JPH083791A - Barrel type electroplating method - Google Patents
Barrel type electroplating methodInfo
- Publication number
- JPH083791A JPH083791A JP14032894A JP14032894A JPH083791A JP H083791 A JPH083791 A JP H083791A JP 14032894 A JP14032894 A JP 14032894A JP 14032894 A JP14032894 A JP 14032894A JP H083791 A JPH083791 A JP H083791A
- Authority
- JP
- Japan
- Prior art keywords
- barrel
- holes
- plating
- processed
- diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、バレル式電気メッキ法
に関するものである。FIELD OF THE INVENTION The present invention relates to a barrel type electroplating method.
【0002】[0002]
【従来の技術】一般的に多量の小物品にメッキを施す場
合には、バレル式電気メッキ法が用いられる。バレル式
電気メッキ法は、被処理物およびメディアをバレル内に
入れ、バレルをメッキ槽内のメッキ液中に浸漬し、バレ
ルを回転させて内部の被処理物とメディアを撹拌させな
がら、バレルに取付けられた電極からメディアを介して
被処理物に通電し、被処理物表面上にメッキ被膜を形成
するものである。バレルは、通常その断面形状を多角形
にするが、断面形状が三角形または四角形等のように角
の数が少ない場合には、バレル回転の際、被処理物とメ
ディアの撹拌がスムーズに行われず、被処理物に割れ、
欠けが生じ、歩留りが悪化することがある。また、12角
形や15角形等角の数が多くなり断面形状が円に近くなる
と、被処理物とメディアの撹拌が十分行われず、メッキ
膜の表面状態が悪化する。そのため、バレルの断面形状
は、5角形、6角形、8角形のものが用いられており、
中でも6角形状のものを使用することが多い。2. Description of the Related Art In general, when a large amount of small articles are plated, a barrel type electroplating method is used. In the barrel type electroplating method, the object to be processed and the medium are placed in the barrel, the barrel is immersed in the plating solution in the plating tank, and the barrel is rotated to agitate the object to be processed and the medium while the barrel is electroplated. Electric current is applied to the object to be processed from the attached electrode through the medium to form a plating film on the surface of the object to be processed. The barrel usually has a polygonal cross-sectional shape, but if the cross-sectional shape has a small number of corners such as a triangle or a quadrangle, the object to be processed and the media will not be smoothly stirred during barrel rotation. , Cracked on the object to be processed,
Chips may occur and yield may deteriorate. Further, when the number of 12-sided or 15-sided equiangular shapes increases and the cross-sectional shape becomes close to a circle, the object to be processed and the medium are not sufficiently stirred, and the surface state of the plating film deteriorates. Therefore, the sectional shape of the barrel is pentagonal, hexagonal, or octagonal.
Of these, hexagonal ones are often used.
【0003】バレルはメッキを施している間は回転運動
を行い、バレル内部で被処理物とメディアが十分に撹拌
される。図1はバレルの模式図であるが、バレルの回転
軸A−Aは、断面形状の中心から外れており、偏心状態
でバレルが回転することになる。偏心のバレル回転によ
り、バレル内部のメディア及び被処理物は撹拌されなが
ら左右に移動することになる。バレルには多数の孔が開
けられており、メッキを施している間、メッキ液が十分
にバレル内部と外部で交換できるようにし、バレル内の
メッキ液とバレル外のメッキ液とが同じ金属イオン濃度
を保つようになっている。孔は、通常等間隔に配列され
ており、その大きさはメッキ中にメディアがバレルの外
に飛び出してしまわないようにメディアよりも小さくし
なければならない。The barrel makes a rotary motion during the plating process, and the object to be treated and the medium are sufficiently stirred inside the barrel. Although FIG. 1 is a schematic view of the barrel, the rotation axis AA of the barrel is off the center of the sectional shape, and the barrel rotates in an eccentric state. Due to the eccentric rotation of the barrel, the medium inside the barrel and the object to be processed move left and right while being stirred. There are many holes in the barrel so that the plating solution can be exchanged sufficiently inside and outside the barrel during plating, and the plating solution inside the barrel and the plating solution outside the barrel have the same metal ion. It is designed to maintain the concentration. The holes are usually evenly spaced and their size must be smaller than the media to prevent the media from jumping out of the barrel during plating.
