JPH0836429A - Dc power source system - Google Patents

Dc power source system

Info

Publication number
JPH0836429A
JPH0836429A JP6173874A JP17387494A JPH0836429A JP H0836429 A JPH0836429 A JP H0836429A JP 6173874 A JP6173874 A JP 6173874A JP 17387494 A JP17387494 A JP 17387494A JP H0836429 A JPH0836429 A JP H0836429A
Authority
JP
Japan
Prior art keywords
power supply
voltage
storage battery
power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6173874A
Other languages
Japanese (ja)
Inventor
Yutaka Kuwata
豊 鍬田
Shizuo Furuyasu
静男 古保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6173874A priority Critical patent/JPH0836429A/en
Publication of JPH0836429A publication Critical patent/JPH0836429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To use a storage battery up to the utmost of its capability at the time of service interruption. CONSTITUTION:A transistor TR 21 and a diode 22 are inserted in series to a feeder 14 and in the forward direction of a storage battery 13 in the vicinity of a load 16. Input terminals 26 and 27 of a DC power source (DC-DC converter) 25 are connected to feeders 14 and 15, and output terminals 28 and 29 of the DC power source 25 are connected to both ends of the series circuit of the TR 21 and the diode 22, and the output voltage is added to the voltage of the storage battery 13. The load voltage is detected by a control circuit 19, and a switch 31 is turned on to operate the DC power source 25 if it tries to fall below its allowable range, and thus, the DC of the voltage in the allowable range is always applied to the load 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えば通信装置の動作
電源として用いられ、商用交流電流を直流電力に変換し
て負荷へ供給すると共に蓄電池を充電し、停電時に蓄電
池から負荷へ直流電力を供給する信頼性の高い直流電源
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used, for example, as an operating power supply for a communication device, converts commercial AC current into DC power and supplies it to a load, charges a storage battery, and supplies DC power from the storage battery to the load during a power failure. The present invention relates to a highly reliable DC power supply system.

【0002】[0002]

【従来の技術】通信装置に安定な直流電力を供給する直
流電源システムとしては、一般に商用交流電力を受け、
48Vや21V等の直流電力を出力する直流電源が用い
られている。この直流電源の入力である商用交流電力が
停電した場合にも、通信装置に直流電力を供給するため
直流電源の出力側に蓄電池を備えている。この蓄電池は
一般に通信装置側で必要とする電圧とするため複数の単
電池を直列に接続して用いられる。
2. Description of the Related Art As a DC power supply system for supplying stable DC power to a communication device, generally, a commercial AC power is received,
A DC power supply that outputs DC power of 48V or 21V is used. A storage battery is provided on the output side of the DC power supply to supply the DC power to the communication device even when the commercial AC power that is the input of the DC power supply fails. This storage battery is generally used by connecting a plurality of cells in series in order to obtain a voltage required on the communication device side.

【0003】図2に従来の直流電源システムを示す。商
用交流電源11が直流電源12の入力側に接続され、第
1の直流電源12の出力側に蓄電池13が並列に接続さ
れる。商用交流電源11からの交流電力は直流電源12
で直流電力に変換され、その直流電力で蓄電池13に対
する充電が行われると共に、蓄電池13の両端に第1,
第2の給電線14,15を通じて接続された負荷16
に、直流電源12からの直流電力が供給される。商用交
流電源11が停電したときには直流電源12が動作を停
止するため、蓄電池13から第1,第2の給電線14,
15を介して負荷16に直流電力を供給する。
FIG. 2 shows a conventional DC power supply system. The commercial AC power supply 11 is connected to the input side of the DC power supply 12, and the storage battery 13 is connected in parallel to the output side of the first DC power supply 12. The AC power from the commercial AC power supply 11 is the DC power supply 12
Is converted into DC power by the DC power, the storage battery 13 is charged with the DC power, and at both ends of the storage battery 13,
Load 16 connected through the second power supply lines 14 and 15
Then, the DC power from the DC power supply 12 is supplied. When the commercial AC power supply 11 fails, the DC power supply 12 stops operating, so the storage battery 13 to the first and second power supply lines 14,
DC power is supplied to the load 16 via 15.

