JPH0839125A - Rolling method of hot rolled steel sheet - Google Patents

Rolling method of hot rolled steel sheet

Info

Publication number
JPH0839125A
JPH0839125A JP18011994A JP18011994A JPH0839125A JP H0839125 A JPH0839125 A JP H0839125A JP 18011994 A JP18011994 A JP 18011994A JP 18011994 A JP18011994 A JP 18011994A JP H0839125 A JPH0839125 A JP H0839125A
Authority
JP
Japan
Prior art keywords
rolling
rolled
friction
hot
transverse direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18011994A
Other languages
Japanese (ja)
Inventor
Tomohito Koseki
智史 小関
Toshio Imae
敏夫 今江
Kunio Isobe
邦夫 磯辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18011994A priority Critical patent/JPH0839125A/en
Publication of JPH0839125A publication Critical patent/JPH0839125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To make it possible to substantially decrease the filtrating amt. of edge seam flaws and to decrease margins for edge cutting so as to improve a yield by rolling a material to be rolled in such a manner that the coeffts. of friction of both end areas of this material attain a specific value or below at the time of horizontal rolling of a slab in a hot rough rolling stage thereof. CONSTITUTION:The rolling of the material to be rolled is executed by confining the coeffts. of friction mu of the material to be rolled to <=0.25 to make the restraining force with rolls small and to make the materials on the front and rear surfaces easily deformable in a transverse direction. The material is not only deformed in the rolling direction but is deformed in the transverse direction as well at the end of the material to be rolled. The front and rear surfaces of the material to be rolled are held in contact with work rolls of the rolling mill and are restrained from above and below and, therefore, these surfaces are hardly movable in the transverse direction but the side faces thereof are free surfaces and then the material at the center in the thickness direction is deformed in the transverse direction without receiving the restraint. The material on the end face side falls into its front and rear and the linear creases existing thus far at the side faces of the material to be rolled move to the front and rear surfaces thereof and infiltrate toward the center. The fall-in to the front and rear surfaces is suppressed by making the coeffts. of friction of both end areas small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱延鋼板の圧延方法に
関し、とくに、熱間粗圧延工程で被圧延材の側面に発生
した線状のきずが、該被圧延材の水平圧延による変形で
その表・裏面にまわり込むのを回避させるのに有効な圧
延方法を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rolling hot-rolled steel sheet, and in particular, a linear flaw generated on the side surface of a material to be rolled in a hot rough rolling step is deformed by horizontal rolling of the material to be rolled. Therefore, it proposes an effective rolling method for avoiding wraparound on the front and back surfaces.

【0002】[0002]

【従来の技術】熱延鋼板における表面欠陥のうちエッジ
シームきずといわれているものは、熱延コイルの表・裏
面の幅方向端部付近に発生する圧延方向に沿う線状のき
ずであって、このようなエッジシームきずを有する熱延
鋼板は、要求される表面品質を満足しないため、かかる
領域は切り落とす(耳切り)必要があり、歩留りの著し
い低下を招く原因になっていた。
2. Description of the Related Art Among surface defects in hot-rolled steel sheets, what are called edge seam flaws are linear flaws along the rolling direction which occur near the widthwise ends of the front and back surfaces of the hot-rolled coil. Since the hot rolled steel sheet having such edge seam flaws does not satisfy the required surface quality, it is necessary to cut off (edge cutting) such a region, which causes a significant decrease in yield.

【0003】このようなエッジシームきずは、被圧延材
の加熱の際にその側面部に粗大粒が生成したり、スラブ
鋳造時に発生したきず等が存在するために、被圧延材の
熱間粗圧延工程における水平圧延時に凹凸が生じ線状の
皺が形成される一方、この水平圧延時に、被圧延材の端
部側面が鼓形に変形(バルジング変形)するため被圧延
材のコーナー部が表裏面側に倒れ込み、これが被圧延材
の幅端部からその中央へと入り込んでくることが原因に
なって発生するものである。
In such edge seam flaws, coarse grains are generated on the side surface of the material to be rolled when the material to be rolled is heated, and flaws and the like generated during slab casting are present. Therefore, hot rough rolling of the material to be rolled is performed. While horizontal wrinkles are generated during the horizontal rolling in the process, linear wrinkles are formed, while at the time of this horizontal rolling, the edge side surface of the rolled material is deformed into a drum shape (bulging deformation), so the corners of the rolled material are front and back surfaces. It is caused by falling to the side and entering from the width end of the material to be rolled into the center thereof.