【0004】メディアは電極から被処理物へと電気を導
くために導電性物質からなっており、通常その形状は球
形である。バレルの回転により被処理物とメディアは撹
拌され、被処理物とメディアとの接点はある1ケ所に留
まることはない。従って、メッキ終了後の被処理物に接
点跡が残ることなく、均一なメッキ被膜を形成すること
が可能となる。メディアの大きさは通常、直径5〜15mm
のものが使用される。メディア径が5mmより小さくなる
と、メディアのバレルからの飛び出しを防ぐためバレル
の孔径も小さくしなければならないが、バレルに小さい
孔を加工するのは難しくなる。また、メディア径が15mm
より大きくなると、バレル回転時にメディアと被処理物
が撹拌される際、メディアが被処理物にぶつかる衝撃力
が大きくなり被処理物に割れや欠けが生じ易くなる。The medium is made of a conductive material for conducting electricity from the electrodes to the object to be processed, and usually has a spherical shape. The object to be processed and the medium are agitated by the rotation of the barrel, and the contact point between the object to be processed and the medium is not limited to one place. Therefore, it is possible to form a uniform plating film without leaving a contact mark on the object to be processed after plating. Media size is usually 5-15mm in diameter
Is used. When the media diameter is smaller than 5 mm, the hole diameter of the barrel must be reduced in order to prevent the media from jumping out of the barrel, but it becomes difficult to machine a small hole in the barrel. Also, the media diameter is 15 mm
When it becomes larger, when the media and the object to be processed are agitated during rotation of the barrel, the impact force with which the medium hits the object to be processed becomes large, and the object to be processed is likely to be cracked or chipped.
【0005】被処理物が扁平形状の場合には、バレル式
電気メッキ法によりメッキを行う際、バレル回転中に被
処理物がバレル内壁に貼り付いてしまうことがある。こ
うなると被処理物のバレルに貼り付いた面にはメッキす
ることができなくなってしまい、正常なメッキを行うこ
とができない。その様な状態を防止するため、通常はバ
レルの内壁に角錐状の突起(以下、ダイヤカットとい
う)を多数設け、被処理物の貼り付きを防止しており、
その形状は被処理物の大きさによって決定される。即
ち、扁平状被処理物がバレル内壁に貼り付いてしまわな
いように、バレル内壁面に存在する平面の面積が、扁平
状被処理物の一番大きな面の面積よりも小さくなるよう
に、ダイヤカットの形状を決定しなければならない。When the object to be processed has a flat shape, the object to be processed sometimes sticks to the inner wall of the barrel during barrel rotation during plating by the barrel type electroplating method. In this case, the surface of the object to be processed stuck to the barrel cannot be plated, and normal plating cannot be performed. In order to prevent such a state, usually a large number of pyramid-shaped projections (hereinafter, referred to as diamond cuts) are provided on the inner wall of the barrel to prevent sticking of the object to be processed.
The shape is determined by the size of the object to be processed. That is, the area of the plane existing on the inner wall surface of the barrel is smaller than the area of the largest surface of the flat object so that the flat object does not stick to the inner wall of the barrel. The shape of the cut has to be determined.
【0006】通常、ダイヤカットは四角錐形状のものが
採用され、それが隙間なく配列されている。図2(a)
にこのダイヤカットの平面図、図2(b)にそのB−B
線縦断面図を示す。隣り合うダイヤカット同志の頂点間
距離が、ダイヤカットの頂点間の最短距離Dとなる。こ
の距離はダイヤカットを構成する正四角錐の底面の一辺
の距離に等しい。ダイヤカットの高さはその四角錐の高
さである。ダイヤカットの頂点は、丸くなっていても平
面になっていてもよい。ただし、平面になっている場合
には、その平面の面積が余り大きくならないようにしな
ければならない。その時のダイヤカットの頂点は平面の
中心である。Normally, diamond cuts having a quadrangular pyramid shape are adopted, and they are arranged without a gap. Figure 2 (a)
A plan view of this diamond cut is shown in FIG.
A line longitudinal section is shown. The distance between the vertices of adjacent diamond cuts is the shortest distance D between the diamond cut vertices. This distance is equal to the distance on one side of the bottom surface of the regular square pyramid forming the diamond cut. The height of the diamond cut is the height of the quadrangular pyramid. The vertices of the diamond cut may be round or flat. However, if it is a flat surface, the area of the flat surface must not be too large. The top of the diamond cut at that time is the center of the plane.