【0004】蓄電池13の電圧が負荷16の許容電圧範
囲を越えている場合には1個または複数の電圧調整用ダ
イオードの直列回路17(以下、ダイオード列という)
を一方の給電線14と直列に挿入し、ダイオード列17
で電圧降下を生じさせて電圧調整を行うことにより、負
荷16の許容電圧範囲内に押さえるように動作する。蓄
電池13が放電するにつれて電圧が低下し、負荷16の
許容電圧範囲の上限から、ダイオード列17の電圧降下
分より低くなると、ダイオード列17をスイッチ18で
短絡し損失を小さくするように制御回路19でスイッチ
18の制御を行っていた。蓄電池13の電圧から、給電
線14,15による降下電圧を差し引いた値が負荷16
の許容電圧範囲の下限を割った場合には負荷16の通信
装置はシステムダウンする。給電線14,15が長くな
ると、給電線14,15による損失が増加し、停電時に
蓄電池13から負荷16に給電可能なエネルギーはさら
に減少する。
When the voltage of the storage battery 13 exceeds the allowable voltage range of the load 16, a series circuit 17 of one or more voltage adjusting diodes (hereinafter referred to as a diode string)
Is connected in series with one of the power supply lines 14, and the diode array 17
By causing a voltage drop at and adjusting the voltage, the load 16 operates to be held within the allowable voltage range. When the storage battery 13 discharges, the voltage drops, and when it becomes lower than the voltage drop of the diode string 17 from the upper limit of the allowable voltage range of the load 16, the diode string 17 is short-circuited by the switch 18 to reduce the loss. The switch 18 was controlled by. The value obtained by subtracting the voltage drop due to the power supply lines 14 and 15 from the voltage of the storage battery 13 is the load 16
If the lower limit of the allowable voltage range is broken down, the communication device of the load 16 system downs. When the power supply lines 14 and 15 become long, the loss due to the power supply lines 14 and 15 increases, and the energy that can be supplied from the storage battery 13 to the load 16 at the time of power failure further decreases.

【0005】[0005]

【発明が解決しようとする課題】負荷16の最低許容電
圧になった場合にも蓄電池13にはエネルギーが残って
いるが、図2に示した従来の技術では、この残エネルギ
ーを有効に活用できず、比較的多くのエネルギーを残す
という問題があった。この発明の目的は商用交流電力停
電時に蓄電池のエネルギーを最大限に活用でき、給電線
の電圧降下を補償して安定な直流電力を供給する高信頼
な直流電源システムを提供することにある。
Energy remains in the storage battery 13 even when the load 16 reaches the minimum allowable voltage. However, the conventional technique shown in FIG. 2 can effectively utilize this residual energy. Instead, there was the problem of leaving a relatively large amount of energy. An object of the present invention is to provide a highly reliable DC power supply system that can maximize the use of energy in a storage battery during a commercial AC power failure and compensate for a voltage drop in a power supply line to supply stable DC power.

【0006】[0006]

【課題を解決するための手段】請求項1の発明によれば
第1の給電線に直列に、かつ蓄電池に対し順方向とされ
た電圧調整用半導体素子とダイオードの直列回路が接続
され、第1,第2の給電線に第2の直流電源の一対の入
力端子が接続され、この第2の直流電源の一対の出力端
子は、その直流出力が上記蓄電池の出力に加算されるよ
うに上記直列回路の両端にスイッチを介して接続され、
制御回路で負荷の電圧を検出して前記半導体素子を制御
し、前記第2の直流電源の出力電圧を調整し、前記スイ
ッチのオンオフを制御するようにされている。
According to a first aspect of the invention, a series circuit of a voltage adjusting semiconductor element and a diode, which is in the forward direction with respect to a storage battery, is connected in series to the first power supply line, and The pair of input terminals of the second DC power source is connected to the first and second power supply lines, and the pair of output terminals of the second DC power source are connected to each other so that the DC output is added to the output of the storage battery. Connected to both ends of the series circuit via switches,
A control circuit detects a load voltage to control the semiconductor element, adjusts an output voltage of the second DC power supply, and controls ON / OFF of the switch.