【0004】熱延鋼板の圧延に際して、エッジシームき
ずを被圧延材の表裏面へ回り込むのを抑制する方法とし
ては従来から多数の提案がなされている。
Many proposals have hitherto been made as a method of suppressing the edge seam flaws from wrapping around the front and back surfaces of the material to be rolled when rolling the hot rolled steel sheet.

【0005】その一つとして例えば特開平1−1504
03号公報には、熱間粗圧延工程において圧延材板側端
部とロールとの間に潤滑剤を供給しながら圧延を行い、
これによって圧延材の表裏とロールとの間の摩擦係数を
下げ、被圧延材のバルジング変形を小さくすることによ
って材料の表裏面側への回り込みを抑制する方法が開示
されている。
As one of them, for example, Japanese Patent Laid-Open No. 1-1504
No. 03 gazette, rolling is performed while supplying a lubricant between a roll material plate side end portion and a roll in a hot rough rolling step,
As a result, a method is disclosed in which the friction coefficient between the front and back of the rolled material and the roll is reduced, and the bulging deformation of the material to be rolled is reduced to prevent the material from wrapping around to the front and back sides.

【0006】ところが、この方法においては、被圧延材
とロールとの摩擦係数の値については具体的な明示がな
く単に潤滑を施す形式のものであるから、エッジシーム
きずの防止に関しては、未だ十分なものとはいえないの
が現状であった。
However, in this method, the value of the coefficient of friction between the material to be rolled and the roll is not specified, and the method is simply lubrication. Therefore, the prevention of edge seam flaws is still insufficient. The reality was that it was not a thing.

【0007】また、この方法は、潤滑剤を効率よく使用
するという観点からはその適正使用量が存在するにもか
かわらず、この点についても何も触れられておらず、経
済的な圧延作業を実施するのは不可能であった。
[0007] In addition, in this method, although there is an appropriate amount of the lubricant used from the viewpoint of efficiently using the lubricant, nothing is touched on this point, and economical rolling work is performed. It was impossible to do.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、熱延
鋼板を製造する際の従来技術が抱えている上述した問
題、すなわち、熱間粗圧延工程における水平圧延時に、
被圧延材の側面に生じた線状のきずがその表裏面に回り
込むのを防止できる新規な圧延方法を提案するところに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art in producing hot-rolled steel sheets, that is, during horizontal rolling in the hot rough rolling step.
A new rolling method is proposed which can prevent linear flaws generated on the side surface of the rolled material from wrapping around the front and back surfaces thereof.

【0009】[0009]

【課題を解決するための手段】この発明は、スラブを用
いて熱延鋼板を製造するに当たり、上記スラブの熱間粗
圧延工程における水平圧延の際に、被圧延材の両端域の
摩擦係数(μ)を0.25以下となるようにして圧延するこ
とを特徴とする熱延鋼板の圧延方法であり、その熱間粗
圧延工程における水平圧延の際には、被圧延材の幅方向
における平均摩擦係数(平均μ)が下記式を満足するよ
うにして圧延する方法がとくに好ましい。
According to the present invention, when a hot rolled steel sheet is manufactured by using a slab, the friction coefficient (in both end regions of the material to be rolled during horizontal rolling in the hot rough rolling step of the slab ( μ) is 0.25 or less, and is a rolling method for a hot-rolled steel sheet, wherein during horizontal rolling in the hot rough rolling step, the average friction coefficient in the width direction of the material to be rolled. A method of rolling such that (average μ) satisfies the following formula is particularly preferable.

【0010】平均μ>tanθ θ=cos- 1 (1−Δh/2R) ここに、θ:被圧延材とロールの接触角 Δh:被圧延材の圧下量(入側板厚−出側板厚) R:ワークロールの半径Mean μ> tan θ θ = cos −1 (1-Δh / 2R) where θ: contact angle between rolled material and roll Δh: amount of reduction of rolled material (sheet thickness at inlet side-sheet thickness at outlet side) R : Work roll radius

【0011】[0011]

【作用】熱間粗圧延工程における水平圧延の際、被圧延
材の幅端部では材料が圧延方向に変形するだけでなく幅
方向にも変形する。その時、被圧延材の表・裏面は圧延
機の作業ロールに接触、上下より拘束されているので幅
方向には移動しにくいが、その側面は自由表面になって
いるため、厚さ方向中央の材料は拘束を受けずに幅方向
に変形する。
In horizontal rolling in the hot rough rolling step, not only the material is deformed in the rolling direction but also in the width direction at the width end of the material to be rolled. At that time, the front and back surfaces of the material to be rolled contact the work rolls of the rolling mill and are constrained from above and below, so it is difficult to move in the width direction, but since the side surface is a free surface, The material deforms in the width direction without being restrained.