【0007】[0007]
【発明が解決しようとする課題】しかしながらバレル式
電気メッキを行っている際、バレル回転中にメディアが
孔を塞いでしまったり、ダイヤカットの谷間に嵌まり込
んでしまうことがある。メディアが孔を塞いでしまう
と、バレルの内部と外部とのメッキ液の出入りが悪くな
ってしまい、メッキが進むに従ってバレル内部のメッキ
液の金属イオン濃度が低下し、ひいてはメッキ効率の低
下、メッキの表面状態の悪化が生じる。またメディアが
孔を塞ぐと、メディアは孔の配列通りに整列することに
なり、別のメディアは整列したメディアの上に積み重な
っていくため、メディアの動きが悪くなり撹拌性が悪化
する。また、メディアがダイヤカットの谷間に嵌まり込
んでしまうと、ダイヤカットの谷間に孔が存在する時に
はメディアが孔を塞いでしまった時と同様な状態にな
り、メッキ効率の低下、表面状態の悪化を引き起こす。
さらにダイヤカットの谷間に嵌まり込んだメディアは、
バレルの回転と共に上方に移動して重力により上方から
落下し、被処理物とメディアの撹拌性が悪化し、メッキ
厚さのバラツキが生じ易くなり、メッキ歩留りが悪化す
る。またメディアが落下した場所に被処理物が存在した
ときには、被処理物が割れたり、欠けたりする不利が生
じる。またメディアが孔を塞いでしまったり、ダイヤカ
ット谷間に嵌まり込んでしまうと、撹拌性が悪くなると
共に、バレル回転に伴うメディアと被処理物の左右の動
きをも妨げてしまうことになる。この左右の移動が十分
に行われないと、メディアや被処理物はバレルの隅に停
滞してめっき厚さのバラつきが生じ易くなる。本発明
は、かかる多くの問題点を抱えるバレル式電気メッキ法
を改良したもので、ダイヤカットとバレルの孔とメディ
アの関係を特定の数値とすることにより、メッキ効率の
良い、割れ、欠け等などの発生を防止した歩留りが良
く、さらにはメッキ膜厚にバラつきの少ないバレル式電
気メッキ法を提供するものである。However, during barrel type electroplating, the medium may block a hole or fit into a valley of a diamond cut while the barrel is rotating. If the media blocks the holes, the flow of the plating solution into and out of the barrel will become poor, and the metal ion concentration of the plating solution inside the barrel will decrease as the plating progresses. Deterioration of the surface condition occurs. Further, when the media block the holes, the media are aligned according to the arrangement of the holes, and other media are piled up on the aligned media, so that the media do not move smoothly and the agitation property deteriorates. Also, if the media fits in the valleys of the diamond cut, when there are holes in the valleys of the diamond cuts, it will be in the same state as when the media has blocked the holes, which will reduce the plating efficiency and reduce the surface condition. Cause worse.
Furthermore, the media fitted in the valley of the diamond cut is
As the barrel rotates, it moves upward and falls from above due to gravity, agitation of the object to be processed and the media deteriorates, variations in the plating thickness easily occur, and the plating yield deteriorates. Further, when the object to be processed is present at the place where the medium has dropped, the object to be processed is disadvantageously cracked or chipped. Further, if the medium blocks the hole or fits in the diamond cut valley, the agitation property deteriorates, and the lateral movement of the medium and the object to be processed due to the rotation of the barrel is also hindered. If the left and right movements are not sufficiently performed, the media and the object to be processed are stagnated at the corners of the barrel, and the plating thickness is likely to vary. The present invention is an improvement on the barrel type electroplating method which has many problems as described above. By setting the relationship between the diamond cut, the hole of the barrel and the medium to a specific value, good plating efficiency, cracking, chipping, etc. The present invention provides a barrel-type electroplating method which prevents the occurrence of such a phenomenon and has a high yield, and further has less variation in the plating film thickness.