【0007】請求項2の発明によれば第1,第2給電線
の一方と直列に、かつ蓄電池に対して順方向とされた電
圧調整用半導体素子が接続され、また第1,第2の給電
線に第2の直流電源の一対の入力端子が接続され、その
第2の直流電源の一対の出力端子は、その直流出力が蓄
電池の直列出力に加算されるように、第1,第2の給電
線の一方に直列に接続され、制御回路で負荷電圧を検出
して前記半導体素子を制御し、第2の直流電源の出力電
圧を調整するようにされている。
According to the second aspect of the invention, the voltage adjusting semiconductor element is connected in series with one of the first and second power supply lines and is in the forward direction with respect to the storage battery. The pair of input terminals of the second DC power supply is connected to the power supply line, and the pair of output terminals of the second DC power supply are connected to the first and second output terminals so that the DC output is added to the series output of the storage battery. Is connected in series to one of the power supply lines, the load voltage is detected by the control circuit, the semiconductor element is controlled, and the output voltage of the second DC power supply is adjusted.

【0008】請求項1または2の発明の何れにおいて
も、第2の直流電源、電圧調整用半導体素子及び制御回
路をなるべく負荷の近くに設けることが好ましい。
In any of the first and second aspects of the invention, it is preferable that the second DC power source, the voltage adjusting semiconductor element and the control circuit are provided as close to the load as possible.

【0009】[0009]

【実施例】図1Aに請求項1の発明の実施例を示し、図
2と対応する部分に同一符号を付してある。この発明に
おいては、電圧調整用半導体素子としてのトランジスタ
21及びこれと順方向に直列に接続されたダイオード2
2の直列回路23が一方の給電線、この例では第1の給
電線14と直列に、かつ蓄電池13と順方向に接続され
る。またこの例では直列回路23の一端は負荷16の一
端と接続され、つまり負荷16のすぐ近くに接続された
場合である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A shows an embodiment of the invention of claim 1, and the same reference numerals are given to the portions corresponding to those of FIG. In the present invention, the transistor 21 as the voltage adjusting semiconductor element and the diode 2 connected in series in the forward direction with the transistor 21.
Two series circuits 23 are connected in series with one power supply line, in this example the first power supply line 14, and in the forward direction with the storage battery 13. In addition, in this example, one end of the series circuit 23 is connected to one end of the load 16, that is, it is connected in the immediate vicinity of the load 16.

【0010】制御回路19により負荷16の両端の電圧
を検出して、負荷16の許容電圧の上限を超えないよう
にトランジスタ21の抵抗値を制御する。ダイオード2
2はトランジスタ21に逆電圧が印加されないようにす
るためのものである。さらに第2の直流電源25の入力
端子26,27が第1,第2の給電線14,15にそれ
ぞれ接続され、第2の直流電源25の出力端子28,2
9はそれぞれ直流回路23の両端に接続される。第2の
直流電源25はDC−DCコンバータであって、入力直
流電圧を制御回路19の制御に応じた直流電圧を出力
し、かつこの直流電圧が蓄電池13の直流電圧に加算さ
れるような極性で接続されている。この第2の直流電源
25の出力端子28,29の一方、この例では29と直
列回路23との間に直列にスイッチ31が挿入される。
この例では直列回路23と同様に、第2の直流電源25
は負荷16の近くに設けられている。制御回路19の検
出負荷電圧に応じて第2の直流電源25の出力電圧の調
整、スイッチ31のオンオフが制御回路19により制御
される。
The control circuit 19 detects the voltage across the load 16 and controls the resistance value of the transistor 21 so as not to exceed the upper limit of the allowable voltage of the load 16. Diode 2
Reference numeral 2 is for preventing the reverse voltage from being applied to the transistor 21. Further, the input terminals 26 and 27 of the second DC power supply 25 are connected to the first and second power supply lines 14 and 15, respectively, and the output terminals 28 and 2 of the second DC power supply 25 are connected.
9 are connected to both ends of the DC circuit 23, respectively. The second DC power supply 25 is a DC-DC converter that outputs an input DC voltage as a DC voltage in accordance with the control of the control circuit 19 and has a polarity such that this DC voltage is added to the DC voltage of the storage battery 13. Connected by. A switch 31 is inserted in series between one of the output terminals 28 and 29 of the second DC power supply 25, 29 in this example, and the series circuit 23.
In this example, like the series circuit 23, the second DC power supply 25
Is provided near the load 16. The control circuit 19 controls the adjustment of the output voltage of the second DC power supply 25 and the ON / OFF of the switch 31 according to the detected load voltage of the control circuit 19.