【0012】そして、このような変形が進行していくと
被圧延材のコーナー部近傍を含む端面側の材料が図1に
示すようにその表裏に倒れ込んでいくことになり、これ
によって、被圧延材1の側面に存在していた線状の皺が
その表裏面へ移動し、水平圧延のたびに相対的に皺が幅
方向端部から中央へ向けて回り込んでくることになる。
Then, as such deformation progresses, the material on the end face side including the vicinity of the corner portion of the material to be rolled falls down to the front and back as shown in FIG. 1, whereby the material to be rolled is rolled. The linear wrinkles existing on the side surface of the material 1 move to the front and back surfaces thereof, and the wrinkles relatively wrap around from the end in the width direction toward the center every horizontal rolling.

【0013】本発明においては、熱間粗圧延工程におけ
る水平圧延の際に、被圧延材のとくに両端部の摩擦係数
μを0.25以下にし、被圧延材の表裏面でのロールとの拘
束を小さくして表裏面の材料についても幅方向に変形し
やすくしたので、バルジング変形の変形量が図2に示す
ように小さくなり被圧延材の側面が表裏面へ倒れ込むの
が抑制される。
In the present invention, during horizontal rolling in the hot rough rolling step, the coefficient of friction μ of the material to be rolled, particularly at both ends, is set to 0.25 or less, and the constraint between the material and the roll on the front and back surfaces of the material is reduced. Since the materials on the front and back surfaces are also easily deformed in the width direction, the amount of bulging deformation is small as shown in FIG. 2, and the side surfaces of the rolled material are prevented from falling to the front and back surfaces.

【0014】図3は被圧延材の両端部における摩擦係数
(ロールとの)とバルジング量の関係を示したグラフで
ある。
FIG. 3 is a graph showing the relationship between the friction coefficient (with the roll) and the bulging amount at both ends of the material to be rolled.

【0015】ここで示した結果は、矩形の純鉛素材の表
裏面に種々の潤滑剤を塗布して表面状態を変化させ、常
温において1パスで圧延した場合の結果であり、バルジ
ング量については圧延後の側面の凸部の高さDと板厚H
の比D/Hで評価し、摩擦係数μは圧延荷重を基にし
て、以下に示す式(1) 〜(3) から混合摩擦条件の圧延理
論を用いて算出したものである。
The results shown here are the results obtained by applying various lubricants to the front and back surfaces of a rectangular pure lead material to change the surface condition and rolling in one pass at room temperature. Height D of the convex portion on the side surface after rolling and plate thickness H
The friction coefficient μ is calculated based on the rolling load from the following equations (1) to (3) using the rolling theory under the mixed friction condition.

【0016】 h・(dq/dφ)=R′・K・(2φ・ω±λ) ---(1) λ=min (2μ・s/K, 1) ---(2) s=q+K・ω ---(3) ここに、h:板厚 K:材料の2次元降伏応力 R′:偏平ロール半径 q:水平圧力 s:法線圧力 φ:ロール表面の法線角度 ω:ロール表面の摩擦応力と材料の降伏応力で定義され
る関数
H · (dq / dφ) = R ′ · K · (2φ · ω ± λ) --- (1) λ = min (2μ · s / K, 1) --- (2) s = q + K・ Ω --- (3) where h: plate thickness K: two-dimensional yield stress of material R ′: flat roll radius q: horizontal pressure s: normal pressure φ: normal angle of roll surface ω: roll surface Function defined by the frictional stress of the material and the yield stress of the material

【0017】上掲図3における結果より、スラブの熱間
圧延におけるとくに熱間粗圧延工程では被圧延材とロー
ルとの摩擦係数が0.3〜0.4になるのが一般的であ
るのに対して、かかる摩擦係数(μ)が0.25以下の
場合にはバルジング変形による材料の倒れ込みが非常に
小さくなり、エッジシームきずの発生を防止するのに有
利であることが明らかである。
From the results shown in FIG. 3 above, it is general that the coefficient of friction between the material to be rolled and the roll becomes 0.3 to 0.4 particularly in the hot rough rolling step in the hot rolling of the slab. On the other hand, when the friction coefficient (μ) is 0.25 or less, the collapse of the material due to the bulging deformation becomes extremely small, which is advantageous for preventing the occurrence of edge seam flaws.