【0008】[0008]
【課題を解決するための手段】本発明者は上記問題点を
解決すべく鋭意検討した結果、メディアの大きさと孔の
中心間の距離とダイヤカットの形状が適当な関係を満足
すればよいことを見出し諸条件を確立して本発明を完成
したもので、その要旨は、バレル内壁に角錐状の突起
(以下ダイヤカットという)を有し、該ダイヤカット頂
点間の最短距離Dと、バレルに開けられた孔の中心間の
最短間隔Eと、球形メディアの直径Fが、下記式の関係
を満足することを特徴とするバレル式電気メッキ法にあ
る。 21/2 ・D<F および E<FAs a result of earnest studies to solve the above problems, the present inventor has found that the size of the medium, the distance between the centers of the holes, and the shape of the diamond cut should satisfy an appropriate relationship. The present invention has been completed by establishing various conditions, and its gist is to have a pyramid-shaped protrusion (hereinafter referred to as a diamond cut) on the inner wall of the barrel and to provide the shortest distance D between the diamond cut vertices and the barrel. The barrel-type electroplating method is characterized in that the shortest distance E between the centers of the punched holes and the diameter F of the spherical medium satisfy the following equation. 2 1/2 · D <F and E <F
【0009】以下、本発明を詳細に説明する。The present invention will be described in detail below.
【作用】バレル内壁に設けられた孔およびダイヤカット
は、通常それぞれ等間隔で整列されている。ダイヤカッ
ト頂点間の最短距離Dとは、整列されたダイヤカットの
頂点の一番近い隣り合うダイヤカットの頂点同士の距離
である。孔の中心間の最短間隔Eとは、整列した孔の一
番近い隣り合う孔同士の中心間の距離である。球形メデ
ィアの直径Fがダイヤカットの頂点間の最短距離Dの2
1/2 倍よりも小さいときには、球形メディアがダイヤカ
ットの谷間に嵌まり込んでしまう。反対にFが21/2 ・
Dよりも大きいときには、球形メディアがダイヤカット
の谷間に嵌まり込んでしまうことなく、バレル回転時の
被処理物とメディアとが十分に撹拌され、被処理物の割
れ、欠けを防止し、また、メッキ歩留りを上げることが
できる。また、球形メディアの直径Fが孔の中心間の最
短距離Eよりも小さいときには多数の孔がメディアによ
って塞がれてしまうし、反対にFがEよりも大きいとき
にはメディアによって塞がれる孔が少なくなるため、バ
レルの内部と外部とのメッキ液の交換が十分に行われる
ようになりメッキ効率が上がる。以上の点から、ダイヤ
カットの頂点間の最短距離Dおよび孔の中心間の最短間
隔Eは、上記二式を満足しなければならない。The holes and the diamond cuts provided on the inner wall of the barrel are normally arranged at equal intervals. The shortest distance D between the diamond-cut vertices is the distance between the closest adjacent diamond-cut vertices of the aligned diamond-cut vertices. The shortest distance E between the centers of holes is the distance between the centers of the closest adjacent holes of the aligned holes. The diameter F of the spherical media is 2 which is the shortest distance D between the vertices of the diamond cut.
When it is smaller than 1/2 times, the spherical media fits in the valley of the diamond cut. On the contrary, F is 2 1/2
When it is larger than D, the spherical medium does not fit into the valley of the diamond cut, the object to be processed and the medium are sufficiently agitated during the rotation of the barrel, and cracking and chipping of the object to be processed are prevented. The plating yield can be increased. Further, when the diameter F of the spherical medium is smaller than the shortest distance E between the centers of the holes, a large number of holes are blocked by the medium. On the contrary, when F is larger than E, few holes are blocked by the medium. Therefore, the plating liquid can be exchanged sufficiently between the inside and the outside of the barrel, and the plating efficiency can be improved. From the above points, the shortest distance D between the vertices of the diamond cut and the shortest distance E between the centers of the holes must satisfy the above two equations.
【0010】[0010]
【実施例】以下、本発明の実施態様を実施例を挙げて具
体例を説明するが、本発明はこれら実施例に限定される
ものではない。 (実施例1、比較例1)内径200mm 、長さ500mm の六角
バレルを用いて、15mm×15mm×5mmt の大きさの扁平N
d-Fe-B系永久磁石にNi メッキを施した。このバレル
には直径2.5mmφの孔が4mm間隔で開口しており、ま
た、ダイヤカットとして底面が4mm×4mmで高さが1.5m
mhの四角錐が隙間なく配列されている。即ち、ダイヤカ
ット頂点間の最短距離Dは4mmであり、孔の中心間の最
短間隔Eは6mmである。このバレルに球形メディアとし
て直径6mmφのステンレス製ボールと被処理物であるN
d-Fe-B系磁石を投入してNi メッキ液中に浸漬し、N
i メッキ膜が10μmになるまでNi メッキを行った。比
較例1として、ダイヤカットの形状が7mm×7mmの底面
で高さが3mmh の四角錐であるダイヤカットを施した以
外は実施例1と同じ条件のバレルを用いて実施例1と同
様の条件でメッキを施した。メッキ条件(メッキ時間:
膜厚さ10μmのNi メッキの所要時間)および結果(メ
ッキ膜厚さのバラつきおよび割れ、欠け等の歩留り)を
表1に示した。EXAMPLES The following will describe specific examples of the present invention with reference to examples, but the present invention is not limited to these examples. (Example 1, Comparative Example 1) Using a hexagonal barrel having an inner diameter of 200 mm and a length of 500 mm, a flat N having a size of 15 mm × 15 mm × 5 mmt
The d-Fe-B system permanent magnet was plated with Ni. This barrel has holes with a diameter of 2.5 mm opened at intervals of 4 mm. Also, as a diamond cut, the bottom is 4 mm x 4 mm and the height is 1.5 m.
