JP2010022086A - Dc power system - Google Patents

Dc power system Download PDF

Info

Publication number
JP2010022086A
JP2010022086A JP2008177941A JP2008177941A JP2010022086A JP 2010022086 A JP2010022086 A JP 2010022086A JP 2008177941 A JP2008177941 A JP 2008177941A JP 2008177941 A JP2008177941 A JP 2008177941A JP 2010022086 A JP2010022086 A JP 2010022086A
Authority
JP
Japan
Prior art keywords
load
assembled battery
voltage
charger
pole double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177941A
Other languages
Japanese (ja)
Inventor
Riichi Kitano
利一 北野
Takahisa Masashiro
尊久 正代
Akihiro Miyasaka
明宏 宮坂
Akira Yamashita
明 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008177941A priority Critical patent/JP2010022086A/en
Publication of JP2010022086A publication Critical patent/JP2010022086A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DC power system capable of avoiding an overvoltage output to a load. <P>SOLUTION: In the DC power system having a battery pack 4 with one or more storage batteries connected in series and a charger 5 charging the battery pack 4 for supplying power to the load 3, the battery pack 4 is connected either to the load 3 or to the charger 5 through a tri-polar double-throw switch 7. Characteristically, the DC power system is configured such that the tri-polar double throw switch 7 allows the battery pack 4 to be connected to the charger 5 when the battery pack 4 is charged, and that the tri-polar double throw switch 7 allows the battery pack 4 to be connected to the load 3 when the battery pack 4 is not charged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は直流電源システムに関する。   The present invention relates to a DC power supply system.

一般に、直流負荷装置へ電力を供給する直流電源システムでは、商用交流電力を受け、直流48Vなどの直流電力を出力する整流器が用いられている。さらに、商用電力が停電した場合でも負荷装置への給電を継続するために、整流器の出力に蓄電池と、蓄電池を充電するための充電器を備え、バックアップ電源システムとする。   Generally, in a DC power supply system that supplies power to a DC load device, a rectifier that receives commercial AC power and outputs DC power such as DC 48V is used. Further, in order to continue power supply to the load device even when the commercial power is interrupted, the output of the rectifier is provided with a storage battery and a charger for charging the storage battery to provide a backup power supply system.

蓄電池を直流電源システムに適用する場合には、通常、単セルと呼ばれる1本の蓄電池を複数個直列にしたものを1つ以上並列接続した組電池を用いる。   When a storage battery is applied to a DC power supply system, an assembled battery in which one or more storage batteries called single cells are connected in parallel is used.

下記特許文献1、2、3には、複数の組電池が出力する電力を放電器を介して負荷に供給する電源システムが記載され、特許文献1には、組電池と放電器中のコンバータとの間の電路が共通導線によって互いに電気的に接続されていることが記載され、特許文献2には、放電器の各動作を、制御部が発信する同一の動作信号に基づいて行わせることが記載され、特許文献3には、放電器出力電圧が設定範囲内となるように昇圧回路あるいは降圧回路が動作することが記載されている。
特開2007−143266号公報 特開2007−143291号公報 特開2007−312558号公報
Patent Documents 1, 2, and 3 listed below describe a power supply system that supplies power output from a plurality of assembled batteries to a load via a discharger. Patent Document 1 discloses a battery pack and a converter in the discharger. It is described that the electric circuit between the two is electrically connected to each other by a common conducting wire, and Patent Document 2 allows each operation of the discharger to be performed based on the same operation signal transmitted by the control unit. Patent Document 3 describes that a booster circuit or a step-down circuit operates so that a discharger output voltage is within a set range.
JP 2007-143266 A JP 2007-143291 A JP 2007-31558 A

特許文献3に記載されている直流電源システムを例として、バックアップ時に蓄電池から放電器を介して負荷へ給電する直流電源システムの問題について説明する。   Taking the DC power supply system described in Patent Document 3 as an example, the problem of a DC power supply system that supplies power from a storage battery to a load via a discharger during backup will be described.

図6(特許文献3の図3に同じ)において、ニッケル水素蓄電池1が出力する電力は、昇圧回路2、降圧回路3を介して負荷4へ供給される。昇圧回路と降圧回路が必要である理由は、ニッケル水素蓄電池1の満充電時の電圧は負荷4の許容電圧範囲を上回っており、放電終止電圧は負荷4の許容電圧範囲を下回っているからである。   In FIG. 6 (same as FIG. 3 of Patent Document 3), the power output from the nickel-metal hydride storage battery 1 is supplied to the load 4 via the booster circuit 2 and the step-down circuit 3. The reason why the step-up circuit and the step-down circuit are necessary is that the voltage when the nickel-metal hydride storage battery 1 is fully charged exceeds the allowable voltage range of the load 4, and the discharge end voltage is below the allowable voltage range of the load 4. is there.

特許文献3に記載される発明は、ニッケル水素蓄電池1の電圧が、第7の設定値以上、第8の設定値以下の範囲で変動するとき、昇圧回路2の出力電圧が、第7の設定値よりも大きく第8の設定値よりも小さい第9の設定値を下回らないように昇圧回路2のスイッチング素子8が動作し、降圧回路3の出力電圧が、第7の設定値よりも大きく第8の設定値よりも小さく、かつ、第9の設定値よりも大きい第10の設定値を上回らないように降圧回路3のスイッチング素子9が動作することを特徴とする。   In the invention described in Patent Document 3, when the voltage of the nickel-metal hydride storage battery 1 fluctuates in a range not less than the seventh set value and not more than the eighth set value, the output voltage of the booster circuit 2 is set to the seventh set value. The switching element 8 of the step-up circuit 2 operates so as not to fall below the ninth set value which is larger than the value and smaller than the eighth set value, and the output voltage of the step-down circuit 3 is larger than the seventh set value and The switching element 9 of the step-down circuit 3 operates so as not to exceed a tenth set value that is smaller than the set value of 8 and larger than the ninth set value.

