JPH083657A - Production of raw material for smelting nickel from nickel-containing matter - Google Patents

Production of raw material for smelting nickel from nickel-containing matter

Info

Publication number
JPH083657A
JPH083657A JP14135794A JP14135794A JPH083657A JP H083657 A JPH083657 A JP H083657A JP 14135794 A JP14135794 A JP 14135794A JP 14135794 A JP14135794 A JP 14135794A JP H083657 A JPH083657 A JP H083657A
Authority
JP
Japan
Prior art keywords
nickel
metal
smelting
raw material
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14135794A
Other languages
Japanese (ja)
Inventor
Michio Yamamoto
山本三千雄
Yoshiaki Chiba
賀章 千葉
Yoichi Watabe
陽一 渡部
Atsushi Kanesaka
淳 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP14135794A priority Critical patent/JPH083657A/en
Publication of JPH083657A publication Critical patent/JPH083657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide a process for producing raw materials for smelting nickel from nickel-contg. matter which is heretofore discarded or is used for reclamation without utilization. CONSTITUTION:The metals obtd. by decomposing the nickel-contg. matter under heating at >=840 deg.C and subjecting the resultant sintered ore together with a flux to reduction melting, thereby separating valuable matter, such as nickel, in the sintered ore as metals and metals, such as manganese and chromium, which hinder the subsequent nickel recovery, as slag are used as the raw material for smelting the nickel. As a result, the nickel and other valuable metals are recovered from the complex nickel raw materials generated from a stage for subjecting mainly the nickel to a wet process treatment, such as nickel plating or nickel smelting and manganese, chromium and phosphorus as impurities are selectively separated with good accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケルメッキやニッ
ケル製錬など主にニッケルを湿式処理する工程から発生
する含ニッケル物から、ニッケル製錬原料を得る技術に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for obtaining a nickel smelting raw material from a nickel-containing material generated mainly from a wet treatment step of nickel such as nickel plating and nickel smelting.

【0002】[0002]

【従来の技術】ニッケルメッキやニッケル製錬など主
に、ニッケルを湿式で取り扱う工程から廃棄物として発
生する含ニッケル物は、形態、形状、性状、品位、組成
など多岐に至り、かつ個々の発生量は総じて少ない。こ
のため、これらの含ニッケル物は分別されることなく一
緒にして取り扱われるのが常である。
2. Description of the Related Art Nickel-containing materials, which are generated as wastes from the wet handling process of nickel, such as nickel plating and nickel smelting, have a wide variety of shapes, shapes, properties, grades, compositions, etc. The amount is generally small. For this reason, these nickel-containing substances are usually handled together without being separated.

【0003】また、これらの含ニッケル物にはマンガン
やクロムが含まれるため、酸溶解し、得た溶液よりニッ
ケルを回収しようとするとマンガンやクロムが障害とな
る。
Further, since these nickel-containing substances contain manganese and chromium, manganese and chromium become obstacles when the solution is acid-dissolved and nickel is recovered from the resulting solution.

【0004】これらのことから、これら含ニッケル物か
らのニッケルなどの有価物の回収は困難とされ、最終処
分地での埋立等が行われている。
For these reasons, it is difficult to recover valuable materials such as nickel from these nickel-containing materials, and landfilling at the final disposal site is carried out.

【0005】また、含ニッケル物は一般に水酸化物、塩
基性の炭酸塩、あるいは硫酸塩など、種々の形態をとる
が、いずれも嵩高く保管、埋め立てなどの処分、或いは
処分地への輸送などのいずれにおいても効率の悪いもの
となっている。
Nickel-containing materials generally take various forms such as hydroxides, basic carbonates, and sulfates, all of which are bulky and stored, landfilled, or transported to a disposal site. In each case, the efficiency is low.

【0006】近年、埋め立て場の確保は困難になってい
るばかりか、環境基準の見直しなども加わり、含ニッケ
ル物の安定化と減容化が必要となってきた。
[0006] In recent years, it has become difficult not only to secure a landfill, but also to review environmental standards and to stabilize and reduce the volume of nickel-containing materials.

【0007】さらに、環境保全と資源の有効利用の観点
からも再資源化が求められている。
Further, recycling is required from the viewpoint of environmental protection and effective use of resources.