【0011】この構成の動作について説明すると、交流
電源11が正常な場合には第1の直流電源12は蓄電池
13を充電すると共に第1,第2の給電線14,15を
介して負荷16へ安定な直流電力を供給する。蓄電池1
3が小形のシール鉛蓄電池で24個組の場合、第1の直
流電源12の出力電圧は充電電圧54.5V(2.27V/
ceLL×24ceLL=54.5V)となり、第1,第
2の給電線14,15の降下電圧が小さい場合には負荷
16の許容電圧範囲(43V〜53V)を超えるので制
御回路19によりスイッチ31を開放してトランジスタ
21で電圧降下させて負荷16にその許容電圧範囲の直
流電力を供給する。
The operation of this configuration will be described. When the AC power supply 11 is normal, the first DC power supply 12 charges the storage battery 13 and also supplies the load 16 via the first and second power supply lines 14 and 15. Supply stable DC power. Storage battery 1
When 3 is a small sealed lead acid battery of 24 pieces, the output voltage of the first DC power supply 12 is 54.5V (2.27V / charge voltage).
ceLL × 24 ceLL = 54.5V), and when the voltage drop of the first and second power supply lines 14 and 15 is small, the voltage exceeds the allowable voltage range (43V to 53V) of the load 16, so the control circuit 19 switches the switch 31. It is opened and the voltage is dropped by the transistor 21 to supply the load 16 with DC power in the allowable voltage range.

