JPH0839275A - Molding method by high density energy - Google Patents

Molding method by high density energy

Info

Publication number
JPH0839275A
JPH0839275A JP6197171A JP19717194A JPH0839275A JP H0839275 A JPH0839275 A JP H0839275A JP 6197171 A JP6197171 A JP 6197171A JP 19717194 A JP19717194 A JP 19717194A JP H0839275 A JPH0839275 A JP H0839275A
Authority
JP
Japan
Prior art keywords
metal powder
density energy
present
high density
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6197171A
Other languages
Japanese (ja)
Inventor
Mamoru Okamoto
護 岡本
Tomotaka Ikematsu
知孝 池松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6197171A priority Critical patent/JPH0839275A/en
Publication of JPH0839275A publication Critical patent/JPH0839275A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To mold a product excellent in the yield of the material and high in precision in a method to directly mold the shape of the product from the metallic powder or the like by the high density energy beam such as the laser beam and the electron beam. CONSTITUTION:After the metallic powder is uniformly scattered on a heat resistant plate 12, the high density energy beam from energy generating devices 03, 08 is focused to fuse the metallic powder so as to focus two high density energy beams on, one point, and this position is successively moved to form the required shape, and the required shape is molded by repeating this action.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光線又は電子
ビーム等の高密度エネルギー線により製品の形状を金属
粉等から直接造形する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for directly shaping the shape of a product from metal powder or the like with a high-density energy ray such as a laser beam or an electron beam.

【0002】[0002]

【従来の技術】従来の金属製品の造形方法は鋳造、プレ
ス又は機械加工等により行なっており特に精密加工分野
においては大部分のものが機械加工による削り出しで行
なわれでいた。
2. Description of the Related Art The conventional method for forming a metal product is performed by casting, pressing, machining or the like, and most of them have been machined by machining, particularly in the field of precision machining.

【0003】[0003]

【発明が解決しようとする課題】ところで前述のような
従来の金属製品特に精密部品の造形方法として採用され
ている鋳造法及びプレス法等の場合は、削り屑の発生は
少ないが、その精度は機械加工法に比べて相当悪い不具
合があり、又、機械加工法の場合においては、切屑の発
生を伴なう為材料の歩留まりが悪いと云う不具合があっ
た。
By the way, in the case of the conventional metal products such as the casting method and the pressing method, which are adopted as the molding method of the precision parts, the generation of shavings is small, but the accuracy is low. There was a problem that it was considerably worse than the machining method, and in the case of the machining method, there was a problem that the yield of the material was poor due to the generation of chips.

【0004】本発明は前記従来技術の各不具合点を解消
し、金属粉より直接製品を造形する高精度でかつ歩留ま
りの良い新たな金属製品の造形方法を提供することを目
的としている。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a new method of molding a metal product with high precision and high yield, which directly molds a product from metal powder.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
本発明の高密度エネルギー造形方法は、多種類の金属を
混合した金属粉を溶融して造形する方法に於て、該金属
粉を耐熱プレート上に一様に撒き当該金属粉に、レーザ
ー或は電子ビーム等複数の高密度エネルギー線の焦点を
合わせて同時に照射し溶融可能としたことを特徴として
いる。
In order to achieve the above-mentioned object, the high-density energy shaping method of the present invention is a method for melting and shaping a metal powder mixed with various kinds of metals, wherein the metal powder is heat-resistant. It is characterized in that it is possible to melt the metal powder evenly spread on a plate by simultaneously focusing and irradiating a plurality of high-density energy rays such as a laser or an electron beam.

【0006】そして、金属粉の主成分としては、ニッケ
ル、モリブデン、パラジュウム、セラミック、鉄等を混
合したものを使用する。
As the main component of the metal powder, a mixture of nickel, molybdenum, palladium, ceramics, iron and the like is used.

【0007】また、造形に際しては、複数の高密度エネ
ルギー線照射装置を必要形状に沿って数値制御(NC)
等で順次移動させ、金属粉を照射溶融後凝固させて直線
又は曲線等様々な製品形状を造形することが効果的であ
る。
Further, in modeling, a plurality of high-density energy beam irradiation devices are numerically controlled (NC) along the required shape.
It is effective to sequentially move the metal powder by irradiation or the like and solidify the metal powder after irradiation and melting to mold various product shapes such as a straight line or a curved line.

【0008】さらに、合金成分が次第に変化して行く構
造の傾斜機能材料を製造するためには、金属粉成分を順
次変化させて行くことが望ましい。
Further, in order to manufacture a functionally gradient material having a structure in which the alloy composition gradually changes, it is desirable to sequentially change the metal powder composition.