この動作により、ニッケル水素蓄電池1の電圧が負荷4の許容電圧範囲を超えるときは降圧回路3により降圧された電力が負荷4へ供給され、許容電圧範囲を下回るときは昇圧回路2により昇圧された電力が負荷4へ供給される。つまり、負荷4への給電電圧を許容範囲内に収めることが可能である。   With this operation, when the voltage of the nickel metal hydride storage battery 1 exceeds the allowable voltage range of the load 4, the voltage stepped down by the step-down circuit 3 is supplied to the load 4, and when the voltage is below the allowable voltage range, the voltage is boosted by the booster circuit 2. Electric power is supplied to the load 4. That is, it is possible to keep the power supply voltage to the load 4 within an allowable range.

負荷4への給電電圧を許容電圧範囲に収めなければならない理由は、許容範囲を下回る給電電圧では負荷4を動作させることができないことと、許容範囲を上回る給電電圧であるとき負荷4を故障させる恐れがあることである。給電電圧が許容範囲を下回って負荷4が停止した場合にはその後許容範囲内の電圧で給電を行うことにより再び負荷4を動作させることができるが、許容範囲を上回る電圧を負荷4に印加した場合、負荷4の故障が発生し、その後許容範囲内の電圧を印加しても、負荷4を正常に動作させることができない可能性がある。よって、許容範囲を超える電圧を負荷4に印加しないことは、許容範囲を下回らないことよりも優先して考慮されるべき問題である。   The reason why the power supply voltage to the load 4 must be within the allowable voltage range is that the load 4 cannot be operated with a power supply voltage that falls below the allowable range, and that the load 4 fails when the power supply voltage exceeds the allowable range. There is a fear. When the power supply voltage falls below the allowable range and the load 4 stops, the load 4 can be operated again by supplying power at a voltage within the allowable range, but a voltage exceeding the allowable range is applied to the load 4. In such a case, a failure of the load 4 occurs, and there is a possibility that the load 4 cannot be operated normally even if a voltage within the allowable range is applied thereafter. Therefore, not applying a voltage exceeding the allowable range to the load 4 is a problem to be considered with priority over not falling below the allowable range.

しかしながら、降圧回路3に含まれるスイッチング素子9は、短絡と開放の2つの状態があるため、スイッチング素子9への制御の故障あるいはスイッチング素子9そのものの故障が発生した場合、スイッチング素子9は短絡と開放いずれかの状態のまま変化しなくなる。スイッチング素子9が開放のまま変化しなくなった場合は、ニッケル水素蓄電池1と負荷4は切り離されるため、負荷4の動作が停止するだけである。しかし、スイッチング素子9が短絡のまま変化しなくなった場合、ニッケル水素蓄電池1は降圧回路3を通して直接負荷4へ接続される。このとき、ニッケル水素蓄電池1に充電器が接続され、負荷4の許容範囲を上回る電圧により充電されている場合、負荷4へ許容範囲を超える電圧が印加されることになり、負荷4の故障が発生する可能性がある。   However, since the switching element 9 included in the step-down circuit 3 has two states, a short circuit and an open state, when a control failure to the switching element 9 or a failure of the switching element 9 itself occurs, the switching element 9 is short-circuited. It remains unchanged in either open state. When the switching element 9 remains open and no longer changes, the nickel-metal hydride storage battery 1 and the load 4 are disconnected, so that the operation of the load 4 only stops. However, when the switching element 9 remains short-circuited and does not change, the nickel metal hydride storage battery 1 is directly connected to the load 4 through the step-down circuit 3. At this time, when a charger is connected to the nickel metal hydride storage battery 1 and the battery is charged with a voltage exceeding the allowable range of the load 4, a voltage exceeding the allowable range is applied to the load 4. May occur.

以上のように、組電池を満充電とするために負荷の許容範囲を超える電圧で組電池を充電する場合は、負荷への過電圧出力を防ぐために降圧回路を介挿する方法があるが、降圧回路に含まれるスイッチング素子が短絡故障したときに充電器が発生する過電圧が負荷へ印加され、負荷を故障させる恐れがあるという問題がある。   As described above, when charging an assembled battery with a voltage exceeding the allowable range of the load in order to fully charge the assembled battery, there is a method of interposing a step-down circuit to prevent overvoltage output to the load. There is a problem that an overvoltage generated by the charger may be applied to the load when the switching element included in the circuit is short-circuited and may cause the load to fail.

本発明は前記の、降圧回路に含まれるスイッチング素子が短絡故障したときに充電器が発生する過電圧が負荷へ印加され負荷を故障させる恐れがあるという問題に鑑みてなされたものであり、本発明が解決しようとする課題は、負荷への過電圧出力を回避する直流電源システムを提供することにある。   The present invention has been made in view of the above-described problem that an overvoltage generated by a charger may be applied to a load when the switching element included in the step-down circuit is short-circuited, and the load may be damaged. The problem to be solved is to provide a DC power supply system that avoids overvoltage output to a load.

前記課題を解決するために、本発明においては、請求項1に記載のように、
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、前記組電池が充電されるとき前記三極双投スイッチが前記組電池を前記充電器に接続し、前記組電池が充電されないとき前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システムを構成する。
In order to solve the above problem, in the present invention, as described in claim 1,
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load, the assembled battery is operated by a three-pole double-throw switch. The three-pole double-throw switch is connected to the load or the charger and the battery pack is charged, and the three-pole double-throw switch connects the battery pack to the charger and the battery pack is not charged. Connects the assembled battery to the load to constitute a DC power supply system.

また、本発明においては、請求項2に記載のように、
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、前記三極双投スイッチが前記組電池を前記充電器に接続した後、前記組電池の充電が開始され、充電終了後、前記組電池の電圧が前記負荷の許容上限電圧以下の第1の電圧以下となったとき前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 2,
In a DC power supply system that includes an assembled battery in which one or more storage batteries are connected in series and a charger that charges the assembled battery, and supplies power to a load, the assembled battery is operated by a three-pole double-throw switch. The battery pack is connected to the load or the charger, and after the three-pole double-throw switch connects the battery pack to the battery charger, charging of the battery pack is started. The three-pole double-throw switch connects the assembled battery to the load when the voltage is equal to or lower than a first voltage that is equal to or lower than an allowable upper limit voltage of the load.