【0012】交流電源11が停電した場合には第1の直
流電源12は動作を停止するため負荷16へは蓄電池1
3から電力供給を行う。蓄電池13の電圧が低下してき
て蓄電池電圧が負荷16の許容電圧の上限値を下回って
くるとスイッチ31を短絡させてトランジスタ21での
電圧降下を無くし、第2の直流電源25の出力電圧を加
算して直流電力を負荷16へ供給する。第2の直流電源
25は蓄電池13から給電線14,15を介して供給さ
れる電圧を入力とし、蓄電池13の電圧と給電線14,
15の降下電圧と第2の直流電源25の出力電圧とを加
えた電圧が一定となるように制御回路19により制御さ
れる。なお、スイッチ31をオンにしても第2の直流電
源25は直ぐには理想的な状態にならず、定常状態にな
るには少し時間がかゝる。この間は、蓄電池13の直流
電力は第2の直流電源25の出力を通じて負荷16へ供
給される。従って、蓄電池13の電圧が負荷16の最低
許容電圧43V以下になっても第2の直流電源25の出
力電圧が加算されることにより、負荷16の電圧は43
Vより高い電圧に維持される。第2の直流電源25の電
圧を負荷16の最低許容電圧と給電線14,15の降下
電圧とを加えた電圧から、蓄電池13の最低使用電圧を
差し引いた電圧に選ぶことにより、蓄電池13の蓄積エ
ネルギーを最大限に活用することが可能となる。なお、
トランジスタ21と直列に接続しているダイオード22
は第2の直流電源25が動作している時にトランジスタ
21に逆電圧を印加しないようにするためのものであっ
て電圧降下がなるべく小さい例えばショットキーダイオ
ードが使用される。
When the AC power supply 11 fails, the first DC power supply 12 stops its operation, and therefore the storage battery 1 is connected to the load 16.
Power is supplied from 3. When the voltage of the storage battery 13 drops and the storage battery voltage falls below the upper limit of the allowable voltage of the load 16, the switch 31 is short-circuited to eliminate the voltage drop in the transistor 21 and the output voltage of the second DC power supply 25 is added. Then, the DC power is supplied to the load 16. The second DC power supply 25 receives the voltage supplied from the storage battery 13 via the power supply lines 14 and 15, and inputs the voltage of the storage battery 13 and the power supply lines 14 and 15.
The control circuit 19 controls so that the voltage obtained by adding the voltage drop of 15 and the output voltage of the second DC power supply 25 becomes constant. It should be noted that even if the switch 31 is turned on, the second DC power supply 25 does not immediately reach the ideal state, and it takes some time to reach the steady state. During this period, the DC power of the storage battery 13 is supplied to the load 16 through the output of the second DC power supply 25. Therefore, even if the voltage of the storage battery 13 becomes equal to or lower than the minimum allowable voltage 43V of the load 16, the output voltage of the second DC power supply 25 is added, so that the voltage of the load 16 is 43V.
It is maintained at a voltage higher than V 2. The storage of the storage battery 13 is performed by selecting the voltage of the second DC power supply 25 as the voltage obtained by subtracting the minimum operating voltage of the storage battery 13 from the voltage obtained by adding the minimum allowable voltage of the load 16 and the voltage drop of the power supply lines 14 and 15. It is possible to make maximum use of energy. In addition,
Diode 22 connected in series with transistor 21
Is for preventing a reverse voltage from being applied to the transistor 21 when the second DC power supply 25 is operating, and is, for example, a Schottky diode having a voltage drop as small as possible.

【0013】交流電源11の停電が回復した場合には第
1の直流電源12が動作して蓄電池13を充電すること
により、蓄電池13にエネルギーが蓄えられ、蓄電池1
3の電圧は徐々に高くなってくる。その充電電圧は54.
5Vとなり給電線14,15の降下電圧が1.5V以下の
時には負荷16の許容電圧の上限値53Vを越えてしま
う。そこで負荷16の電圧が53Vになるとスイッチ3
1を開放してトランジスタ21を回路に直列に挿入し、
トランジスタ21の電圧降下を利用して1.5V以上電圧
降下をさせることで負荷16に印加される電圧が負荷1
6の許容電圧範囲内に入れるように制御回路19で制御
される。
When the AC power supply 11 recovers from the power failure, the first DC power supply 12 operates to charge the storage battery 13, whereby energy is stored in the storage battery 13, and the storage battery 1
The voltage of 3 gradually increases. Its charging voltage is 54.
When the voltage drops to 5V and the voltage drop of the power supply lines 14 and 15 is 1.5V or less, the upper limit value 53V of the allowable voltage of the load 16 is exceeded. Therefore, when the voltage of the load 16 becomes 53V, the switch 3
Open 1 and insert transistor 21 in series with the circuit,
By using the voltage drop of the transistor 21 to cause a voltage drop of 1.5 V or more, the voltage applied to the load 16 becomes 1
It is controlled by the control circuit 19 so as to be within the allowable voltage range of 6.