【0008】[0008]

【発明が解決しようとする課題】本発明は未利用のまま
廃棄或いは、埋め立てられていた含ニッケル物からのニ
ッケル製錬原料の製造方法の提供を課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for producing a nickel smelting raw material from a nickel-containing material that has been discarded or landfilled without being used.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、含ニッケル物よりニッケル製錬原料として
使用可能な程度のマンガンとクロムしか含まないメタル
を得る方法において、含ニッケル物を840℃以上、好
ましくは1000℃以上で加熱分解し、得た焼鉱をフラ
ックスと共に還元溶融し、焼鉱中のニッケル等の有価物
をメタルとし、マンガン、クロムなどの爾後のニッケル
回収に障害となる金属をスラグとして分離し、得たメタ
ルをニッケル製錬原料とするものであり、スラグとして
CaO−SiO2−FeO系スラグを用いるものであ
る。
The method of the present invention for solving the above problems is a method for obtaining a metal containing only manganese and chromium to the extent that it can be used as a nickel smelting raw material from a nickel-containing material. It is decomposed by heating at 840 ° C or higher, preferably 1000 ° C or higher, and the obtained ore is reduced and melted together with the flux, and valuable materials such as nickel in the ore are used as metals, which may interfere with recovery of nickel such as manganese and chromium. Is used as a smelting raw material for nickel, and CaO—SiO 2 —FeO-based slag is used as the slag.

【0010】[0010]

【作用】本発明では、まず含ニッケル物を加熱分解して
焼鉱を得る。これにより含ニッケル物中に含まれる水酸
化物、炭酸塩、硫酸塩などを酸化物に転換する。次いで
得た焼鉱をフラックスと共に還元溶融し、焼鉱中のニッ
ケル等の有価物をメタルとし、マンガン、クロムなどの
爾後のニッケル回収に障害となる金属をスラグとして分
離する。このようにしてニッケル原料として使用可能な
ニッケル、銅、鉄を主成分とするメタルを得る。
In the present invention, the nickel-containing material is first decomposed by heating to obtain a calcined ore. As a result, hydroxides, carbonates, sulfates, etc. contained in the nickel-containing material are converted into oxides. Next, the obtained burnt ore is reduced and melted together with flux, and valuable substances such as nickel in the burnt ore are used as metals, and metals such as manganese and chromium that interfere with the subsequent recovery of nickel are separated as slag. In this way, a metal containing nickel, copper and iron as main components, which can be used as a nickel raw material, is obtained.

【0011】含ニッケル物を加熱分解する温度は、本発
明の目的より水酸化ニッケル、炭酸ニッケル、硫酸ニッ
ケルなどが酸化物に分解する温度以上であれば良く、含
ニッケル物中のニッケル化合物の形態、用いる炉、エネ
ルギーコストなどにより最適温度はそれぞれ異なる。よ
って、このような条件を勘案して加熱温度を選定する。
For the purpose of the present invention, the temperature at which the nickel-containing material is decomposed by heat is not lower than the temperature at which nickel hydroxide, nickel carbonate, nickel sulfate and the like decompose into oxides. The optimum temperature differs depending on the furnace used, the energy cost, etc. Therefore, the heating temperature is selected in consideration of such conditions.

【0012】ところで、上記ニッケル化合物の中で最も
分解温度の高いものは硫酸ニッケルであり、その分解温
度は840℃である。よって、少なくとも840℃以
上、好ましくは1000℃以上の加熱温度の採用が望ま
しい。
By the way, among the above nickel compounds, the one having the highest decomposition temperature is nickel sulfate, and its decomposition temperature is 840.degree. Therefore, it is desirable to adopt a heating temperature of at least 840 ° C or higher, preferably 1000 ° C or higher.

【0013】ニッケル化合物の酸化物への転換に用いる
うる炉は、例えば、回転ばい焼炉、多段ばい焼炉などで
あり、特にこれらにこだわらない。
The furnace that can be used to convert the nickel compound to the oxide is, for example, a rotary roasting furnace or a multi-stage roasting furnace, and is not particularly limited to these.