また、本発明においては、請求項3に記載のように、
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、前記三極双投スイッチと前記負荷との間に前記組電池から前記負荷への放電方向にのみ電力を通すダイオードが介挿され、前記三極双投スイッチが前記組電池を前記充電器に接続した後、前記組電池の充電が開始され、充電終了後、前記組電池の電圧が前記負荷の許容上限電圧以下の第1の電圧に前記ダイオードの順方向電圧降下の絶対値を加算した電圧以下となったとき、前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 3,
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load, the assembled battery is operated by a three-pole double-throw switch. A diode that is connected to the load or the charger and passes power only in a discharge direction from the assembled battery to the load between the three-pole double-throw switch and the load; After the switch connects the assembled battery to the charger, charging of the assembled battery is started, and after the end of charging, the voltage of the assembled battery is set to a first voltage that is lower than the allowable upper limit voltage of the load. The DC power supply system is characterized in that the three-pole double-throw switch connects the assembled battery to the load when the voltage becomes equal to or less than a voltage obtained by adding absolute values of directional voltage drops.

また、本発明においては、請求項4に記載のように、
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、前記三極双投スィッチと前記負荷との間に前記組電池から前記負荷への放電方向にのみ電力を通すダイオードが介挿され、交流電力を直流電力に変換する整流器が前記負荷に対して並列接続され、前記整流器の出力電圧は前記負荷の許容上限電圧以下であり、前記三極双投スイッチが前記組電池を前記充電器に接続した後、前記組電池の充電が開始され、充電終了後、前記組電池の電圧が前記整流器の出力電圧以下の第2の電圧に前記ダイオードの順方向電圧降下の絶対値を加算した電圧以下となったとき前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 4,
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load, the assembled battery is operated by a three-pole double-throw switch. A diode that is connected to the load or the charger and passes power only in the discharge direction from the assembled battery to the load is inserted between the three-pole double-throw switch and the load, and the AC power is converted to DC power. A rectifier for converting to the load is connected in parallel, the output voltage of the rectifier is less than an allowable upper limit voltage of the load, and after the three-pole double-throw switch connects the battery pack to the charger, Charging of the assembled battery is started, and after completion of charging, when the voltage of the assembled battery becomes equal to or lower than the voltage obtained by adding the absolute value of the forward voltage drop of the diode to the second voltage equal to or lower than the output voltage of the rectifier Tripolar Switch constitutes a DC power supply system, characterized by connecting the assembled battery to the load.

また、本発明においては、請求項5に記載のように、
複数の、請求項1ないし4のいずれかに記載の直流電源システムを、前記三極双投スイッチから前記負荷へ至る給電線において並列接続したことを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 5,
A plurality of DC power supply systems according to any one of claims 1 to 4 are connected in parallel in a power supply line from the three-pole double-throw switch to the load.

また、本発明においては、請求項6に記載のように、
請求項5に記載の直流電源システムにおいて、前記組電池を前記負荷に接続する前記三極双投スイッチが1つ以上常に存在することを特徴とする直流電源システムを構成する。
In the present invention, as described in claim 6,
6. The DC power supply system according to claim 5, wherein at least one of the three-pole double-throw switches for connecting the assembled battery to the load is always present.

本発明によれば、組電池を満充電とするために負荷の許容範囲を超える電圧で組電池を充電しても充電器出力電圧が負荷へ出力されることがないため、負荷の故障を回避し給電信頼性の高い直流電源システムを提供することが可能となる。   According to the present invention, since the charger output voltage is not output to the load even if the battery is charged with a voltage exceeding the allowable range of the load in order to fully charge the battery, the failure of the load is avoided. Therefore, it is possible to provide a DC power supply system with high power supply reliability.

本発明においては、1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、前記組電池が充電されるとき前記三極双投スイッチが前記組電池を前記充電器に接続し、前記組電池が充電されないとき前記三極双投スイッチが前記組電池を前記負荷に接続する。   In the present invention, in a DC power supply system that includes an assembled battery in which one or more storage batteries are connected in series and a charger that charges the assembled battery and supplies power to a load, the assembled battery includes three A pole double throw switch is connected to the load or the charger, and when the assembled battery is charged, the three pole double throw switch connects the assembled battery to the charger, and when the assembled battery is not charged, the A three-pole double-throw switch connects the assembled battery to the load.

以下に、本発明の実施の形態について、ニッケル水素蓄電池を用いた直流電源システムを例として説明するが、本発明はこれに限られるものではない。   Hereinafter, embodiments of the present invention will be described by taking a DC power supply system using a nickel-metal hydride storage battery as an example, but the present invention is not limited to this.

<実施の形態例1>
図1は、本発明の実施の形態例を説明する図である。図において、組電池4は、複数のニッケル水素蓄電池セル(定格電圧1.2V、定格容量100Ah)を40セル直列接続して構成した組電池である。
<Embodiment 1>
FIG. 1 is a diagram for explaining an embodiment of the present invention. In the figure, the assembled battery 4 is an assembled battery constructed by connecting a plurality of nickel metal hydride storage battery cells (rated voltage 1.2 V, rated capacity 100 Ah) in series.

ニッケル水素蓄電池セルが満充電まで充電されるためには、最高1.6Vの充電電圧が必要であるため、充電器5は、交流電源1から交流電力を入力して最高64Vの直流電力を出力する。また、充電電流を制限するため、充電器5の出力電流は最大20Aである。   In order for the nickel metal hydride storage battery to be fully charged, a charging voltage of up to 1.6V is required, so the charger 5 inputs AC power from the AC power source 1 and outputs DC power of up to 64V. To do. Further, in order to limit the charging current, the output current of the charger 5 is a maximum of 20A.