【0009】[0009]

【作用】本発明は、単一の高密度エネルギー線では金属
粉を溶融不可能なレーザーあるいは電子ビーム等の高密
度エネルギー線を複数本耐熱プレート上に置かれた金属
粉に対しその焦点を一点に集中することにより金属粉を
溶融し、この集中点を数値制御等で必要とする形状に従
って順次移動させて行くことで金属製品を直接造形して
行く方法に関するもので、またこの金属粉の成分を順次
変化させていくことにより合金成分が次第に変化して行
く構造の傾斜機能材料を製造することができる。(例え
ば最初鉄粉により作成して行き次第にニッケル、クロム
等を添加し、この量を増加させて最後はニッケルのみの
超耐熱性材料を製造する。)
According to the present invention, a single high-density energy ray cannot be melted. A high-density energy ray such as a laser or an electron beam is placed on a heat-resistant plate, and the focus is on one point. It relates to a method for directly shaping a metal product by melting the metal powder by concentrating it on the metal powder and moving the concentration point sequentially according to the shape required by numerical control etc. It is possible to manufacture a functionally graded material having a structure in which the alloy composition gradually changes by changing the above. (For example, nickel, chromium, etc. are first added by gradually making iron powder, the amount is increased, and finally a super heat resistant material containing only nickel is manufactured.)

【0010】このように本発明においては、金属粉より
直接製品を造形するため、材料歩留まりが良く、かつ、
高精度なものとなる。
As described above, in the present invention, since the product is formed directly from the metal powder, the material yield is good, and
It will be highly accurate.

【0011】又、成分の構成割合を次第に変化させてい
く、傾斜機能材料を容易に製造可能となる。
Further, it becomes possible to easily manufacture a functionally gradient material in which the constituent ratio of the components is gradually changed.

【0012】[0012]

【実施例】以下図面により本発明の一実施例について説
明する。図1〜図4は本発明方法による金属粉溶融成形
作業の状態を示す説明図であり、図6は本発明方法を実
施するための高密度エネルギー造形装置の概略図を示
す。また、図5及び図7は本発明方法により製作された
部材の概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 4 are explanatory views showing a state of a metal powder melt molding operation according to the method of the present invention, and FIG. 6 is a schematic view of a high-density energy modeling apparatus for carrying out the method of the present invention. 5 and 7 are schematic views of members manufactured by the method of the present invention.

【0013】図1に示すように本発明方法は、2本の高
密度エネルギー線(例えばレーザーあるいは電子ビーム
等)を耐熱プレート上に置かれた金属粉に対しその焦点
を集中することにより、2本の高密度エネルギー線が交
わるa点のエネルギー密度が1本線の場合に比較して2
倍となることを利用し、単一のエネルギー線では溶融し
ない金属粉(例えばニッケル、モリブデン、パラジュウ
ム、セラミック、鉄等を混合したもの)を溶融可能とす
る。
As shown in FIG. 1, according to the method of the present invention, two high-density energy rays (for example, a laser or an electron beam) are focused on the metal powder placed on the heat-resistant plate so that the energy density of the metal powder can be increased. 2 when compared with the case where the energy density at point a where the high-density energy lines of the book intersect is one line
By utilizing the doubling, it becomes possible to melt a metal powder (for example, a mixture of nickel, molybdenum, palladium, ceramics, iron, etc.) that is not melted by a single energy ray.

【0014】図6に示す高密度エネルギー造形装置によ
り本発明方法の実施について説明すると、図6において
01はY軸クロスレール、02はY軸サドルで、図示X
Y平面上においてY軸クロスレール01はY軸方向に移
動可能に構成され、またY軸サドル02はX軸方向に移
動可能に構成されている。
The implementation of the method of the present invention will be described with reference to the high-density energy modeling apparatus shown in FIG. 6. In FIG. 6, 01 is a Y-axis cross rail, 02 is a Y-axis saddle, and X is shown in the figure.
On the Y plane, the Y-axis cross rail 01 is configured to be movable in the Y-axis direction, and the Y-axis saddle 02 is configured to be movable in the X-axis direction.

【0015】Y軸サドル02にはY軸エネルギー発生装
置03が取付けられている。
A Y-axis energy generator 03 is attached to the Y-axis saddle 02.