【0014】図1Bに請求項2の発明の実施例を示し、
図1Aの実施例と対応する部分に同一符号を付けてあ
る。この実施例ではトランジスタ21と第2の直流電源
25の出力端子28,29とが直列接続され、ダイオー
ド22は省略される。第2の直流電源25は商用交流電
源11の正常、停電にかゝわらず、常時動作状態とされ
る。制御回路19は、負荷16の電圧を検出して、負荷
16の許容電圧範囲より高くなろうとすると、トランジ
スタ21で電圧降下させ、負荷16の電圧がその許容電
圧範囲より低くなろうとすると、第2の直流電源25の
出力電圧を高くする。
FIG. 1B shows an embodiment of the invention of claim 2,
Portions corresponding to those in the embodiment of FIG. 1A are designated by the same reference numerals. In this embodiment, the transistor 21 and the output terminals 28 and 29 of the second DC power supply 25 are connected in series, and the diode 22 is omitted. The second DC power supply 25 is always in operation regardless of whether the commercial AC power supply 11 is normal or a power failure. When the control circuit 19 detects the voltage of the load 16 and tries to make it higher than the allowable voltage range of the load 16, the control circuit 19 causes the voltage to drop in the transistor 21, and when the voltage of the load 16 becomes lower than the allowable voltage range, the second The output voltage of the DC power supply 25 is increased.

【0015】図1Bの実施例も、制御回路19,トラン
ジスタ21,第2の直流電源25を負荷16の近くに設
けている。しかし図1A,図1Bのいずれにおいても、
トランジスタ21,第2の直流電源25,制御回路19
は負荷16の近くに設けなくてもよい。その場合は制御
回路19と負荷16とを接続する負荷電圧検出線20が
長くなるだけである。トランジスタ21の代わりに、M
OSFETやSITなどの半導体素子を用いてもよい。
Also in the embodiment shown in FIG. 1B, the control circuit 19, the transistor 21, and the second DC power supply 25 are provided near the load 16. However, in both FIG. 1A and FIG. 1B,
Transistor 21, second DC power supply 25, control circuit 19
Need not be provided near the load 16. In that case, the load voltage detection line 20 connecting the control circuit 19 and the load 16 is simply lengthened. Instead of the transistor 21, M
You may use semiconductor elements, such as OSFET and SIT.

【0016】[0016]

【発明の効果】以上説明したように、この発明によれば
蓄電池13の蓄積エネルギーを最大限に活用でき、蓄電
池13の小形・軽量化が達成できる。例えば、負荷16
の許容電圧範囲43〜53V,負荷電流が1000Aで
蓄電池13が24個の組で、蓄電池13の保持時間が1
0分、給電線14,15の電圧降下2Vの場合につい
て、従来の直流電源システムと比較する。
As described above, according to the present invention, the stored energy of the storage battery 13 can be utilized to the maximum extent, and the storage battery 13 can be made compact and lightweight. For example, load 16
The allowable voltage range is 43 to 53 V, the load current is 1000 A, and the storage battery 13 is a set of 24 and the holding time of the storage battery 13 is 1
The case where the voltage drop of the power supply lines 14 and 15 is 2V for 0 minutes will be compared with the conventional DC power supply system.

【0017】従来システムでは負荷16の最低許容電圧
になったときの単電池の電圧は1.88V((43+2)
V/24ceLL=1.88V)となり、この場合必要と
される蓄電池容量は680AHとなる。一方、この発明
システムでは蓄電池放電終止電圧を1.6Vとすると、直
流電源12の最大出力電圧を6.6V(45V−(1.6V
/ceLL)×24ceLL=6.6V)とすることによ
り蓄電池13の放電終止電圧まで使用することができ
る。この場合の蓄電池容量は470AHとなるので蓄電
池13の設備としては従来の設備に比べ約3割の小形
化、経済化が可能となる。
In the conventional system, the voltage of the single cell when the load 16 reaches the minimum allowable voltage is 1.88V ((43 + 2)
V / 24ceLL = 1.88V), and the storage battery capacity required in this case is 680AH. On the other hand, in the system of the present invention, assuming that the storage battery discharge end voltage is 1.6V, the maximum output voltage of the DC power supply 12 is 6.6V (45V- (1.6V
By setting /ceLL)×24ceLL=6.6V), the discharge end voltage of the storage battery 13 can be used. In this case, since the storage battery capacity is 470 AH, the storage battery 13 can be downsized by about 30% as compared with the conventional equipment, and can be made economical.