負荷3は直流負荷であり、給電電圧の許容範囲は57V〜40.5Vである。   The load 3 is a DC load, and the allowable range of the power supply voltage is 57V to 40.5V.

三極双投スイッチ7は、組電池4の接続を充電器5あるいは負荷3へ切り替えるために接続され、3つの極のうち1つは組電池4のマイナス端子へ、もう1つは充電器5出力のマイナス端子へ、残りの1つは負荷3のマイナス端子へ接続される。三極双投スイッチでは、ある1つの端子(端子Aとする)が2つの端子(端子B、Cとする)へ接続可能であるが、端子B、C間はどのような状態にあっても接続されることはない。本実施の形態例では、端子A、B、Cをそれぞれ組電池4のマイナス端子、充電器5出力のマイナス端子、負荷3のマイナス端子としているので、充電器5から負荷3への接続が起こり得ない。   The three-pole double-throw switch 7 is connected to switch the connection of the assembled battery 4 to the charger 5 or the load 3. One of the three poles is connected to the negative terminal of the assembled battery 4, and the other is the charger 5. The negative terminal of the output is connected to the negative terminal of the load 3. In a three-pole double-throw switch, one terminal (referred to as terminal A) can be connected to two terminals (referred to as terminals B and C), but the terminal B and C can be in any state. Never connected. In this embodiment, the terminals A, B, and C are the negative terminal of the assembled battery 4, the negative terminal of the output of the charger 5, and the negative terminal of the load 3, respectively, so that the connection from the charger 5 to the load 3 occurs. I don't get it.

三極双投スイッチ7は、制御部9から信号を受信することにより、その接続を組電池4と充電器5とし(充電モード)、制御部9からの信号がリセットされることにより、その接続を組電池4と負荷3とする(放電モード)。このような切り替えは、具体的には、例えば、図2に示すように、リレー8を用いることにより実現できる。リレー8を三極双投のリレーとし、制御部9がリレー8のコイル部分への電流を制御することにより、組電池4の接続を充電器5と負荷3との間で切り替えることができる。   The three-pole double-throw switch 7 receives the signal from the control unit 9 to connect the battery pack 4 and the charger 5 (charging mode), and the signal from the control unit 9 is reset so that the connection is established. Is an assembled battery 4 and a load 3 (discharge mode). Specifically, such switching can be realized by using a relay 8, for example, as shown in FIG. The relay 8 is a three-pole double-throw relay, and the control unit 9 controls the current to the coil portion of the relay 8, whereby the connection of the assembled battery 4 can be switched between the charger 5 and the load 3.

制御部9からの信号により三極双投スイッチ7が充電モードになると、組電池4が充電器5に接続され、充電器5は直流電力(最高64V、最大20A)で組電池4を充電する。充電中、充電器5の出力電圧が64Vに達しない限り充電電流は一定(20A)に維持されながら組電池4の電圧が上昇し、満充電に達したとき制御部9は三極双投スイッチ7への信号をリセットして充電を終了する。   When the three-pole double-throw switch 7 enters the charging mode by a signal from the control unit 9, the assembled battery 4 is connected to the charger 5, and the charger 5 charges the assembled battery 4 with DC power (maximum 64V, maximum 20A). . During charging, unless the output voltage of the charger 5 reaches 64V, the voltage of the assembled battery 4 rises while the charging current is maintained constant (20A). The signal to 7 is reset and charging is terminated.

充電終了後、三極双投スイッチ7の接続は組電池4と負荷3となり放電モードとなる。   After the charging is completed, the connection of the three-pole double-throw switch 7 becomes the assembled battery 4 and the load 3 and enters the discharge mode.

ニッケル水素蓄電池セルは満充電時に最高1.6Vまで電圧が上昇するが、充電されない待機状態にあっては、満充電直後であっても1.42V以下に電圧が低下する。すなわち、待機状態における組電池4の電圧は56.8V以下となる。このため、組電池4の電圧は充電中に負荷3の許容上限電圧(57V)を超えているが、充電が終了して放電モードとなると、負荷3の許容上限電圧(57V)を下回る。よって、負荷3へ許容範囲を超える電圧を印加することなく、組電池4を満充電とすることができる。   The voltage of the nickel metal hydride battery cell rises up to 1.6 V when fully charged, but in a standby state where it is not charged, the voltage drops to 1.42 V or less even immediately after full charging. That is, the voltage of the assembled battery 4 in the standby state is 56.8V or less. For this reason, the voltage of the assembled battery 4 exceeds the allowable upper limit voltage (57 V) of the load 3 during charging. However, when charging is finished and the discharge mode is set, the voltage is lower than the allowable upper limit voltage (57 V) of the load 3. Therefore, the assembled battery 4 can be fully charged without applying a voltage exceeding the allowable range to the load 3.

また、三極双投スイッチ7において故障が発生するとき、組電池4が充電器5に接続されたまま動作しなくなる(ケース1)か、組電池4が負荷3に接続されたまま動作しなくなる(ケース2)か、どちらにも接続されないまま動作しなくなる(ケース3)かのいずれかのケースが想定される。ケース1の場合は、組電池4の電圧が負荷3の許容上限電圧を超えていたとしても負荷3への過電圧印加は起こらず、ケース2の場合は、組電池4の電圧は許容上限電圧を下回っており、ケース3の場合は、組電池4は負荷3へ接続されない。つまり、故障時のいかなる状態においても、負荷3へ許容上限電圧を超える電圧は印加されない。   Further, when a failure occurs in the three-pole double-throw switch 7, the assembled battery 4 does not operate while being connected to the charger 5 (case 1), or the assembled battery 4 does not operate while being connected to the load 3. Either (Case 2) or the case where the device does not operate without being connected to either (Case 3) is assumed. In case 1, even if the voltage of the assembled battery 4 exceeds the allowable upper limit voltage of the load 3, overvoltage application to the load 3 does not occur. In case 2, the voltage of the assembled battery 4 has an allowable upper limit voltage. In case 3, the battery pack 4 is not connected to the load 3. That is, no voltage exceeding the allowable upper limit voltage is applied to the load 3 in any state at the time of failure.