mh square pyramids are arranged without gaps. That is, the shortest distance D between the diamond cut vertices is 4 mm, and the shortest distance E between the centers of the holes is 6 mm. In this barrel, a spherical ball made of stainless steel with a diameter of 6 mm and an object to be processed N
Put a d-Fe-B system magnet and immerse it in Ni plating solution.
Ni plating was performed until the i plating film became 10 μm. As Comparative Example 1, the same conditions as in Example 1 were used except that a diamond cut having a quadrangular pyramid shape with a diamond cut shape of 7 mm × 7 mm and a height of 3 mmh was used. Plated with. Plating conditions (plating time:
Table 1 shows the time required for Ni plating with a film thickness of 10 μm) and the results (yield of variations in plating film thickness and cracks, chips, etc.).
【0011】(実施例2、比較例2)内径200mm φ、長
さ500mm の六角バレルを用いて、10mm×10mm×6mmt の
大きさの扁平Nd-Fe-B系永久磁石にNi メッキを施し
た。そのバレルには、直径2mmの孔が4mm間隔で施され
ており、また、ダイヤカットとして底面が3mm×3mmで
高さが1.5mmhの四角錐が隙間なく整列している。即ち、
ダイヤカット頂点間の最短距離は3mmであり、孔の中心
間の最短間隔は4mmである。このようなバレルにメディ
アとして直径5mmφのステンレス製ボールと被処理物で
あるNd-Fe-B系磁石を投入してNi メッキ液中に浸漬
し、Ni メッキ膜厚さが10μmになるまでメッキを施し
た。これを実施例2としてメッキ条件および結果を表1
に併記した。比較例2として、直径2mmの孔を7mm間隔
で施した以外は実施例2と同じバレルを用いて実施例1
と同じ磁石と条件でメッキを施し、メッキ条件および結
果を表1に併記した。(Example 2, Comparative Example 2) Using a hexagonal barrel having an inner diameter of 200 mmφ and a length of 500 mm, a flat Nd-Fe-B system permanent magnet having a size of 10 mm × 10 mm × 6 mmt was plated with Ni. . The barrel has holes with a diameter of 2 mm at intervals of 4 mm, and as diamond cuts, square pyramids with a bottom surface of 3 mm x 3 mm and a height of 1.5 mmh are aligned without any gap. That is,
The shortest distance between the diamond cut vertices is 3 mm and the shortest distance between the centers of the holes is 4 mm. A stainless steel ball having a diameter of 5 mmφ and an Nd-Fe-B magnet as an object to be processed are put into such a barrel and immersed in a Ni plating solution, and plating is performed until the Ni plating film thickness becomes 10 μm. gave. Using this as Example 2, the plating conditions and results are shown in Table 1.
It was also described in. As Comparative Example 2, the same barrel as in Example 2 was used except that holes having a diameter of 2 mm were formed at intervals of 7 mm.
Plating was performed under the same magnet and conditions as in Example 1, and the plating conditions and results are also shown in Table 1.
【0012】[0012]
【表1】 [Table 1]
【0013】[0013]
【発明の効果】本発明により、メッキ効率がよく、ま
た、メッキ膜のバラツキが少なく、さらには、割れ、欠
けが少ないバレル式電気メッキ法を提供することができ
る。According to the present invention, it is possible to provide a barrel type electroplating method which has a high plating efficiency, a small variation in the plating film, and a small number of cracks and chips.
【図1】メッキ浴槽に軸方向を偏心して取り付けたバレ
ルを表す側面図である。FIG. 1 is a side view showing a barrel attached to a plating bath with an eccentricity in an axial direction.