【0014】加熱分解操作によりニッケルなどの有価金
属の多くは酸化物となっている。本発明では、これらの
有価金属酸化物を還元してメタルとして回収する。この
ため、還元熔解に際しては、フラックスを用いて熔体ス
ラグの流動性を良好にし、還元度を調節して目的とする
有価金属のみをメタルとする。そして、マンガン、クロ
ムなどのメタルへの分配を最小限にする。
Most of valuable metals such as nickel are converted to oxides by the thermal decomposition operation. In the present invention, these valuable metal oxides are reduced and recovered as metals. Therefore, in the reduction melting, flux is used to improve the fluidity of the molten slag, and the degree of reduction is adjusted so that only the valuable metal of interest is metal. It also minimizes the distribution of metals such as manganese and chromium.

【0015】図1に含ニッケル物のばい焼により得られ
る焼鉱に含まれる主要元素であるニッケル、鉄、銅、そ
して微量元素であるマンガン、クロム、リンなどの各酸
化物の標準生成自由エネルギーの温度−酸素圧線を示
す。この図より有価金属のニッケルと銅、そして不純物
であるクロム、マンガン、リンが還元される温度と酸素
圧、さらには、活量との関係が読み取れる。図に従え
ば、銅、ニッケル、鉄、リン、亜鉛、クロム、マンガ
ン、珪素の順にメタルに還元されることが解る。
FIG. 1 shows the standard free energies of formation of oxides such as nickel, iron and copper which are main elements contained in roasting obtained by roasting a nickel-containing material and manganese, chromium and phosphorus which are trace elements. 2 shows the temperature-oxygen pressure line. From this figure, the relationship between the temperature at which the valuable metals nickel and copper and the impurities chromium, manganese, and phosphorus are reduced, the oxygen pressure, and the activity can be read. According to the figure, it is understood that copper, nickel, iron, phosphorus, zinc, chromium, manganese, and silicon are reduced in this order to the metal.

【0016】また、図より還元開始時の温度と酸素圧と
を推定できる。例えば、鉄は1400℃で酸素圧が10
-10気圧以下、クロムは1500℃で酸素圧が10-13
圧以下、マンガンは1600℃で酸素圧が10-14気圧
以下で還元が始まることが解る。この結果、温度と酸素
圧との調節によりニッケル+銅とマンガン+クロムとを
選択的に分離できることが解る。
The temperature and oxygen pressure at the start of reduction can be estimated from the figure. For example, iron has an oxygen pressure of 10 at 1400 ° C.
It can be seen that reduction starts at -10 atm or less, chromium at 1500 ° C and oxygen pressure of 10 -13 atm or less, and manganese at 1600 ° C and oxygen pressure of 10 -14 atm or less. As a result, it is understood that nickel + copper and manganese + chromium can be selectively separated by adjusting the temperature and the oxygen pressure.

【0017】具体的にはマンガンやクロムなど、以後の
ニッケル回収時に妨害元素となるものをスラグとして分
離することが必要となる。このためにはスラグ組成が極
めて重要となる。通常、前記焼鉱中には多くの鉄を含む
ため、スラグとしてはCaO−SiO2−FeO系とす
ることが好ましく、耐火煉瓦等の条件よりスラグの融点
を1300℃〜1500℃とすることが好ましい。よっ
て、スラグ組成はその融点がこの範囲になるように調整
する。この調整は、常法にCaO/SiO2比とFeO
/SiO2比とを決定する。なお、得られるメタルの融
点は金属組成により、特に銅の含有量により大きく変動
する。銅品位が高い方がメタルの融点が低くなるので望
ましい。
Specifically, it is necessary to separate manganese, chromium or the like, which becomes an interfering element during the subsequent recovery of nickel, as slag. For this purpose, the slag composition is extremely important. Usually, since the slag contains a large amount of iron, it is preferable to use CaO—SiO 2 —FeO slag as the slag. preferable. Therefore, the slag composition is adjusted so that its melting point falls within this range. For this adjustment, the CaO / SiO 2 ratio and the FeO
/ SiO 2 ratio. The melting point of the obtained metal greatly varies depending on the metal composition, particularly the content of copper. The higher the copper grade, the lower the melting point of the metal, which is desirable.

【0018】[0018]

【実施例】次に本発明の実施例について述べる。EXAMPLES Next, examples of the present invention will be described.

【0019】本実施例では還元剤の添加率、酸素圧など
がメタル中のニッケル、銅、鉄、マンガン、クロム品位
に及ぼす影響と、ニッケルと銅の収率とを調べた。
In this example, the effects of the reducing agent addition rate and oxygen pressure on the grades of nickel, copper, iron, manganese, and chromium in the metal and the yields of nickel and copper were investigated.