このように、三極双投スイッチを用いて組電池の接続を充電器と負荷との間で切り替えることによって、負荷への過電圧出力を回避することができる。   Thus, by switching the connection of the assembled battery between the charger and the load using the three-pole double-throw switch, an overvoltage output to the load can be avoided.

本実施の形態例においては、組電池4は満充電後すぐに負荷3に接続されるが、負荷装置への給電信頼性を高めるため、負荷3の許容上限電圧(57V)以下の第1の電圧(ここでは56Vとする)を設定し、満充電後に充電器5の出力を停止するが三極双投スイッチ7の接続は充電モードのままとし、組電池4の電圧が第1の電圧(56V)以下となるのを待って放電モードに切り替えるようにしてもよい。   In the present embodiment, the assembled battery 4 is connected to the load 3 immediately after being fully charged. However, in order to increase the reliability of power supply to the load device, the first battery that is equal to or lower than the allowable upper limit voltage (57 V) of the load 3 is used. A voltage (here, 56V) is set and the output of the charger 5 is stopped after full charge, but the connection of the three-pole double-throw switch 7 remains in the charge mode, and the voltage of the assembled battery 4 is set to the first voltage ( 56V) It is also possible to switch to the discharge mode after waiting for the voltage to become lower.

<実施の形態例2>
図3は、本発明の実施の形態例を説明する図である。組電池4から負荷3への放電電路上に、逆流防止用のダイオード6を介挿していること以外は図1と同様である。組電池4は、複数のニッケル水素蓄電池セル(定格電圧1.2V、定格容量100Ah)を40セル直列接続して構成した組電池である。
<Embodiment 2>
FIG. 3 is a diagram for explaining an embodiment of the present invention. 1 except that a backflow preventing diode 6 is inserted on the discharge circuit from the assembled battery 4 to the load 3. The assembled battery 4 is an assembled battery configured by connecting a plurality of nickel-metal hydride storage battery cells (rated voltage 1.2 V, rated capacity 100 Ah) in series with 40 cells.

ダイオード6は組電池4から負荷3への放電方向にのみ電力を通し、順方向電圧降下は1.0V(最小値)である。充電器5は、交流電源1から交流電力を入力して最高64Vの直流電力を出力し、充電器5の出力電流は最大20Aである。負荷3は直流負荷であり、給電電圧の許容範囲は57V〜40.5Vであるが、給電信頼性を考慮し、上限電圧は56V(負荷3の許容上限電圧以下の第1の電圧)と設定されているものとする。三極双投スイッチ7の接続と制御は実施の形態例1と同じであり、制御部9からの信号により充電モードとなり、信号がリセットされることにより放電モードとなる。   The diode 6 passes electric power only in the discharge direction from the assembled battery 4 to the load 3, and the forward voltage drop is 1.0 V (minimum value). The charger 5 receives AC power from the AC power source 1 and outputs DC power of a maximum of 64 V, and the output current of the charger 5 is 20 A at maximum. The load 3 is a DC load, and the allowable range of the power supply voltage is 57 V to 40.5 V, but the upper limit voltage is set to 56 V (first voltage lower than the allowable upper limit voltage of the load 3) in consideration of power supply reliability. It is assumed that The connection and control of the three-pole double-throw switch 7 are the same as in the first embodiment, and the charging mode is set by a signal from the control unit 9, and the discharging mode is set by resetting the signal.

制御部9からの信号により三極双投スイッチ7が充電モードになると、組電池4と充電器5が接続され、充電器5は直流電力(最高64V、最大20A)で組電池4を充電する。充電中、充電器5の出力電圧が64Vに達しない限り充電電流は一定(20A)に維持されながら組電池4の電圧が上昇する。   When the three-pole double-throw switch 7 enters the charging mode by a signal from the control unit 9, the assembled battery 4 and the charger 5 are connected, and the charger 5 charges the assembled battery 4 with DC power (maximum 64V, maximum 20A). . During charging, as long as the output voltage of the charger 5 does not reach 64V, the voltage of the assembled battery 4 rises while the charging current is maintained constant (20 A).

実施の形態例1のように満充電後すぐに放電モードとすると、組電池4の電圧は56.8Vであり、負荷3への印加電圧はダイオード6の順方向電圧降下を減じて55.8Vである。よって、負荷3の上限電圧(56V)を超えることなく給電が可能である。   When the discharge mode is set immediately after full charge as in the first embodiment, the voltage of the assembled battery 4 is 56.8V, and the voltage applied to the load 3 is reduced to 55.8V by reducing the forward voltage drop of the diode 6. It is. Therefore, power can be supplied without exceeding the upper limit voltage (56 V) of the load 3.

実施の形態例1と同様に、故障時のいかなる状態においても、負荷3へ許容上限電圧を超える電圧は印加されないので、負荷への過電圧出力を回避することができる。   Similar to the first embodiment, since a voltage exceeding the allowable upper limit voltage is not applied to the load 3 in any state at the time of failure, an overvoltage output to the load can be avoided.

上記第1の電圧がさらに低く55Vに設定された場合は、満充電後に充電器5の出力を停止するが三極双投スイッチ7の接続は充電モードのままとし、組電池4の電圧が56V(第1の電圧+ダイオード6の順方向電圧降下の絶対値)以下となるのを待って放電モードに切り替えるようにすればよい。   When the first voltage is set to 55 V, which is even lower, the output of the charger 5 is stopped after full charge, but the connection of the three-pole double-throw switch 7 remains in the charging mode, and the voltage of the assembled battery 4 is 56 V. It may be switched to the discharge mode after waiting for (the first voltage + the absolute value of the forward voltage drop of the diode 6) or less.

