute angle (θ) formed by a line to be 30 ° or more and performing heat setting treatment.
【請求項2】 前記噴出角度(θ)が45乃至60°で
ある請求項1記載の方法。
2. The method according to claim 1, wherein the jet angle (θ) is 45 to 60 °.
【請求項3】 ノズルの空気噴出速度をフィルムの走行
速度の3倍以上となるようにする請求項1記載の方法。
3. The method according to claim 1, wherein the air ejection speed of the nozzle is at least three times the traveling speed of the film.
JP7159657A 1994-06-24 1995-06-26 Production of thermoplastic resin film Pending JPH0839687A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019940014512A KR970010453B1 (en) 1994-06-24 1994-06-24 Process for the preparation of thermoplastic resin films
KR1994-14512 1994-06-24

Publications (1)

Publication Number Publication Date
JPH0839687A true JPH0839687A (en) 1996-02-13

Family

ID=19386144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159657A Pending JPH0839687A (en) 1994-06-24 1995-06-26 Production of thermoplastic resin film

Country Status (2)

Country Link
JP (1) JPH0839687A (en)
KR (1) KR970010453B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516339A (en) * 2009-12-30 2013-05-13 ブリュックナー・マシーネンバウ・ゲーエムベーハー・ウント・コー・カーゲー Ventilation nozzle and plastic film stretching apparatus provided with ventilation nozzle
CN104690952A (en) * 2015-03-16 2015-06-10 安徽国风塑业股份有限公司 Transversely-pulling air bellow applied to biaxially oriented film production line

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460734B1 (en) * 1999-02-02 2004-12-09 에스케이씨 주식회사 The Processing Method of Thermoplastic resin sheet
KR20000067584A (en) * 1999-04-29 2000-11-25 장용균 The Processing Method of Thermoplastic resin sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013516339A (en) * 2009-12-30 2013-05-13 ブリュックナー・マシーネンバウ・ゲーエムベーハー・ウント・コー・カーゲー Ventilation nozzle and plastic film stretching apparatus provided with ventilation nozzle
CN104690952A (en) * 2015-03-16 2015-06-10 安徽国风塑业股份有限公司 Transversely-pulling air bellow applied to biaxially oriented film production line

Also Published As

Publication number Publication date
KR970010453B1 (en) 1997-06-26
KR960000468A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
JP6797279B2 (en) Method for manufacturing thermoplastic resin film and thermoplastic resin film
EP0944468B1 (en) Film bead heating for simultaneous stretching
JPH0334456B2 (en)
KR960013068B1 (en) Thermoplastic resin film & a method for producing the same
US5076977A (en) Process for controlling curl in polyester film
JP3765681B2 (en) Production method of polyester film
JPH0839687A (en) Production of thermoplastic resin film
JPH07314552A (en) Production of thermoplastic resin film
JPS62183328A (en) Manufacture of biaxially oriented film and device used for this method
KR0130616B1 (en) Method for the preparation of thermoplastic resin film
JPS60262624A (en) Stretching method of polyester film
KR0130617B1 (en) Method for the preparation of thermoplastic resin film
KR0167147B1 (en) Thermoplastic resin film manufacturing process
KR0130618B1 (en) Method for the preparation of theremoplastic resin film
KR0165826B1 (en) Thermoplastic resin film manufacturing process
KR100460734B1 (en) The Processing Method of Thermoplastic resin sheet
KR0158242B1 (en) Process for the preparation of thermoplastic resin films
JP2936688B2 (en) Method for producing thermoplastic resin film
KR0130619B1 (en) Method for the preparation of thermoplastic resin film
KR20000067584A (en) The Processing Method of Thermoplastic resin sheet
JP2010167771A (en) Biaxially stretched polyethylene terephthalate-based resin film and method of manufacturing the same
JPH04290726A (en) Manufacture of thermoplastic resin film
JP2841817B2 (en) Method for producing thermoplastic resin film
JPH0780928A (en) Production of plastic film
JP2841816B2 (en) Method for producing thermoplastic resin film