【0020】(実施例1)含ニッケル物をロータリーキ
ルンを用いて1000℃でばい焼し、得た表1に示した
焼鉱 4.4トンに610Kgのコークスを還元剤とし
て添加し、さらにフラックスとしてCaO 100K
g、SiO2 78Kgを添加し充分に混合した後、10
0 KVAの電気炉中にて還元熔解した。その後、得ら
れた熔体をレードルに流し込み、熔体表面のスラグを掻
き取り、鉄鋼用酸素センサーを用い常法に従いメタル中
の酸素圧を測定した。同時に、メタルとスラグをサンプ
リングし、メタル及びスラグの化学分析を行った。
Example 1 A nickel-containing material was roasted in a rotary kiln at 1000 ° C., and 610 kg of coke was added as a reducing agent to 4.4 tons of the obtained ore shown in Table 1, and further as a flux. CaO 100K
g, SiO 2 78 kg, and mixed well, then 10
Reduction melting was carried out in an electric furnace of 0 KVA. Then, the obtained melt was poured into a ladle, the slag on the melt surface was scraped off, and the oxygen pressure in the metal was measured by an ordinary method using an oxygen sensor for steel. At the same time, metal and slag were sampled and chemical analysis of metal and slag was performed.

【0021】メタル中の酸素圧は1480℃で2.20
×10-13気圧であった。そして、このときのスラグ品
位は、Fe%=0.05%、Ni%=0.05%であ
り、メタル品位はNi=76.0%、Fe=8.05
%、Cu=4.86%、Mn%=0.14、Cr%=
0.36であり、ニッケル製錬用原料として使用可能な
ものであった。なお、物量と品位とより求めたNiのメ
タルへの分配率は98%であり、Cuのそれは95%で
あった。
The oxygen pressure in the metal is 2.20 at 1480 ° C.
The pressure was × 10 -13 atm. The slag quality at this time is Fe% = 0.05%, Ni% = 0.05%, and the metal quality is Ni = 76.0%, Fe = 8.05.
%, Cu = 4.86%, Mn% = 0.14, Cr% =
It was 0.36 and could be used as a raw material for nickel smelting. The distribution ratio of Ni to metal was 98%, and that of Cu was 95%, which was calculated from the physical quantity and the quality.

【0022】 含有物の主要形態としては、X線回折の結果、NiO、
Fe23、Cu2Oが検出された。
[0022] As the main form of the inclusion, as a result of X-ray diffraction, NiO,
Fe 2 O 3 and Cu 2 O were detected.

【0023】(実施例2)コークス量を550Kgとし
た以外実施例1と同様にしてメタルを作成した。そし
て、実施例1と同様にしてメタル中の酸素圧を測定し
た。得られた酸素圧は1450℃で4.25×10-10
気圧であった。
Example 2 A metal was prepared in the same manner as in Example 1 except that the amount of coke was 550 kg. Then, the oxygen pressure in the metal was measured in the same manner as in Example 1. The obtained oxygen pressure was 4.25 × 10 -10 at 1450 ° C.
It was atmospheric pressure.

【0024】このときのスラグ品位は、Fe%=1.5
%,Ni%=0.15%であった。メタル品位はNi=
77.5%、Fe=6.05%、Cu=5.15%、M
n%=0.02、Cr%=0.04でありニッケル製錬
用原料として良好なものであることが解った。なお、物
量と品位とより求めたNiのメタルへの分配率は95%
であり、Cuのそれは90%であった。
The slag quality at this time is Fe% = 1.5.
%, Ni% = 0.15%. Metal grade is Ni =
77.5%, Fe = 6.05%, Cu = 5.15%, M
It was found that n% = 0.02 and Cr% = 0.04, which are good as raw materials for nickel smelting. The distribution ratio of Ni to metal, which was calculated from the quantity and quality, was 95%.
And that of Cu was 90%.

【0025】(実施例3、4)フラックスとしてのSi
2量を70Kgとした以外は実施例2と同様にしてメ
タルを得た。そして、実施例1と同様にしてメタル中の
酸素圧を測定した。得られた酸素圧は1480℃で3.
25×10-10気圧であった。
(Examples 3 and 4) Si as flux
A metal was obtained in the same manner as in Example 2 except that the amount of O 2 was 70 kg. Then, the oxygen pressure in the metal was measured in the same manner as in Example 1. The oxygen pressure obtained was 1480 ° C.
The pressure was 25 × 10 -10 atm.