<実施の形態例3>
図4は、本発明の実施の形態例を説明する図である。ダイオード6から負荷3への給電線に整流器2の出力が並列接続されていること以外は図3と同様である。負荷3は直流負荷であり、給電電圧の許容範囲は57V〜40.5Vである。
<Embodiment 3>
FIG. 4 is a diagram for explaining an embodiment of the present invention. 3 except that the output of the rectifier 2 is connected in parallel to the power supply line from the diode 6 to the load 3. The load 3 is a DC load, and the allowable range of the power supply voltage is 57V to 40.5V.

整流器2は交流電源1から入力した交流電力を直流電力に変換して出力し、その出力電圧は負荷3の許容上限電圧以下(例えば56V)に設定される。   The rectifier 2 converts AC power input from the AC power source 1 into DC power and outputs the DC power, and the output voltage is set to be equal to or lower than the allowable upper limit voltage of the load 3 (for example, 56 V).

組電池4は、複数のニッケル水素蓄電池セル(定格電圧1.2V、定格容量100Ah)を40セル直列接続して構成した組電池である。ダイオード6は組電池4から負荷3への放電方向にのみ電力を通し、順方向電圧降下は1.0V(最小値)である。   The assembled battery 4 is an assembled battery configured by connecting a plurality of nickel-metal hydride storage battery cells (rated voltage 1.2 V, rated capacity 100 Ah) in series with 40 cells. The diode 6 passes electric power only in the discharge direction from the assembled battery 4 to the load 3, and the forward voltage drop is 1.0 V (minimum value).

充電器5は、交流電源1から交流電力を入力して最高64Vの直流電力を出力し、充電器5の出力電流は最大20Aである。三極双投スイッチ7の接続と制御は実施の形態例1と同じであり、制御部9からの信号により充電モードとなり、信号がリセットされることにより放電モードとなる。制御部9からの信号により三極双投スイッチ7が充電モードになると、組電池4が充電器5に接続され、充電器5は直流電力(最高64V、最大20A)で組電池4を充電する。充電中、充電器5の出力電圧が64Vに達しない限り充電電流は一定(20A)に維持されながら組電池4の電圧が上昇する。   The charger 5 receives AC power from the AC power source 1 and outputs DC power of a maximum of 64 V, and the output current of the charger 5 is 20 A at maximum. The connection and control of the three-pole double-throw switch 7 are the same as in the first embodiment, and the charging mode is set by a signal from the control unit 9, and the discharging mode is set by resetting the signal. When the three-pole double-throw switch 7 enters the charging mode by a signal from the control unit 9, the assembled battery 4 is connected to the charger 5, and the charger 5 charges the assembled battery 4 with DC power (maximum 64V, maximum 20A). . During charging, as long as the output voltage of the charger 5 does not reach 64V, the voltage of the assembled battery 4 rises while the charging current is maintained constant (20 A).

実施の形態例1のように満充電後すぐに放電モードとすると、組電池4の電圧は56.8Vであり、負荷3への印加電圧はダイオード6の順方向電圧降下を減じて55.8Vである。本実施の形態例は整流器2の出力を優先して負荷3へ供給し交流電源1の停電時に組電池4から放電するシステムであるから、組電池4側の電圧は、整流器2の出力電圧を、例えば56Vとすれば、その電圧を超えず、組電池4は負荷3へ放電しない。   When the discharge mode is set immediately after full charge as in the first embodiment, the voltage of the assembled battery 4 is 56.8V, and the voltage applied to the load 3 is reduced to 55.8V by reducing the forward voltage drop of the diode 6. It is. Since the present embodiment is a system in which the output of the rectifier 2 is preferentially supplied to the load 3 and discharged from the assembled battery 4 when the AC power supply 1 is interrupted, the voltage on the assembled battery 4 side is the output voltage of the rectifier 2. For example, if it is set to 56V, the voltage will not be exceeded and the assembled battery 4 will not discharge to the load 3. FIG.

実施の形態例1と同様に、故障時のいかなる状態においても、負荷3へ許容上限電圧を超える電圧は印加されないので、負荷への過電圧出力を回避することができる。   Similar to the first embodiment, since a voltage exceeding the allowable upper limit voltage is not applied to the load 3 in any state at the time of failure, an overvoltage output to the load can be avoided.

負荷3の上限電圧が56Vに、整流器2の出力電圧が55.5Vに設定された場合は、整流器2と組電池4側の並列接続点における組電池4側の上限電圧として、整流器2の出力電圧以下の第2の電圧(ここでは55Vとする)を設定し、満充電後に充電器5の出力を停止するが三極双投スイッチ7の接続は充電モードのままとし、組電池4の電圧が56V(第2の電圧+ダイオード6の順方向電圧降下の絶対値)以下となるのを待って放電モードに切り替えるようにすればよい。   When the upper limit voltage of the load 3 is set to 56V and the output voltage of the rectifier 2 is set to 55.5V, the output of the rectifier 2 is used as the upper limit voltage on the assembled battery 4 side at the parallel connection point of the rectifier 2 and the assembled battery 4 side. A second voltage (here 55 V) that is equal to or lower than the voltage is set and the output of the charger 5 is stopped after full charging, but the connection of the three-pole double-throw switch 7 remains in the charging mode, and the voltage of the assembled battery 4 Is set to 56 V (second voltage + absolute value of the forward voltage drop of the diode 6) or less, and the discharge mode may be switched.

本発明の各実施の形態例においては、三極双投スイッチ7をマイナス側端子に接続しているが、プラス側端子に接続しても同じ効果を奏することができる。   In each embodiment of the present invention, the three-pole double-throw switch 7 is connected to the minus terminal, but the same effect can be obtained even if it is connected to the plus terminal.