【0018】また、従来スイッチのオン・オフによって
生じていた急激な電圧変化をトランジスタ21のような
電圧調整用半導体素子の抵抗値変化をゆっくりと変化さ
せることによりなくすことができる。給電線14,15
が長く、かつ第2の直流電源25を負荷16の近くに設
けた場合には、第2の直流電源25の出力電圧範囲を広
くすることで給電線14,15による電圧降下を大きく
でき、線径の小さい給電線を使用することで給電線コス
トの大幅削減が可能となる。
Further, the abrupt voltage change which has been caused by the on / off operation of the conventional switch can be eliminated by slowly changing the resistance value change of the voltage adjusting semiconductor element such as the transistor 21. Power lines 14 and 15
Is long and the second DC power supply 25 is provided near the load 16, the output voltage range of the second DC power supply 25 can be widened to increase the voltage drop due to the power supply lines 14 and 15. By using a power supply line with a small diameter, the cost of the power supply line can be significantly reduced.

【0019】さらに、従来、給電線14,15と並行し
て敷設していた負荷電圧の検出線20が細く、かつ長い
システムでは検出線20が断線し易く、システムダウン
を起こし易い。しかし、この発明において、制御回路1
9,電圧調整用半導体素子21,第2の直流電源25な
どを負荷16の近くに設けるときは、負荷電圧検出用線
20が短くなり、それだけ負荷電圧検出用線20の切断
のおそれがなくなる。
Further, in the conventional system in which the load voltage detection line 20 laid in parallel with the power supply lines 14 and 15 is thin and long, the detection line 20 is easily broken and the system is easily brought down. However, in the present invention, the control circuit 1
When the voltage adjusting semiconductor element 21, the second DC power supply 25, etc. are provided near the load 16, the load voltage detection line 20 becomes shorter, and the load voltage detection line 20 is not cut off.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】従来の直流電源システムを示すブロック図。FIG. 2 is a block diagram showing a conventional DC power supply system.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 商用交流電力を入力して第1の直流電源
から直流電力を出力し、この第1の直流電源の出力側に
並列に接続された蓄電池を充電すると共に、その蓄電池
の両端から第1,第2の給電線を介して負荷に直流電力
を給電する直流電源システムにおいて、 前記第1の給電線に直列に接続され、かつ前記蓄電池に
対し順方向とされた電圧調整用半導体素子及びダイオー
ドの直列回路と、 前記第1,第2の給電線に一対の入力端子が接続され、
直流電力を入力し、直流電力を出力し、その直流出力電
力を前記蓄電池の出力に加算するように、一対の出力端
子が前記直列回路の両端に接続された第2の直流電源
と、 その第2の直流電源の出力端子と前記直列回路との間に
接続されたスイッチと、 前記負荷の電圧を検出して前記半導体素子を制御する機
能と、前記第2の直流電源の出力電圧を調整する機能と
前記スイッチをオンオフ制御する機能とを有する制御回
路と、 を備えたことを特徴とする直流電源システム。
1. A commercial AC power is input, a DC power is output from a first DC power supply, a storage battery connected in parallel to the output side of the first DC power supply is charged, and both ends of the storage battery are charged. In a DC power supply system for supplying DC power to a load via first and second power supply lines, a voltage adjustment semiconductor element connected in series to the first power supply line and in a forward direction with respect to the storage battery. A series circuit of a diode and a pair of input terminals connected to the first and second power supply lines,
A second DC power supply having a pair of output terminals connected to both ends of the series circuit so as to input DC power, output DC power, and add the DC output power to the output of the storage battery; A switch connected between the output terminal of the second DC power supply and the series circuit, a function of detecting the voltage of the load and controlling the semiconductor element, and adjusting the output voltage of the second DC power supply. A DC power supply system comprising: a control circuit having a function and a function of controlling ON / OFF of the switch.
【請求項2】 商用交流電力を入力して第1の直流電源
から直流電力を出力し、この第1の直流電源の出力側に
並列に接続された蓄電池を充電すると共に、その蓄電池
の両端から第1,第2の給電線を介して負荷に直流電力
を給電する直流電源システムにおいて、 前記第1,第2の給電線の一方に直列に接続され、前記
蓄電池に対して順方向とされた電圧調整用半導体素子
と、 前記第1,第2の給電線に一対の入力端子が接続され、
直流電力を入力し、直流電力を出力し、その直流出力を
前記蓄電池の出力に加算するように、一対の出力端が前
記第1,第2の給電線の一方に直列に接続された第2の
直流電源と、 前記負荷の電圧を検出して前記半導体素子を制御する機
能と、前記第2の直流電源の出力電圧を調整する機能と
を有する制御回路と、 を備えたことを特徴とする直流電源システム。
2. A commercial AC power is input and a DC power is output from a first DC power supply, a storage battery connected in parallel to the output side of the first DC power supply is charged, and both ends of the storage battery are charged. In a DC power supply system for supplying DC power to a load via first and second power supply lines, the DC power supply system is connected in series to one of the first and second power supply lines and is in a forward direction with respect to the storage battery. A voltage adjusting semiconductor element, and a pair of input terminals connected to the first and second power supply lines,
A second output having a pair of output terminals connected in series to one of the first and second power supply lines so that direct current power is input, direct current power is output, and the direct current output is added to the output of the storage battery. And a control circuit having a function of detecting the voltage of the load and controlling the semiconductor element, and a function of adjusting the output voltage of the second DC power supply. DC power supply system.
JP6173874A 1994-07-26 1994-07-26 Dc power source system Pending JPH0836429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6173874A JPH0836429A (en) 1994-07-26 1994-07-26 Dc power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6173874A JPH0836429A (en) 1994-07-26 1994-07-26 Dc power source system