【0026】このときのスラグ品位は、Fe%=1.6
%,Ni%=0.07%であった。メタル品位はNi=
78.0%、Fe=5.95%、Cu=5.00%、M
n%=0.03、Cr%=0.02でありニッケル製錬
用原料として良好なものであることが解った。
The slag quality at this time is Fe% = 1.6.
%, Ni% = 0.07%. Metal grade is Ni =
78.0%, Fe = 5.95%, Cu = 5.00%, M
It was found that n% = 0.03 and Cr% = 0.02, which are good as raw materials for nickel smelting.

【0027】この試験を再度繰り返した(実施例4)と
ころ、メタル中の酸素圧は1450℃で4.25×10
-10気圧であった。
When this test was repeated again (Example 4), the oxygen pressure in the metal was 4.25 × 10 at 1450 ° C.
It was -10 atm.

【0028】このときのスラグ品位は、Fe%=1.5
%、Ni%=0.05%であった。メタル品位はNi=
76.0%、Fe=6.05%、Cu=5.86%、M
n%=0.01、Cr%=0.04でありニッケル製錬
用原料として良好なものであることが解った。なお、物
量と品位とより求めたNiのメタルへの分配率は94%
であり、Cuのそれは90%であった。
The slag quality at this time is Fe% = 1.5.
%, Ni% = 0.05%. Metal grade is Ni =
76.0%, Fe = 6.05%, Cu = 5.86%, M
Since n% = 0.01 and Cr% = 0.04, it was found to be a good raw material for nickel smelting. The distribution ratio of Ni to metal, which was calculated from the quantity and quality, was 94%.
And that of Cu was 90%.

【0029】(実施例5)コークス添加量を300K
g、CaO添加量を30Kg、SiO2添加量を15K
gとした以外は実施例1と同様にしてメタルを得た。そ
して、実施例1と同様にしてメタル中の酸素圧を測定し
た。得られた酸素圧は1450℃で9.25×10-10
気圧であった。
(Example 5) The amount of coke added was 300K.
g, CaO addition amount 30Kg, SiO 2 addition amount 15K
A metal was obtained in the same manner as in Example 1 except that g was used. Then, the oxygen pressure in the metal was measured in the same manner as in Example 1. The oxygen pressure obtained was 1450 ° C. at 9.25 × 10 -10.
It was atmospheric pressure.

【0030】このときのスラグ品位は、Fe%=1.0
%,Ni%=0.15%であった。メタル品位はNi=
85.8%、Fe=5.00%、Cu=2.69%、M
n%=0.04、Cr%=0.50でありニッケル製錬
用原料として使用可能なものであることが解った。な
お、物量と品位とより求めたNiのメタルへの分配率は
98%であり、Cuのそれは85%であった。
The slag quality at this time is Fe% = 1.0
%, Ni% = 0.15%. Metal grade is Ni =
85.8%, Fe = 5.00%, Cu = 2.69%, M
It was found that n% = 0.04 and Cr% = 0.50, and that it can be used as a raw material for nickel smelting. The distribution ratio of Ni to metal was 98% and that of Cu was 85%, which was calculated from the physical quantity and the quality.

【0031】(実施例6)コークス添加量を250Kg
とした以外は実施例5と同様にしてメタルを得た。そし
て、実施例1と同様にしてメタル中の酸素圧を測定し
た。得られた酸素圧は1450℃で1.25×10-10
気圧であった。
(Example 6) The amount of coke added was 250 kg.
A metal was obtained in the same manner as in Example 5 except for the above. Then, the oxygen pressure in the metal was measured in the same manner as in Example 1. The obtained oxygen pressure is 1.25 × 10 −10 at 1450 ° C.
It was atmospheric pressure.

【0032】このときのスラグ品位は、Fe%=0.5
%,Ni%=0.05%であった。メタル品位はNi=
85.0%、Fe=3.05%、Cu=4.86%、M
n%=0.01、Cr%=0.40でありニッケル製錬
用原料として使用可能なものであることが解った。な
お、物量と品位とより求めたNiのメタルへの分配率は
95%であり、Cuのそれは80%であった。
The slag quality at this time is Fe% = 0.5.
%, Ni% = 0.05%. Metal grade is Ni =
85.0%, Fe = 3.05%, Cu = 4.86%, M
Since n% = 0.01 and Cr% = 0.40, it was found that it can be used as a raw material for nickel smelting. The distribution ratio of Ni to metal was 95%, and that of Cu was 80%, which was calculated from the physical quantity and the quality.