また、本発明の各実施の形態例においては、組電池4、充電器5、ダイオード6および三極双投スイッチ7から構成される系統(これらを合わせて電池系統と呼ぶ)を1電池系統有するシステムについて適用したが、図5に示すような電池系統を複数有するシステムにおいても適用可能である。それぞれの三極双投スイッチ7が制御部9(図示せず)からの信号によって動作し切り替えが行われるようにすればよい。図5は整流器2を負荷3に並列接続し、ダイオード6を含む構成を示しているが、整流器2のない構成やダイオード6のない構成も可能である。また、各電池系統の三極双投スイッチ7を同時に充電モードにせず、一部の電池系統が常に放電モードとなるように充電のスケジューリングを行うことで、充電モード中に停電が発生した場合でも放電能力を維持することができる。さらに、各電池系統に充電器5を備えるのではなく、複数電池系統分の充電器5を搭載して複数の三極双投スイッチ7へ直流電力を供給し、充電対象の組電池4に接続される三極双投スイッチ7が切り替え動作を行うことにより充電を行う構成も可能である。   In each embodiment of the present invention, one battery system includes a system composed of the assembled battery 4, the charger 5, the diode 6, and the three-pole double throw switch 7 (these are collectively referred to as a battery system). Although applied to the system, it can also be applied to a system having a plurality of battery systems as shown in FIG. Each three-pole double-throw switch 7 may be operated and switched by a signal from a control unit 9 (not shown). Although FIG. 5 shows a configuration in which the rectifier 2 is connected in parallel to the load 3 and includes the diode 6, a configuration without the rectifier 2 or a configuration without the diode 6 is also possible. In addition, even if a power failure occurs during the charging mode, the three-pole double-throw switch 7 of each battery system is not set to the charging mode at the same time, and scheduling is performed so that some battery systems are always in the discharging mode. Discharge capability can be maintained. In addition, each battery system is not equipped with a charger 5, but a plurality of battery system chargers 5 are mounted to supply DC power to a plurality of three-pole double-throw switches 7 and connected to the assembled battery 4 to be charged. The three-pole double-throw switch 7 can be charged by performing a switching operation.

以上、本発明の実施形態について、ニッケル水素蓄電池を用いた直流電源システムを例として説明したが、本発明はこれに限られるものではない。   As described above, the embodiment of the present invention has been described by taking the DC power supply system using the nickel-metal hydride storage battery as an example, but the present invention is not limited to this.

以下に、本発明によって生じる効果について説明する。   Below, the effect produced by this invention is demonstrated.

組電池を満充電とするために負荷の許容範囲を超える電圧で組電池を充電する場合は、負荷への過電圧出力を防ぐために降圧回路を介挿する方法があるが、降圧回路に含まれるスイッチング素子が短絡故障したときに充電器が発生する過電圧が負荷へ印加され、負荷を故障させる恐れがあるという問題がある。   When charging an assembled battery with a voltage exceeding the allowable range of the load in order to fully charge the assembled battery, there is a method of inserting a step-down circuit to prevent overvoltage output to the load, but switching included in the step-down circuit There is a problem that an overvoltage generated by the charger is applied to the load when the element is short-circuited and the load may be broken.

本発明により、充電されている組電池は負荷と電気的に切り離され、かつ切り離しに用いている三極双投スイッチの故障時でも充電器と負荷の接続が起こり得ないため、負荷への過電圧出力を回避することが可能となる。   According to the present invention, the battery pack being charged is electrically disconnected from the load, and even when the three-pole double-throw switch used for disconnection fails, the charger cannot be connected to the load. Output can be avoided.

本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 本発明の実施の形態例を説明する図である。It is a figure explaining the example of embodiment of this invention. 従来の直流電源システムの一例を説明する図である。It is a figure explaining an example of the conventional DC power supply system.

符号の説明Explanation of symbols

1:交流電源、2:整流器、3:負荷、4:組電池、5:充電器、6:ダイオード、7:三極双投スイッチ、8:リレー、9:制御部、以上、図6中の符号を除く。   1: AC power source, 2: rectifier, 3: load, 4: battery pack, 5: charger, 6: diode, 7: three-pole double-throw switch, 8: relay, 9: control unit, and so on in FIG. Excluding the sign.

Claims (6)