【0018】ここに、水平圧延時において摩擦係数が小
さすぎると被圧延材がロールに噛み込まれる際にスリッ
プして圧延できなくなる可能性があるので、被圧延材の
幅方向における平均摩擦係数(平均μ)は下記の(4) ,
(5) 式を満足するように設定するのが好ましい。
If the friction coefficient is too small during horizontal rolling, there is a possibility that the material to be rolled slips when it is bitten by the rolls and cannot be rolled. Therefore, the average coefficient of friction in the width direction of the material to be rolled ( Average μ) is (4),
It is preferable to set so as to satisfy the expression (5).

【0019】 平均μ>tanθ ---(4) θ=cos- 1 (1−Δh/2R) ---(5) θ:被圧延材とロールの接触角 Δh:被圧延材の圧下量 (入側板厚−出側板厚) R:作業ロール半径Average μ> tan θ --- (4) θ = cos -1 (1-Δh / 2R) --- (5) θ: Contact angle between rolled material and roll Δh: Reduction amount of rolled material ( Inlet plate thickness-Ejection plate thickness) R: Work roll radius

【0020】被圧延材の両端部の摩擦係数μを0. 25
以下にし、かつ、上記の式を満足することによって良好
な噛み込みを確保した状態で品質の良好な熱延鋼板が圧
延できることとなる。
The coefficient of friction μ at both ends of the rolled material is 0.25
By satisfying the following expression and satisfying the above expression, it is possible to roll a hot-rolled steel sheet of good quality while ensuring good biting.

【0021】摩擦係数μを0.25以下にする領域は、
被圧延材の幅端から100mm程度の範囲とするのがよい
が、より好ましくは幅端から50mm程度の範囲である。
The region where the coefficient of friction μ is 0.25 or less is
The width of the material to be rolled is preferably about 100 mm from the width end, and more preferably about 50 mm from the width end.

【0022】摩擦係数μを0. 25以下にするための手
段としては、上記の範囲において潤滑油を板幅端部にか
かる条件の下で供給するようにするか、あるいは、圧延
前のデスケーリングを行わないようにする。
As means for reducing the friction coefficient μ to 0.25 or less, the lubricating oil in the above range is supplied under the conditions applied to the plate width end portion, or the descaling before rolling is performed. Do not do.

【0023】[0023]

【実施例】【Example】

実施例1 表面品質に対する要求が厳しく、エッジシームきずが発
生しやすいステンレス熱延鋼板 (鋼種:SUS 430 ,仕上
げ板厚4. 0mm, 幅1200mm) を製造すべく、そのス
ラブを熱間粗圧延の7パスで厚さ200mmから30mmま
で圧延するに際してその2パス〜4パス目で被圧延材の
幅端部から50mmの領域に潤滑油を供給しつつ圧延を行
い( 摩擦係数は0.21、圧延前のデスケーリングは実
施せず)、次いで仕上げ圧延を施して製品板とし、得ら
れた板 (酸洗したもの) についてのエッジシームきずの
発生状況について調査した。
Example 1 In order to produce a stainless hot-rolled steel sheet (steel type: SUS 430, finished sheet thickness: 4.0 mm, width: 1200 mm) in which the surface quality is strict and edge seam flaws are likely to occur, the slab is subjected to hot rough rolling 7 When rolling from a thickness of 200 mm to 30 mm in a pass, rolling is performed in the second to fourth passes while supplying lubricating oil to the region of 50 mm from the width end of the material to be rolled (friction coefficient is 0.21, before rolling No descaling was performed), and then final rolling was performed to obtain a product plate, and the resulting plate (pickled) was examined for the occurrence of edge seam flaws.

【0024】その結果を、圧延前にデスケーリングを実
施し無潤滑で圧延を行った場合 (従来法:摩擦係数0.
32) 、圧延前にデスケーリングを実施し潤滑圧延を行
った場合 (比較法1:摩擦係数0.26) および圧延前
にデスケーリングを実施せず無潤滑圧延を行った場合
(比較法2:摩擦係数0. 28) の結果とともに図4に
示す。なお、図4における結果は各方式で得られたコイ
ル10本につき、そのコイルの両側端における平均値を
示したものである。
The results are shown in the case of performing descaling before rolling and rolling without lubrication (conventional method: friction coefficient of
32), when descaling was performed before rolling and lubrication rolling was performed (Comparative method 1: friction coefficient 0.26) and when non-lubricating rolling was performed without descaling before rolling.
It is shown in FIG. 4 together with the result of (Comparative method 2: Friction coefficient 0.28). The results in FIG. 4 are the average values of the 10 coils obtained by each method at both ends of the coil.