【0033】(比較例)コークス添加量を710Kg、
CaO添加量を100Kg、SiO2添加量を78Kg
とした以外は実施例1と同様にしてメタルを得た。そし
て、実施例1と同様にしてメタル中の酸素圧を測定し
た。得られた酸素圧は1480℃で1.20×10-10
気圧であった。
(Comparative Example) The amount of coke added was 710 kg,
CaO addition amount is 100 kg, SiO 2 addition amount is 78 kg
A metal was obtained in the same manner as in Example 1 except for the above. Then, the oxygen pressure in the metal was measured in the same manner as in Example 1. The obtained oxygen pressure is 1.20 × 10 −10 at 1480 ° C.
It was atmospheric pressure.

【0034】このときのスラグ品位は、Fe%=0.0
5%,Ni%=0.05%であった。メタル品位はNi
=77.0%、Fe=8.85%、Cu=4.66%、
Mn%=0.14、Cr%=0.36でありニッケル製
錬用原料として使用不可能なものであることが解った。
なお、物量と品位とより求めたNiのメタルへの分配率
は98%であり、Cuのそれは95%であった。
The slag quality at this time is Fe% = 0.0
5% and Ni% = 0.05%. Metal grade is Ni
= 77.0%, Fe = 8.85%, Cu = 4.66%,
Since Mn% = 0.14 and Cr% = 0.36, it was found that they cannot be used as raw materials for nickel smelting.
The distribution ratio of Ni to metal was 98%, and that of Cu was 95%, which was calculated from the physical quantity and the quality.

【0035】これは、還元剤の添加量が多くなりすぎ不
純物のメタルへの移行量が増加したためである。
This is because the amount of reducing agent added was too large and the amount of impurities transferred to the metal was increased.

【0036】以上の結果より、気圧で測定したメタル中
の酸素圧の対数をYとし、メタル温度をXとしたとき、
0.008X−20.6≧Y≧0.008X−21.5
の範囲であれば本発明の目的とすると製錬原料として用
い得るニッケル原料としてのメタルを収率良く得ること
ができると言える。
From the above results, when the logarithm of the oxygen pressure in the metal measured at atmospheric pressure is Y and the metal temperature is X,
0.008X-20.6 ≧ Y ≧ 0.008X-21.5
It can be said that a metal as a nickel raw material that can be used as a smelting raw material can be obtained in good yield for the purpose of the present invention within the range.

【0037】[0037]

【発明の効果】本発明の方法に従えば、ニッケルメッキ
やニッケル製錬など主にニッケルを湿式処理する工程か
ら発生する複雑ニッケル原料から、ニッケル及びその他
の有価金属を回収すると共に、不純物としてのマンガ
ン、クロム、燐を精度良く選択分離することができる。
よって、本発明の方法は複雑ニッケル原料より製錬原料
として用いることの出来るニッケル原料得るのに適して
いる。
According to the method of the present invention, nickel and other valuable metals are recovered from the complex nickel raw material generated mainly from the step of wet-treating nickel such as nickel plating and nickel smelting, and at the same time, as impurities. It is possible to selectively separate manganese, chromium and phosphorus with high precision.
Therefore, the method of the present invention is suitable for obtaining a nickel raw material that can be used as a smelting raw material from a complex nickel raw material.

【図面の簡単な説明】[Brief description of drawings]