Publications (1)

Publication Number Publication Date
JPH0836429A true JPH0836429A (en) 1996-02-06

Family

ID=15968736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6173874A Pending JPH0836429A (en) 1994-07-26 1994-07-26 Dc power source system

Country Status (1)

Country Link
JP (1) JPH0836429A (en)

Similar Documents

Publication Publication Date Title
US5886503A (en) Back-up battery management apparatus for charging and testing individual battery cells in a string of battery cells
CN111181238B (en) DET power supply system of satellite
TWI273756B (en) Power source device and charge controlling method to be used in same
US4851756A (en) Primary-secondary hybrid battery
US5237259A (en) Charging method for secondary battery
EP0693815B1 (en) Auxiliary battery charge control circuits
US5160851A (en) Rechargeable back-up battery system including a number of battery cells having float voltage exceeding maximum load voltage
EP0319020B1 (en) Over-discharge protection circuit
US20050112420A1 (en) Power supply device
US3585482A (en) Battery-charging system with voltage reference means with two reference levels
EP0752748B1 (en) Multiple function battery charger, self-configuring as supply voltage regulator for battery powered apparatuses
EP1528654A1 (en) Circuit for battery/capacitor power source
EP3012942A1 (en) Power feeding apparatus for solar cell, and solar cell system
JP3249261B2 (en) Battery pack
JP3581428B2 (en) Rechargeable power supply
US5969506A (en) Apparatus and method for rapid bulk charging of a lead acid battery
JP3485445B2 (en) Solar powered power supply
JP4724726B2 (en) DC power supply system and charging method thereof
JPH07322529A (en) Solar cell power supply
GB2090084A (en) Photovoltaic Battery Charging System
US20030137283A1 (en) Electronic apparatus having charging function
JPH0836429A (en) Dc power source system
JP2009171724A (en) Bidirectional converter
JPH1146451A (en) Solar battery power unit
JP2010022086A (en) Dc power system