【0025】図4より明らかなにように、本発明にした
がって圧延を行った場合には、線状きずの回り込み量は
7mm程度であって、従来よりも約40%程度小さくなる
ことが確認できた。
As is clear from FIG. 4, when rolling is carried out in accordance with the present invention, it is confirmed that the wraparound amount of the linear flaw is about 7 mm, which is about 40% smaller than the conventional one. It was

【0026】実施例2 実施例1と同様のステンレス熱延鋼板 (仕上げ板厚4.
0mm, 幅1200mm)を製造すべく、そのスラブを熱間
粗圧延の7パスで厚さ200mmから30mmまで圧延する
に際してその2パス〜4パス目で被圧延材の幅端部から
50mmの領域に潤滑油を供給しつつ圧延を行い( 摩擦係
数は0.19,板幅方向における平均摩擦係数μは0.
26,圧延前のデスケーリングは実施しない条件) 、次
いで仕上げ圧延を施して製品板とし、得られた板 (酸洗
したもの) についてのエッジシームきずの発生状況につ
いて調査した。
Example 2 The same stainless hot-rolled steel sheet as in Example 1 (finished plate thickness 4.
0 mm, width 1200 mm), when rolling the slab from 200 mm to 30 mm in thickness by 7 passes of hot rough rolling, the width of the rolled material is 50 mm from the width end of the second pass through 4 passes. Rolling is performed while supplying lubricating oil (friction coefficient is 0.19, average friction coefficient μ in the plate width direction is 0.
26, the condition that descaling before rolling is not performed), and then finish rolling was performed to obtain a product plate, and the occurrence state of edge seam flaws in the obtained plate (pickled) was investigated.

【0027】その結果を、圧延前にデスケーリングを実
施し無潤滑で圧延を行った場合 (従来法:摩擦係数0.
32) 、圧延前にデスケーリングを実施し潤滑圧延を行
った場合 (比較法1:摩擦係数0.26) および圧延前
にデスケーリングを実施せず無潤滑圧延を行った場合
(比較法2:摩擦係数0. 28) の結果とともに図5に
示す。なお、図5における結果は上掲図4と同様、各方
式で得られたコイル10本につき、そのコイルの両側端
における平均値を示したものである。
The results obtained were subjected to descaling before rolling and rolling without lubrication (conventional method: coefficient of friction of 0.
32), when descaling was performed before rolling and lubrication rolling was performed (Comparative method 1: friction coefficient 0.26) and when non-lubricating rolling was performed without descaling before rolling.
It is shown in FIG. 5 together with the results of (Comparative method 2: Friction coefficient 0.28). Note that the results in FIG. 5 are the same as in FIG. 4 above, showing the average values at both ends of the 10 coils obtained by each method.

【0028】図5より明らかなにように、本発明にした
がって圧延を行った場合には、線状きずの回り込み量は
さらに約6mm程度まで低減されることが確認できた。
As is clear from FIG. 5, it was confirmed that when rolling was carried out according to the present invention, the wraparound amount of the linear flaw was further reduced to about 6 mm.

【0029】[0029]

【発明の効果】以上述べたように本発明によれば、エッ
ジシームきずの回り込み量は従来よりも40%程度低減
できるので、熱延鋼板製品の耳切り代の低減による歩留
りの大幅な向上を図ることができるようになった。
As described above, according to the present invention, the wraparound amount of the edge seam flaw can be reduced by about 40% as compared with the conventional one, so that the yield of the hot rolled steel sheet product can be greatly improved by reducing the edge margin. I was able to do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の圧延方式を適用した場合における被圧延
材の変形状況の説明図である。
FIG. 1 is an explanatory diagram of a deformation state of a material to be rolled when a conventional rolling method is applied.

【図2】本発明に従う圧延方式を適用した場合における
被圧延材の変形状況の説明図である。
FIG. 2 is an explanatory diagram of a deformation state of a material to be rolled when the rolling system according to the present invention is applied.

【図3】摩擦係数とD/Hの関係を示したグラフであ
る。
FIG. 3 is a graph showing a relationship between a friction coefficient and D / H.