【図1】各主要金属酸化物の標準生成自由エネルギーの
温度−酸素圧線を示した図である。
FIG. 1 is a diagram showing a temperature-oxygen pressure line of standard free energy of formation of each main metal oxide.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 含ニッケル物よりニッケル製錬原料と
して使用可能な程度のマンガンとクロムしか含まないメ
タルを得る方法において、含ニッケル物を840℃以上
で加熱分解し、得た焼鉱をフラックスと共に還元溶融
し、焼鉱中のニッケル等の有価物をメタルとし、マンガ
ン、クロムなどの爾後のニッケル回収に障害となる金属
をスラグとして分離し、得たメタルをニッケル製錬原料
とすることを特徴とする含ニッケル物からのニッケル製
錬用原料の製造方法。
1. A method for obtaining a metal containing only manganese and chromium to the extent that it can be used as a nickel smelting raw material from a nickel-containing material, the nickel-containing material is thermally decomposed at 840 ° C. or higher, and the obtained ore is mixed with a flux. It is characterized by reducing and melting, and using valuable materials such as nickel in the ore as a metal, separating metals such as manganese and chromium that interfere with the subsequent recovery of nickel as slag, and using the obtained metal as a nickel smelting raw material. A method for producing a raw material for nickel smelting from a nickel-containing material.
【請求項2】 スラグとしてCaO−SiO2−Fe
O系スラグを用いることを特徴とする請求項1記載のニ
ッケル製錬用原料の製造方法。
2. CaO—SiO 2 —Fe as slag
The method for producing a nickel smelting raw material according to claim 1, wherein O-based slag is used.
JP14135794A 1994-06-23 1994-06-23 Production of raw material for smelting nickel from nickel-containing matter Pending JPH083657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14135794A JPH083657A (en) 1994-06-23 1994-06-23 Production of raw material for smelting nickel from nickel-containing matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14135794A JPH083657A (en) 1994-06-23 1994-06-23 Production of raw material for smelting nickel from nickel-containing matter

Publications (1)

Publication Number Publication Date
JPH083657A true JPH083657A (en) 1996-01-09

Family

ID=15290104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14135794A Pending JPH083657A (en) 1994-06-23 1994-06-23 Production of raw material for smelting nickel from nickel-containing matter

Country Status (1)

Country Link
JP (1) JPH083657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513597A (en) * 2004-09-17 2008-05-01 ビーエイチピー・ビリトン・エスエスエム・テクノロジー・ピーティーワイ・リミテッド Production of ferronickel or nickel matte by combined wet and dry refining processes
JP2017052995A (en) * 2015-09-08 2017-03-16 住友金属鉱山株式会社 Smelting method of nickel oxide ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513597A (en) * 2004-09-17 2008-05-01 ビーエイチピー・ビリトン・エスエスエム・テクノロジー・ピーティーワイ・リミテッド Production of ferronickel or nickel matte by combined wet and dry refining processes
JP2017052995A (en) * 2015-09-08 2017-03-16 住友金属鉱山株式会社 Smelting method of nickel oxide ore

Similar Documents

Publication Publication Date Title
DE3047194C2 (en)
CN111286653B (en) Method for producing magnesium-lithium alloy by vacuum aluminothermic reduction
US5865872A (en) Method of recovering metals and producing a secondary slag from base metal smelter slag
Donald et al. Reduction of electric arc furnace dust with solid iron powder
CN106636678A (en) Method for preparing arsenic by direct reduction and roasting of arsenic-containing material
CN106007423A (en) Electroplating sludge resource utilization method
CN101341265A (en) Separation of metal values in zinc leaching residues
EP1607488A4 (en) Method for recovering platinum group element
US4398945A (en) Process for producing a ferronickel alloy from nickel bearing laterites
JP2011094207A (en) Method for producing metal manganese
CA1086073A (en) Electric smelting of lead sulphate residues
WO2005068669A1 (en) Method of slag fuming
Schweers et al. A pyrometallurgical process for recycling cadmium containing batteries
CN116814974A (en) Method for recycling platinum group metals in automobile waste catalysts by taking ferronickel tailings as flux through pyrogenic process
CN114051539A (en) Method for recovering PGM
JPS60155633A (en) Manufacture of magnesium
JPH083657A (en) Production of raw material for smelting nickel from nickel-containing matter
JP3305674B2 (en) Hydrometallurgical refining of ores containing iron group metals
CN102031382A (en) New copper removal method for converter copper scale
JP2835467B2 (en) Method for producing alumina cement from electric furnace slag
GB2067599A (en) Recovery of Pt group metals
CN111979423B (en) Method for reinforced recovery of valuable metals in copper smelting slag by using gypsum slag
Lindblom et al. Fine-particle characterization—an important recycling tool
WO2020178480A1 (en) Combined smelting of molten slags and residuals from stainless steel and ferrochromium works
US4662936A (en) Method of treating nickel-containing and vanadium-containing residues