【0016】前記Y軸クロスレール01及びY軸サドル
02の移動はそれぞれサーボモータ04及び05により
駆動される。
The movements of the Y-axis cross rail 01 and the Y-axis saddle 02 are driven by servomotors 04 and 05, respectively.

【0017】又同様にXZ平面上に各々サーボモータ0
9,10により移動するZ軸クロスレール06、Z軸サ
ドル07を設ける。そしてこのZ軸サドル07上に、Z
軸エネルギー発生装置08を設置する。
Similarly, the servo motors 0 are respectively arranged on the XZ plane.
A Z-axis cross rail 06 and a Z-axis saddle 07 that move by 9 and 10 are provided. And on this Z-axis saddle 07, Z
An axial energy generator 08 is installed.

【0018】11は金属粉散布部で、必要に応じて金属
粉を耐熱プレート12上に、その上面が平坦で、かつ一
様になるように散布する機能を有するよう構成してい
る。(図3参照)
Reference numeral 11 denotes a metal powder spraying unit, which has a function of spraying the metal powder on the heat-resistant plate 12 so that the upper surface thereof is flat and uniform, if necessary. (See Figure 3)

【0019】つぎに本装置の作動について説明すると、
まず図2に示すように、耐熱プレート12上に一様に金
属粉を散布した後、Y軸エネルギー発生装置03及びZ
軸エネルギー発生装置08の高密度エネルギー線を金属
粉上に集中させて溶融させ、この位置を必要とする形状
に従って順次移動させる。
Next, the operation of this apparatus will be described.
First, as shown in FIG. 2, after the metal powder is evenly dispersed on the heat-resistant plate 12, the Y-axis energy generators 03 and Z are arranged.
The high-density energy rays of the axial energy generator 08 are concentrated and melted on the metal powder, and this position is sequentially moved according to the required shape.

【0020】次に図3に示す様に金属粉散布部11によ
り耐熱プレート12上の未溶融部分に一様かつ平坦に金
属粉を散布する。
Next, as shown in FIG. 3, the metal powder spraying unit 11 sprays the metal powder evenly and evenly on the unmelted portion on the heat resistant plate 12.

【0021】この工程を順次繰り返すことにより図3、
図4に示すように必要な形状を順次造形して行く。
By repeating this process in sequence, as shown in FIG.
As shown in FIG. 4, required shapes are sequentially formed.

【0022】必要形状となるまで上記工程を繰り返すこ
とにより図5に示すような製品形状が完成する。
By repeating the above steps until the desired shape is achieved, the product shape as shown in FIG. 5 is completed.

【0023】本発明方法を用いる際の溶融温度として
は、耐熱プレートが溶けない程度の温度に抑えることが
必要であり、単一の金属では、耐熱プレートが溶融しな
い温度内に融点がある場合、基本的に可能であるが、合
金とする場合、一方の金属が溶融点に達しない時点で、
他方の金属の蒸発温度に達しておれば、混合は不可能で
ある。但し、一般的に存在する合金の場合は本発明方法
は適用可能である。
When using the method of the present invention, it is necessary to control the melting temperature to a temperature at which the heat-resistant plate does not melt. If a single metal has a melting point within the temperature at which the heat-resistant plate does not melt, Basically it is possible, but when making an alloy, when one metal does not reach the melting point,
Mixing is not possible if the evaporation temperature of the other metal has been reached. However, the method of the present invention can be applied to commonly existing alloys.

【0024】なお、重力の影響等で、基本的に融合しな
い金属による合金は、本発明方法によっても製造できな
い。
Note that an alloy made of a metal that is basically not fused due to the influence of gravity cannot be manufactured by the method of the present invention.

【0025】また電子ビームによる場合は、当然、装置
全体を真空容器内に設置する必要があり、レーザービー
ムの場合も、溶融金属が大気により酸化、窒化等の変化
しないように、全体を真空容器内に設置するか、溶融部
分をアルゴン又は、ヘリューム等でシールドする必要が
ある。
In the case of using an electron beam, it is of course necessary to install the entire apparatus in a vacuum container. Also in the case of a laser beam, the whole vacuum container is used so that the molten metal does not change, such as being oxidized or nitrided by the atmosphere. It is necessary to install it inside or shield the molten part with argon or helium.

【0026】つぎに装置の位置制御について説明する
と、エネルギー発生部分の移動については、工作機械の
位置制御に用いられる、数値制御(NC)装置(市販
品)を使用し、X−Y・Y−Z・Z−X平面上で各軸の
移動量を同期制御することにより、1/100mm単位
の位置決めが可能である。
Next, the position control of the device will be described. For the movement of the energy generating portion, a numerical control (NC) device (commercially available product) used for position control of the machine tool is used, and XYY- By synchronously controlling the amount of movement of each axis on the ZZ plane, positioning can be performed in units of 1/100 mm.

【0027】さらに図7について説明すると、図7は本
発明方法により製作した傾斜機能材を示すもので、最初
は鉄粉で造形し、次第にニッケル割合を増加させて行き
最後はニッケルのみよりなる傾斜機能材を造形する状態
を示すものである。
Referring further to FIG. 7, FIG. 7 shows a functionally graded material manufactured by the method of the present invention. Firstly, a gradient is formed by iron powder, the proportion of nickel is gradually increased, and finally, the gradient is composed of only nickel. It shows a state of molding a functional material.

【0028】以上本発明の一実施例につき縷々説明した
が、本発明は上記実施例に限定されるものでなく、本発
明技術思想の範囲内において変更し得るものであり、そ
れらは何れも本発明の技術的範囲に属する。
Although one embodiment of the present invention has been briefly described above, the present invention is not limited to the above embodiment and can be modified within the scope of the technical idea of the present invention. It belongs to the technical scope of the invention.

【0029】[0029]

【発明の効果】以上述べたように本発明の高密度エネル
ギー造形方法によれば、レーザー光線又は電子ビーム等
の高密度エネルギー線により、金属粉より直接製品を造
形するので材料歩留まりが良く経済的であると共に、高
精度な製品を製造することが可能となった。
As described above, according to the high-density energy shaping method of the present invention, a high-density energy ray such as a laser beam or an electron beam is used to directly form a product from a metal powder, so that the material yield is good and the cost is low. In addition, it has become possible to manufacture highly accurate products.

【0030】又、本発明方法により、成分の構成割合を
次第に変化させていく、傾斜機能材料を容易に製造する
ことが可能となった。
Further, according to the method of the present invention, it becomes possible to easily produce a functionally gradient material in which the composition ratio of the components is gradually changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるエネルギー線集中状態
を示す説明図である。
FIG. 1 is an explanatory diagram showing an energy beam concentrated state in an example of the present invention.

【図2】本発明における2本の高密度エネルギー線によ
る金属粉の溶融成形時の作用説明図である。
FIG. 2 is an explanatory view of the action when the metal powder is melt-molded by two high-density energy rays in the present invention.

【図3】本発明における金属粉の散布状態の説明図であ
る。
FIG. 3 is an explanatory view of a dispersed state of metal powder in the present invention.

【図4】本発明における2本の高密度エネルギー線によ
る金属粉溶融成形作業状態の説明図である。
FIG. 4 is an explanatory view of a working state of metal powder fusion molding by two high-density energy rays in the present invention.

【図5】本発明方法により製作された部品の完成状態図
である。
FIG. 5 is a completed state view of a component manufactured by the method of the present invention.

【図6】本発明方法を実施するための高密度エネルギー
造形装置の概略図である。
FIG. 6 is a schematic view of a high-density energy modeling apparatus for carrying out the method of the present invention.

【図7】本発明方法により製造した傾斜機能材の説明図
である。
FIG. 7 is an explanatory view of a functionally graded material manufactured by the method of the present invention.

【符号の説明】[Explanation of symbols]