【図4】エッジシームきずの回り込み量を比較して示し
た図である。
FIG. 4 is a diagram showing a comparison of wraparound amounts of edge seam flaws.

【図5】エッジシームきずの回り込み量を比較して示し
た図である。
FIG. 5 is a diagram showing a comparison of wraparound amounts of edge seam flaws.

フロントページの続き (72)発明者 磯辺 邦夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内Front page continued (72) Inventor Kunio Isobe 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラブを用いて熱延鋼板を製造するに当
たり、 上記スラブの熱間粗圧延工程における水平圧延の際に、
被圧延材の両端域の摩擦係数(μ)が0.25以下とな
るようにして圧延することを特徴とする熱延鋼板の圧延
方法。
1. When manufacturing a hot rolled steel sheet using a slab, during horizontal rolling in the hot rough rolling step of the slab,
A method for rolling a hot-rolled steel sheet, which comprises rolling so that a friction coefficient (μ) in both end regions of a material to be rolled is 0.25 or less.
【請求項2】 熱間粗圧延過程における水平圧延の際
に、被圧延材の幅方向における平均摩擦係数( 平均μ)
が下記式を満足するようにして圧延する請求項1記載の
圧延方法。 記 平均μ>tanθ θ=cos- 1 (1−Δh/2R) ここに、θ:被圧延材とロールの接触角 Δh:被圧延材の圧下量(入側板厚−出側板厚) R:ワークロールの半径
2. The average friction coefficient (average μ) in the width direction of the material to be rolled during horizontal rolling in the hot rough rolling process.
The rolling method according to claim 1, wherein the rolling is performed so as to satisfy the following formula. Note Average μ> tan θ θ = cos −1 (1-Δh / 2R) where θ: contact angle between rolled material and roll Δh: amount of reduction of rolled material (sheet thickness at entry side-sheet thickness at exit side) R: workpiece Roll radius
JP18011994A 1994-08-01 1994-08-01 Rolling method of hot rolled steel sheet Pending JPH0839125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18011994A JPH0839125A (en) 1994-08-01 1994-08-01 Rolling method of hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18011994A JPH0839125A (en) 1994-08-01 1994-08-01 Rolling method of hot rolled steel sheet

Publications (1)

Publication Number Publication Date
JPH0839125A true JPH0839125A (en) 1996-02-13

Family

ID=16077755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18011994A Pending JPH0839125A (en) 1994-08-01 1994-08-01 Rolling method of hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JPH0839125A (en)

Similar Documents

Publication Publication Date Title
EP1289685B1 (en) Hot rolling thin strip
JPH0839125A (en) Rolling method of hot rolled steel sheet
GB2114034A (en) Process and pickling line for production of metal strip from hot-rolled strip, more particularly wide hot-rolled strip
JP3221790B2 (en) Rolling method and rolling device for steel sheet
JP3298730B2 (en) Manufacturing method of austenitic stainless steel sheet with few surface defects
JP2758753B2 (en) Vertical roll for hot rolling and width rolling method using this roll
JP3337966B2 (en) Hot or warm rolling method and hot or warm rolling equipment for strip metal sheet
JP3733108B2 (en) Work roll online grinding apparatus, work roll online grinding method, computer program, and computer-readable recording medium
JP3504425B2 (en) Method for producing stainless steel sheet capable of reducing edge seam flaws
JP2726593B2 (en) Manufacturing method of high gloss metal plate
JP3344281B2 (en) Hot rolling method for metal sheet
JP3221561B2 (en) Manufacturing method of stainless steel sheet
JP2692543B2 (en) Chamfering rolling mill and corner chamfering method of continuously cast slab
JP2505188B2 (en) Hot rolling method for stainless steel sheet
JPH1094811A (en) Method for deciding rolling order of plate in hot rolling continued process
JP3056466B2 (en) Anvil for stainless steel slab width press
JP3265977B2 (en) Hot finish rolling method for hot rolled steel strip
JPH09206871A (en) Anvil for width press of hot slab
JP3288220B2 (en) Cold tandem rolling method and cold tandem rolling mill
JP3067944B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JPH10146602A (en) Manufacture of hot rolled high tensile steel sheet using continuous hot rolling process
JP2002086203A (en) Work roll for rolling, and rolling method
JP3358871B2 (en) Manufacturing method of stainless steel strip
JPS6238705A (en) Hot finish rolling method for austenitic stainless steel
JPH06241B2 (en) Hot rolling method for stainless steel