1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、
前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、
前記組電池が充電されるとき前記三極双投スイッチが前記組電池を前記充電器に接続し、
前記組電池が充電されないとき前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システム。
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load,
The assembled battery is connected to the load or the charger by a three-pole double-throw switch,
When the battery pack is charged, the three-pole double-throw switch connects the battery pack to the charger;
The DC power supply system, wherein the three-pole double throw switch connects the assembled battery to the load when the assembled battery is not charged.
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、
前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、
前記三極双投スイッチが前記組電池を前記充電器に接続した後、前記組電池の充電が開始され、充電終了後、前記組電池の電圧が前記負荷の許容上限電圧以下の第1の電圧以下となったとき前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システム。
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load,
The assembled battery is connected to the load or the charger by a three-pole double-throw switch,
After the three-pole double-throw switch connects the assembled battery to the charger, charging of the assembled battery is started, and after completion of charging, the voltage of the assembled battery is equal to or lower than an allowable upper limit voltage of the load. The DC power supply system, wherein the three-pole double-throw switch connects the assembled battery to the load when:
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、
前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、
前記三極双投スイッチと前記負荷との間に前記組電池から前記負荷への放電方向にのみ電力を通すダイオードが介挿され、
前記三極双投スイッチが前記組電池を前記充電器に接続した後、前記組電池の充電が開始され、充電終了後、前記組電池の電圧が前記負荷の許容上限電圧以下の第1の電圧に前記ダイオードの順方向電圧降下の絶対値を加算した電圧以下となったとき、前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システム。
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load,
The assembled battery is connected to the load or the charger by a three-pole double-throw switch,
Between the three-pole double-throw switch and the load, a diode that passes power only in the discharge direction from the assembled battery to the load is inserted,
After the three-pole double-throw switch connects the assembled battery to the charger, charging of the assembled battery is started, and after completion of charging, the voltage of the assembled battery is equal to or lower than an allowable upper limit voltage of the load. The three-pole double-throw switch connects the assembled battery to the load when the voltage is equal to or lower than the voltage obtained by adding the absolute value of the forward voltage drop of the diode to the DC power supply system.
1つ以上の蓄電池を直列接続してなる組電池と、前記組電池を充電する充電器とを有し、負荷へ電力を供給する直流電源システムにおいて、
前記組電池が、三極双投スイッチにより、前記負荷あるいは前記充電器に接続され、
前記三極双投スィッチと前記負荷との間に前記組電池から前記負荷への放電方向にのみ電力を通すダイオードが介挿され、
交流電力を直流電力に変換する整流器が前記負荷に対して並列接続され、
前記整流器の出力電圧は前記負荷の許容上限電圧以下であり、
前記三極双投スイッチが前記組電池を前記充電器に接続した後、前記組電池の充電が開始され、充電終了後、前記組電池の電圧が前記整流器の出力電圧以下の第2の電圧に前記ダイオードの順方向電圧降下の絶対値を加算した電圧以下となったとき前記三極双投スイッチが前記組電池を前記負荷に接続することを特徴とする直流電源システム。
In a DC power supply system having an assembled battery formed by connecting one or more storage batteries in series and a charger for charging the assembled battery, and supplying power to a load,
The assembled battery is connected to the load or the charger by a three-pole double-throw switch,
Between the three-pole double-throw switch and the load, a diode that passes power only in the discharge direction from the assembled battery to the load is inserted,
A rectifier that converts AC power to DC power is connected in parallel to the load,
The output voltage of the rectifier is less than the allowable upper limit voltage of the load,
After the three-pole double-throw switch connects the assembled battery to the charger, charging of the assembled battery is started, and after the charging is finished, the voltage of the assembled battery becomes a second voltage equal to or lower than the output voltage of the rectifier. The DC power supply system, wherein the three-pole double-throw switch connects the assembled battery to the load when the voltage becomes equal to or less than a sum of absolute values of forward voltage drops of the diodes.
複数の、請求項1ないし4のいずれかに記載の直流電源システムを、前記三極双投スイッチから前記負荷へ至る給電線において並列接続したことを特徴とする直流電源システム。   A DC power supply system comprising a plurality of DC power supply systems according to any one of claims 1 to 4 connected in parallel in a feeder line extending from the three-pole double-throw switch to the load. 請求項5に記載の直流電源システムにおいて、前記組電池を前記負荷に接続する前記三極双投スイッチが1つ以上常に存在することを特徴とする直流電源システム。   6. The DC power supply system according to claim 5, wherein at least one of the three-pole double-throw switches for connecting the assembled battery to the load is always present.
JP2008177941A 2008-07-08 2008-07-08 Dc power system Pending JP2010022086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177941A JP2010022086A (en) 2008-07-08 2008-07-08 Dc power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177941A JP2010022086A (en) 2008-07-08 2008-07-08 Dc power system

Publications (1)

Publication Number Publication Date
JP2010022086A true JP2010022086A (en) 2010-01-28

Family

ID=41706442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177941A Pending JP2010022086A (en) 2008-07-08 2008-07-08 Dc power system

Country Status (1)

Country Link
JP (1) JP2010022086A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110814A (en) * 2011-11-18 2013-06-06 Toyota Home Kk Storage battery control system
WO2020244465A1 (en) * 2019-06-03 2020-12-10 宁波吉利汽车研究开发有限公司 Battery system of vehicle, charging and discharging method, and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759265A (en) * 1993-08-12 1995-03-03 Casio Comput Co Ltd Battery circuit
JPH08126212A (en) * 1994-10-20 1996-05-17 Fujitsu General Ltd Charge/discharge circuit for battery for emergency
JPH11215731A (en) * 1998-01-20 1999-08-06 Sony Corp Apparatus and method for charging of lithium ion battery
JP2001346337A (en) * 2000-05-31 2001-12-14 Tokin Corp Secondary cell charging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759265A (en) * 1993-08-12 1995-03-03 Casio Comput Co Ltd Battery circuit
JPH08126212A (en) * 1994-10-20 1996-05-17 Fujitsu General Ltd Charge/discharge circuit for battery for emergency
JPH11215731A (en) * 1998-01-20 1999-08-06 Sony Corp Apparatus and method for charging of lithium ion battery
JP2001346337A (en) * 2000-05-31 2001-12-14 Tokin Corp Secondary cell charging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110814A (en) * 2011-11-18 2013-06-06 Toyota Home Kk Storage battery control system
WO2020244465A1 (en) * 2019-06-03 2020-12-10 宁波吉利汽车研究开发有限公司 Battery system of vehicle, charging and discharging method, and vehicle

Similar Documents

Publication Publication Date Title
EP3163711B1 (en) Uninterruptible power supply unit
US20120169124A1 (en) Output circuit for power supply system
CN106464006B (en) Uninterruptible power supply device
JP4753753B2 (en) Fuel cell system
US10017138B2 (en) Power supply management system and power supply management method
US9269989B2 (en) Electric power supply system
TW201218576A (en) Dc power supply device
US8957545B2 (en) Prioritization circuit and electric power supply system
JP2015195674A (en) Power storage battery assembly control system
CN106471705B (en) Uninterruptible power supply device
JP2009011082A (en) Power supply system
US20070092763A1 (en) Fuel cell system
JP2009148110A (en) Charger/discharger and power supply device using the same
JP2009296719A (en) Dc backup power system and method of charging the same
JP4828511B2 (en) Backup power supply and control method thereof
JP4724726B2 (en) DC power supply system and charging method thereof
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP2009095107A (en) Uninterruptible backup power supply device
JP4767976B2 (en) DC power supply system
JP2010022086A (en) Dc power system
JP2009118683A (en) Charger, charging method thereof, and power supply system
WO2021215282A1 (en) Uninterruptible power supply device
JP5295801B2 (en) DC power supply system and discharge method
JP4933465B2 (en) DC power supply system and charge control method thereof
JP2009171724A (en) Bidirectional converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605