01 Y軸クロスレール 02 Y軸サドル 03 Y軸エネルギー発生装置 04 Y軸クロスレール駆動サーボモータ 05 Y軸サドル駆動サーボモータ 06 Z軸クロスレール 07 Z軸サドル 08 Z軸エネルギー発生装置 09 Z軸クロスレール駆動サーボモータ 10 Z軸サドル駆動サーボモータ 11 金属粉散布部 12 耐熱プレート 01 Y-axis cross rail 02 Y-axis saddle 03 Y-axis energy generator 04 Y-axis cross rail drive servo motor 05 Y-axis saddle drive servo motor 06 Z-axis cross rail 07 Z-axis saddle 08 Z-axis energy generator 09 Z-axis cross rail Drive servo motor 10 Z-axis saddle drive servo motor 11 Metal dusting part 12 Heat resistant plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多種類の金属を混合した金属粉を溶融し
て造形する方法に於て、該金属粉を耐熱プレート上に一
様に撒き当該金属粉に、レーザー或は電子ビーム等複数
の高密度エネルギー線の焦点を合わせて同時に照射し溶
融可能としたことを特徴とする高密度エネルギー造形方
法。
1. A method for melting and shaping a metal powder mixed with various kinds of metals, wherein the metal powder is evenly dispersed on a heat-resistant plate, and the metal powder is subjected to a plurality of processes such as laser or electron beam. A high-density energy modeling method characterized in that high-density energy rays are focused and simultaneously irradiated to enable melting.
【請求項2】 金属粉の主成分としてニッケル、モリブ
デン、パラジュウム、セラミック、鉄等を混合してなる
請求項1記載の高密度エネルギー造形方法。
2. The high-density energy shaping method according to claim 1, wherein nickel, molybdenum, palladium, ceramics, iron or the like is mixed as a main component of the metal powder.
【請求項3】 複数の高密度エネルギー線照射装置を必
要形状に沿って数値制御(NC)等で順次移動させ、金
属粉を照射溶融後凝固させて直線又は曲線等様々な製品
形状を造形することを特徴とする請求項1および2記載
の高密度エネルギー造形方法。
3. A plurality of high-density energy beam irradiation devices are sequentially moved along a required shape by numerical control (NC) or the like, and metal powder is irradiated and melted and then solidified to form various product shapes such as a straight line or a curved line. The high-density energy shaping method according to claim 1 or 2, characterized in that.
【請求項4】 当該金属粉成分を順次変化させて、傾斜
機能材を作成することを特徴とする請求項1,2、およ
び3記載の高密度エネルギー造形方法。
4. The high-density energy shaping method according to claim 1, wherein the gradient functional material is produced by sequentially changing the metal powder component.
JP6197171A 1994-08-01 1994-08-01 Molding method by high density energy Withdrawn JPH0839275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6197171A JPH0839275A (en) 1994-08-01 1994-08-01 Molding method by high density energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6197171A JPH0839275A (en) 1994-08-01 1994-08-01 Molding method by high density energy

Publications (1)

Publication Number Publication Date
JPH0839275A true JPH0839275A (en) 1996-02-13

Family

ID=16369981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6197171A Withdrawn JPH0839275A (en) 1994-08-01 1994-08-01 Molding method by high density energy

Country Status (1)

Country Link
JP (1) JPH0839275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3178585A1 (en) 2015-12-10 2017-06-14 Canon Kabushiki Kaisha Method for treating raw-material powder, apparatus for treating raw-material powder, and method for producing object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3178585A1 (en) 2015-12-10 2017-06-14 Canon Kabushiki Kaisha Method for treating raw-material powder, apparatus for treating raw-material powder, and method for producing object
US10421156B2 (en) 2015-12-10 2019-09-24 Canon Kabushiki Kaisha Apparatus for treating raw-material powder, apparatus for treating raw-material powder, and method for producing object

Similar Documents

Publication Publication Date Title
CN105945281B (en) The deposition forming machining manufacture of part and mold
US6861613B1 (en) Device and method for the preparation of building components from a combination of materials
Atwood et al. Laser engineered net shaping (LENS™): A tool for direct fabrication of metal parts
Karunakaran et al. Rapid manufacturing of metallic objects
Jeng et al. Mold fabrication and modification using hybrid processes of selective laser cladding and milling
DE19953000C2 (en) Method and device for the rapid production of bodies
Zhang et al. Fundamental study on plasma deposition manufacturing
WO2018091000A1 (en) Combined additive manufacturing method applicable to parts and molds
Lewis et al. Directed light fabrication
Karapatis et al. Direct rapid tooling: a review of current research
Gadagi et al. A review on advances in 3D metal printing
DE19903436C2 (en) Process for the production of three-dimensional shaped bodies
Dickens Research developments in rapid prototyping
US20190061005A1 (en) High Quality Spherical Powders for Additive Manufacturing Processes Along With Methods of Their Formation
CN101780544A (en) Method for forming refractory metal parts by using laser
Paul et al. Metal additive manufacturing using lasers
JP2002504024A (en) Products made by metal layer welding
JPH11501258A (en) Shape-free products by layer welding
CN102328081A (en) Method for rapidly forming three-dimensional metal parts by high-power lasers
Kreutz et al. Rapid prototyping with CO2 laser radiation
JP2003532539A (en) Method for producing a net near shape mold
Ghosal et al. Study on direct laser metal deposition
Jeng et al. Metal rapid prototype fabrication using selective laser cladding technology
US20190366473A1 (en) Metal additive manufacturing equipment utilizing semi-solid mental formation
CN106636977A (en) Heat-treatment-free pre-hardening plastic mold steel and 3D printing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002