【図2】本発明のダイヤカットを示す(a)平面図、
(b)B−B線断面図である。FIG. 2 (a) is a plan view showing a diamond cut of the present invention,
(B) It is a BB line sectional view.
Claims (1)
ットという)を有し、該ダイヤカット頂点間の最短距離
Dと、バレルに開けられた孔の中心間の最短間隔Eと、
球形メディアの直径Fが、下記式の関係を満足すること
を特徴とするバレル式電気メッキ法。 21/2 ・D<F および E<F1. A barrel-shaped inner wall having pyramidal protrusions (hereinafter referred to as a diamond cut), a minimum distance D between the diamond cut vertices, and a minimum distance E between centers of holes formed in the barrel,
A barrel type electroplating method characterized in that the diameter F of the spherical medium satisfies the relationship of the following equation. 2 1/2 · D <F and E <F
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14032894A JP2918451B2 (en) | 1994-06-22 | 1994-06-22 | Barrel type electroplating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14032894A JP2918451B2 (en) | 1994-06-22 | 1994-06-22 | Barrel type electroplating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH083791A true JPH083791A (en) | 1996-01-09 |
JP2918451B2 JP2918451B2 (en) | 1999-07-12 |
Family
ID=15266270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14032894A Expired - Fee Related JP2918451B2 (en) | 1994-06-22 | 1994-06-22 | Barrel type electroplating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2918451B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006322061A (en) * | 2005-05-20 | 2006-11-30 | Murata Mfg Co Ltd | Barrel device for plating |
CN107964678A (en) * | 2017-11-30 | 2018-04-27 | 浙江新瑞欣精密线锯有限公司 | A kind of scroll saw sand device |
-
1994
- 1994-06-22 JP JP14032894A patent/JP2918451B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006322061A (en) * | 2005-05-20 | 2006-11-30 | Murata Mfg Co Ltd | Barrel device for plating |
JP4687241B2 (en) * | 2005-05-20 | 2011-05-25 | 株式会社村田製作所 | Barrel equipment for plating |
CN107964678A (en) * | 2017-11-30 | 2018-04-27 | 浙江新瑞欣精密线锯有限公司 | A kind of scroll saw sand device |
Also Published As
Publication number | Publication date |
---|---|
JP2918451B2 (en) | 1999-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2549678A (en) | Method of and apparatus for electroforming metal articles | |
US20210262111A1 (en) | Paddle, processing apparatus having the paddle, and method of producing the paddle | |
US3300396A (en) | Electroplating techniques and anode assemblies therefor | |
US20080142374A1 (en) | Apparatus For Recovery Metal | |
KR101506910B1 (en) | Method for anisotropic plating and thin- film coil | |
US2226384A (en) | Process of electrolytically producing foraminous sheets | |
GB1573449A (en) | Reusable electrolysis cathode | |
JPH083791A (en) | Barrel type electroplating method | |
DE3905100A1 (en) | Method and appliance for electrolyte exchange especially in narrow recesses of large-area workpieces | |
US5817220A (en) | Electroplating apparatus | |
US4172780A (en) | Apparatus for treating metal containing waste waters | |
JP5008111B2 (en) | Method for electrolytic coating of continuous casting mold | |
US4139430A (en) | Process of electrodeposition and product utilizing a reusable integrated cathode unit | |
JPH10317197A (en) | Electric nickel for plating, cathode plate for for its production and production | |
KR200228330Y1 (en) | A barrel for electric gilding for small size goods | |
US4144148A (en) | Method and apparatus for treating metal containing waste waters | |
US3616281A (en) | Selective plating of reeds in bulk | |
JP7180345B2 (en) | Plating barrel, plating equipment and method for manufacturing electronic components | |
RU2065509C1 (en) | Method for production of ball-shaped nickel and device for its embodiment | |
US4447298A (en) | Method of operating an electroplating system | |
KR102295173B1 (en) | An apparatus of electrodeposition for manufacturing multi-layer diamond electrodeposited micro tool and a method for manufacturing multi-layer diamond electrodeposited micro tool using thereof | |
JP7155809B2 (en) | Anode equipment, aluminum foil manufacturing equipment, aluminum foil manufacturing method | |
JP2023172513A (en) | Circular vibration sieve machine and powder sieving method | |
JP2024064342A (en) | Barrel plating apparatus | |
JP2022158713A (en) | Horizontal rotation barrel device used for barrel plating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |