JPH0835934A - Internal-flaw evaluation apparatus of sample - Google Patents

Internal-flaw evaluation apparatus of sample

Info

Publication number
JPH0835934A
JPH0835934A JP17218494A JP17218494A JPH0835934A JP H0835934 A JPH0835934 A JP H0835934A JP 17218494 A JP17218494 A JP 17218494A JP 17218494 A JP17218494 A JP 17218494A JP H0835934 A JPH0835934 A JP H0835934A
Authority
JP
Japan
Prior art keywords
sample
lens
light
excitation light
evaluation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17218494A
Other languages
Japanese (ja)
Inventor
Naoyuki Yoshida
尚幸 吉田
Shingo Suminoe
伸吾 住江
Hiroyuki Takamatsu
弘行 高松
Tsutomu Morimoto
勉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17218494A priority Critical patent/JPH0835934A/en
Publication of JPH0835934A publication Critical patent/JPH0835934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide an internal-flaw evaluation apparatus by which photoluminescence light(PL) from a specific depth position at the inside of a sample is measured comparatively simply and which can evaluate a flaw at the inside of the sample regarding an apparatus which evaluates the internal flaw of the sample by means of the photoluminescence light. CONSTITUTION:The focal position at the inside of a sample 16 which condenses exciting light 10 from an exciting light source 11 so as to generate PL corresponds to a position which condenses the PL so as to be passed, i.e., a position in which a pinhole 19a has been formed. As a result, only the PL from the focal position of the sample 16 is guided surely to a detection device 27 so as to be capable of evaluating it. Then, the relative distance between a lens 15 (a first lens means) and the sample 16 is changed, and its focal position is changed. Thereby, only the PL from a specific depth position in the sample 16 can be detected with good efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,例えば多層構造を有す
る半導体ウエハなどの試料の内部欠陥を評価する内部欠
陥評価装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal defect evaluation apparatus for evaluating internal defects of a sample such as a semiconductor wafer having a multilayer structure.

【0002】[0002]

【従来の技術】一般にフォトルミネッセンス光(以下P
L)は,励起光源からの励起光が試料に照射されたとき
に,この試料内部で発生する電子・正孔対が再結合した
ときに観測される発光である。そして,このPLの波長
は,電子・正孔の試料中での状態を反映し,PLを分光
することによって試料の物性を詳細に調べることができ
る。そこで,試料内部からのPLによりその深さ方向に
かかる情報を得る従来の装置としては,例えば特開平5
−264468号公報に開示のものが知られている。上
記公報に開示の装置では,図6に示すごとく,試料50
の表面に対して角度βをなして図外のレーザ光源(励起
光源)からレーザ光51(励起光)が照射される。この
レーザ光51は,試料50内部に入射する際にその表面
において屈折角αで屈折し,この屈折したレーザ光によ
って発生する試料50内のPLが上記試料50の法線方
向に対してθの角度を持って配置されたレンズ52で集
光され,検出器53により検出される。発生した上記P
Lは,試料50内での深さ位置50a〜50dの違いに
よって異なり,上記検出器53内での視野54内の位置
54a〜54dが異なって検出されるので,試料50内
部からのPLによりその深さ位置に係る物性に関しての
情報を得ることができる。
2. Description of the Related Art Generally, photoluminescence light (hereinafter referred to as P
L) is the luminescence observed when the electron / hole pairs generated inside the sample are recombined when the sample is irradiated with the excitation light from the excitation light source. The wavelength of this PL reflects the state of electrons and holes in the sample, and the PL can be spectrally analyzed to examine the physical properties of the sample in detail. Therefore, as a conventional device for obtaining information concerning the depth direction by PL from the inside of the sample, for example, Japanese Patent Laid-Open No.
The one disclosed in JP-A-264468 is known. In the device disclosed in the above publication, as shown in FIG.
The laser light 51 (excitation light) is emitted from a laser light source (excitation light source) (not shown) at an angle β with respect to the surface of the. The laser light 51 is refracted at the surface at a refraction angle α when entering the sample 50, and the PL in the sample 50 generated by the refracted laser light is θ with respect to the normal direction of the sample 50. It is collected by a lens 52 arranged at an angle and detected by a detector 53. The above P that occurred
L varies depending on the depth positions 50a to 50d in the sample 50, and the positions 54a to 54d in the visual field 54 in the detector 53 are detected differently. It is possible to obtain information about physical properties related to the depth position.

【0003】[0003]

【発明が解決しようとする課題】ところが,このような
従来装置では,上述のごとく,レーザ光51を試料50
の表面に対して角度βで入射し,角度αで屈折したレー
ザ光によって発生するPLを試料50表面の法線方向に
対してθをなして配置されたレンズ52で集光する必要
があるため,これらの角度β,α,θを正確に設定ある
いは測定しなければならず,PLの測定に際して多大の
時間を要する。また,上記屈折角αはその対象となる試
料によって異なるため,これらの異なる試料についての
集光点までの深さ位置の絶対値を正確に求めることがで
きない。そこで,本発明は,上記事情に鑑みて創案され
たものであり,比較的簡便に試料内部の特定深さ位置か
らのPLを測定して試料の内部欠陥を評価することので
きる内部欠陥評価装置の提供を目的とするものである。
However, in such a conventional apparatus, as described above, the laser beam 51 is applied to the sample 50.
Since the PL generated by the laser beam incident on the surface of the sample 50 at the angle β and refracted at the angle α needs to be condensed by the lens 52 arranged at θ with respect to the normal direction of the surface of the sample 50. However, these angles β, α, and θ must be set or measured accurately, and a lot of time is required for measuring PL. Further, since the refraction angle α differs depending on the target sample, it is impossible to accurately obtain the absolute value of the depth position to the converging point for these different samples. Therefore, the present invention was devised in view of the above circumstances, and an internal defect evaluation apparatus capable of evaluating PL from a specific depth position inside a sample and evaluating internal defects of the sample relatively easily. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,励起光源からの励起光を試料に照射することに
より発生するフォトルミネッセンス光を検出装置により
検出し,上記試料の内部欠陥を評価する装置において,
上記試料からのフォトルミネッセンス光の光路上に試料
表面の法線方向に光軸を向けて配置される第1のレンズ
手段と,上記第1のレンズ手段を上記フォトルミネッセ
ンス光の光軸方向へ相対的に移動させる移動手段と,上
記第1のレンズ手段を通る光を集光する第2のレンズ手
段と,上記検出装置に併設され,上記第1のレンズ手段
の焦点位置からのフォトルミネッセンス光のみを該検出
装置に向けて通過させるマスク手段とを具備してなる点
に係る試料の内部欠陥評価装置である。
In order to achieve the above-mentioned object, the main means adopted by the present invention is the gist of the invention. Photoluminescence light generated by irradiating a sample with excitation light from an excitation light source. In the device for detecting internal defects of the sample by detecting
A first lens means disposed on the optical path of the photoluminescent light from the sample with its optical axis oriented in the direction normal to the surface of the sample; and the first lens means relative to each other in the optical axis direction of the photoluminescent light. Moving means for moving the first lens means, second lens means for condensing the light passing through the first lens means, and the photodetector light from the focus position of the first lens means, which are provided together with the detecting device. Is an internal defect evaluation apparatus for a sample according to a point including a mask means for passing the light toward the detection apparatus.

【0005】[0005]

【作用】上記構成に係る内部欠陥評価装置では,励起光
源からの励起光が集光してPLが発生する試料内部での
焦点位置とこのPLを集光して通過させる位置,すなわ
ちピンホールを設けた位置とが対応するため,この試料
の焦点位置からのPLのみを確実に検出装置に導いてそ
の評価をすることができる。そして,第1のレンズ手段
と試料の相対距離を変化させてその焦点位置を変えるこ
とで,試料における特定の深さ位置からのPLのみを効
率よく検出することができる。
In the internal defect evaluation apparatus having the above structure, the focal point inside the sample where the excitation light from the excitation light source is condensed and the PL is generated and the position where the PL is condensed and passed, that is, the pinhole is formed. Since it corresponds to the position provided, it is possible to reliably guide only the PL from the focal position of this sample to the detection device and evaluate it. Then, by changing the relative distance between the first lens means and the sample to change the focal position thereof, only the PL from a specific depth position in the sample can be efficiently detected.

【0006】[0006]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る試料の内部欠陥評価
装置の概略構成を示すブロック図,図2は上記内部欠陥
評価装置の要部拡大図,図3は第1のレンズ手段と試料
の相対距離を変化させることにより試料内部における深
さ位置を変えて情報を得る場合の説明図,図4は上記内
部欠陥評価装置により観測されるPLの一例を示すブラ
フ,図5は本発明の他の実施例に係る内部欠陥評価装置
の要部構成を示す説明図である。この実施例に係る内部
欠陥評価装置では,図1及び図2に示すごとく,X−Y
ステージ17上に固定された試料16表面の法線方向
に,その上方から励起光源11,凹レンズ8,レンズ
9,ピンホール12aを備えたプレート12,レンズ1
3,ビームスプリッタ14,レンズ15(第1のレンズ
手段)が配設されている。上記励起光源11としては,
例えばArレーザが用いられ,この励起光源11からの
励起光10が上記試料16の表面に照射される。上記レ
ンズ15は,上記試料16内で上記励起光10を集光さ
せると共にその焦点位置からのフォトルミネッセンス光
(以下PL)を平行光となす作用をなし,上記試料16
に対して上記PLの光軸方向へレンズ駆動装置25(移
動手段)により移動駆動される。尚,このレンズ駆動装
置25は当該内部欠陥評価装置を統括するコンピュータ
を備えた制御装置22により制御される。この場合,上
記レンズ15を固定として上記X−Yステージ17をこ
のレンズ15に対して上記PLの光軸方向へ移動駆動
し,レンズ15と試料16の相対距離を変化させるよう
にしてもよい。このようにすると,上記X−Yステージ
17は上記制御装置22により3次元空間内において試
料16を移動調整可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. 1 is a block diagram showing a schematic structure of an internal defect evaluation apparatus for a sample according to an embodiment of the present invention, FIG. 2 is an enlarged view of a main part of the internal defect evaluation apparatus, and FIG. 3 is a first lens means. And Fig. 4 is an explanatory view of obtaining information by changing the depth position inside the sample by changing the relative distance between the sample, Fig. 4 is a bluff showing an example of PL observed by the internal defect evaluation device, and Fig. 5 is a book. It is explanatory drawing which shows the principal part structure of the internal defect evaluation apparatus which concerns on the other Example of this invention. In the internal defect evaluation apparatus according to this embodiment, as shown in FIGS.
Excitation light source 11, concave lens 8, lens 9, plate 12 provided with pinhole 12a, lens 1 in the direction normal to the surface of sample 16 fixed on stage 17.
3, a beam splitter 14, and a lens 15 (first lens means) are arranged. As the excitation light source 11,
For example, an Ar laser is used, and the excitation light 10 from the excitation light source 11 is applied to the surface of the sample 16. The lens 15 has a function of condensing the excitation light 10 in the sample 16 and making photoluminescence light (hereinafter PL) from the focal position into parallel light.
On the other hand, the lens driving device 25 (moving means) is driven to move in the optical axis direction of the PL. The lens driving device 25 is controlled by the control device 22 including a computer that controls the internal defect evaluation device. In this case, the lens 15 may be fixed and the XY stage 17 may be moved and driven in the optical axis direction of the PL with respect to the lens 15 to change the relative distance between the lens 15 and the sample 16. By doing so, the XY stage 17 can move and adjust the sample 16 in the three-dimensional space by the control device 22.

【0007】上記ビームスプリッタ14の上記PLの光
軸と直交する方向には,帯域透過フィルタ26,レンズ
18(第2のレンズ手段),ピンホール19aを備えた
マスク19(マスク手段),検出装置27が配設されて
いる。上記レンズ18は,上記レンズ15を通るPL2
4を集光する作用をなし,上記レンズ15の焦点位置か
らのPLのみを上記検出装置27に通過させるべく,そ
の集光位置に上記ピンホール19aが位置するように上
記マスク19が取り付けられている(図2参照)。上記
マスク12に併設された上記検出装置27は,分光器2
0と検出器21とにより構成され,上記制御装置22に
接続されている。さらにこの制御装置22には,解析用
の画像出力装置23が接続されている。本実施例に係る
内部欠陥評価装置は上記したように構成されている。従
って,上記構成に係る評価装置では,励起光源11から
出射された励起光10は,凹レンズ8により光束を広げ
られてレンズ9により一旦収束され,プレート12のピ
ンホール12aを通過することによって試料16内で所
定のPLを発生させる励起光以外の光が除去される。そ
の後,レンズ13によって上記励起光10は平行光線と
される。上記のようにして平行光線とされた励起光10
は,さらにビームスプリッタ14を透過し,レンズ15
によって収束され,試料16の表面上で細く絞られる。
このようにして励起光10が照射され,試料16内部で
発生したPLは,上記レンズ15によって集光されて平
行光線となる。即ち,この平行光線は,上記試料16内
での焦点位置からのPLであって,ビームスプリッタ1
4によってその進路が変更される。そして,この平行光
線は帯域透過フィルタ26の作用で所定のPLのみが透
過された後,レンズ18によって収束される。上記レン
ズ18による集光位置には前述のごとくピンホール12
aが設けられていることから,上記試料16内での焦点
位置からのPLのみが分光器20に入射されて分光さ
れ,検出器21により検出される。
In the direction perpendicular to the optical axis of the PL of the beam splitter 14, the band-pass filter 26, the lens 18 (second lens means), the mask 19 (mask means) provided with the pinhole 19a, and the detector. 27 are provided. The lens 18 is PL2 passing through the lens 15.
The mask 19 is attached such that the pinhole 19a is located at the focusing position of the lens 15 so that only the PL from the focal position of the lens 15 passes through the detecting device 27. (See Figure 2). The detection device 27 attached to the mask 12 is the spectroscope 2
0 and a detector 21 and connected to the control device 22. Further, an image output device 23 for analysis is connected to the control device 22. The internal defect evaluation apparatus according to this example is configured as described above. Therefore, in the evaluation apparatus having the above-described configuration, the excitation light 10 emitted from the excitation light source 11 is expanded by the concave lens 8 and once converged by the lens 9, and passes through the pinhole 12a of the plate 12 to produce the sample 16 Light other than the excitation light that generates a predetermined PL is removed. Then, the excitation light 10 is made into parallel rays by the lens 13. Excitation light 10 converted into parallel rays as described above
Further passes through the beam splitter 14 and the lens 15
Are converged by and are narrowed down on the surface of the sample 16.
The PL generated in the sample 16 by being irradiated with the excitation light 10 in this manner is condensed by the lens 15 and becomes a parallel light beam. That is, this parallel light beam is PL from the focus position in the sample 16, and the beam splitter 1
The course is changed by 4. Then, the parallel rays are converged by the lens 18 after only a predetermined PL is transmitted by the action of the band pass filter 26. As described above, the pinhole 12 is provided at the focusing position by the lens 18.
Since a is provided, only the PL from the focus position in the sample 16 is incident on the spectroscope 20 to be spectroscopically separated and detected by the detector 21.

【0008】即ち,上記励起光源11からの励起光が集
光してPLが発生する試料16内部での焦点位置とこの
PLを集光して通過させる位置,換言すればピンホール
19aを設けた位置とが対応するため,レンズ15で平
行光線とならない試料16内での焦点位置以外で発生し
たPLはレンズ18により上記ピンホール19aの位置
で収束せず,上記分光器20へ導かれることはない。従
って,試料16の焦点位置からのPLのみを確実に検出
装置27に導いてその評価をすることができる。そし
て,上記レンズ駆動装置25によりレンズ15をPLの
光軸方向へ移動させて試料16に対する焦点位置を変化
させることにより,この試料16における特定の深さ位
置からのPLのみを効率よく検出することができる。そ
の結果,当該装置によれば,試料16内部からのPLに
よりその深さ方向にかかる所定位置に関しての情報を得
る場合には,従来装置の場合のように励起光の入射角,
屈折角あるいはPLを観察する方向角などを測定するこ
となく,試料内における所定の深さ位置からのPLのみ
を検出することができる。また,種類の異なる試料の場
合でも,該試料とレンズ15との相対距離を変化させる
ことのみにより上記の場合と同様にして所定の深さ位置
におけるPLを測定することができる。図3に試料16
の深さ位置を変えてPLを測定する状況を示す。さら
に,本実施例にかかる装置においては,試料16を支持
するX−Yステージ17を制御装置22により駆動制御
して,該試料16をX−Y平面内で移動させつつPLの
測定を行うことにより,所定の深さ位置での2次元方向
にかかるPLの測定をも容易に行うことができる。
That is, a focus position inside the sample 16 where the excitation light from the excitation light source 11 is collected and PL is generated and a position where this PL is collected and passed, in other words, a pinhole 19a is provided. Since the positions correspond to each other, the PL generated at a position other than the focal position in the sample 16 which does not become a parallel light beam by the lens 15 is not converged by the lens 18 at the position of the pinhole 19a and is guided to the spectroscope 20. Absent. Therefore, only the PL from the focus position of the sample 16 can be surely guided to the detection device 27 and evaluated. Then, by moving the lens 15 in the optical axis direction of the PL by the lens driving device 25 to change the focal position with respect to the sample 16, only the PL from a specific depth position in the sample 16 can be efficiently detected. You can As a result, according to the apparatus, when the information about the predetermined position in the depth direction is obtained by PL from the inside of the sample 16, the incident angle of the excitation light, as in the case of the conventional apparatus,
Only the PL from a predetermined depth position in the sample can be detected without measuring the refraction angle or the directional angle for observing the PL. Further, even in the case of different kinds of samples, the PL at a predetermined depth position can be measured in the same manner as in the above case only by changing the relative distance between the sample and the lens 15. Sample 16 in FIG.
2 shows a situation in which PL is measured by changing the depth position of. Further, in the device according to the present embodiment, the XY stage 17 supporting the sample 16 is driven and controlled by the control device 22 to measure the PL while moving the sample 16 in the XY plane. Thereby, the PL applied to the two-dimensional direction at the predetermined depth position can be easily measured.

【0009】ここで,測定対象となる試料として例えば
Si結晶の多層構造を用いた場合,励起光としては例え
ば400nmから1000nmの波形を用いることが望
ましい・即ち,400nmの波長の励起光を用いた場合
には試料へのこの励起光の侵入深さは0.1μmであ
り,これ以上短い波長の励起光では試料内部からのPL
を効率よく測定することが出来ない。また,波長が1μ
mより長い励起光を用いた場合には,この励起光のエネ
ルギが少ないことから十分な電子・正孔を試料内部にお
いて発生させることができないからである。このとき,
観測されるPLの一例を図4に示す。即ち,上記励起光
により試料内には波長が1000nmから1700nm
の範囲内でPLが発生するが,試料の結晶性を反映する
バンド端発光と,試料内の欠陥に起因する発光とが明瞭
に観測される。従って,このような発光の深さ位置を当
該装置により求めることで,試料内部における欠陥の深
さ位置を知ることができる。図5に本発明の他の実施例
に係る内部欠陥評価装置の要部構成を示す。即ち,前記
実施例においては励起光を試料16の表面に対してその
法線方向から入射しているが,図5に示すように,試料
16から発生するPLが減少しない範囲内においては該
試料16表面の法線方向に対して斜め方向から励起光1
0′を入射するようにしてもよい。更に,上記実施例に
おける分光器20に変えて,求めようとする波長のPL
を透過させるようないわゆる狭帯域透過フィルタを用い
てもよい。
Here, when a multilayer structure of Si crystal is used as the sample to be measured, it is desirable to use a waveform of 400 nm to 1000 nm as the excitation light, that is, the excitation light of the wavelength of 400 nm was used. In this case, the penetration depth of this excitation light into the sample is 0.1 μm, and with excitation light of a shorter wavelength, PL from the inside of the sample
Cannot be measured efficiently. Also, the wavelength is 1μ
This is because when the excitation light longer than m is used, the energy of the excitation light is small, so that sufficient electrons and holes cannot be generated inside the sample. At this time,
An example of observed PL is shown in FIG. That is, the wavelength of 1000 nm to 1700 nm in the sample due to the excitation light.
Although PL is generated within the range, the band edge emission reflecting the crystallinity of the sample and the emission due to the defect in the sample are clearly observed. Therefore, the depth position of the defect inside the sample can be known by determining the depth position of such light emission by the device. FIG. 5 shows a main configuration of an internal defect evaluation apparatus according to another embodiment of the present invention. That is, in the above-described embodiment, the excitation light is incident on the surface of the sample 16 from the normal direction thereof, but as shown in FIG. 16 Excitation light 1 obliquely to the surface normal direction
0'may be made incident. Further, in place of the spectroscope 20 in the above embodiment, the PL of the wavelength to be obtained is
It is also possible to use a so-called narrow band transmission filter that transmits the light.

【0010】[0010]

【発明の効果】本発明は,上記したように,励起光源か
らの励起光を試料に照射することにより発生するフォト
ルミネッセンス光を検出装置により検出し,上記試料の
内部欠陥を評価する装置において,上記試料からのフォ
トルミネッセンス光の光路上に試料表面の法線方向に光
軸を向けて配置される第1のレンズ手段と,上記第1の
レンズ手段を上記フォトルミネッセンス光の光軸方向へ
相対的に移動させる移動手段と,上記第1のレンズ手段
を通る光を集光する第2のレンズ手段と,上記検出装置
に併設され,上記第1のレンズ手段の焦点位置からのフ
ォトルミネッセンス光のみを該検出装置に向けて通過さ
せるマスク手段とを具備してなることを特徴とする試料
の内部欠陥評価装置であるから,比較的簡便に試料内部
の特定深さ位置からのPLを測定して該試料の内部欠陥
を評価することができる。
INDUSTRIAL APPLICABILITY As described above, the present invention is an apparatus for detecting photoluminescence light generated by irradiating a sample with excitation light from an excitation light source by means of a detector to evaluate internal defects in the sample, A first lens means disposed on the optical path of the photoluminescent light from the sample with its optical axis oriented in the direction normal to the surface of the sample; and the first lens means relative to each other in the optical axis direction of the photoluminescent light. Moving means for moving the first lens means, second lens means for condensing the light passing through the first lens means, and the photodetector light from the focus position of the first lens means, which are provided together with the detecting device. Since it is a device for evaluating internal defects of a sample, the device is provided with a mask means for passing the sample toward the detection device. It can be evaluated internal defects of the sample by measuring the PL.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る試料の内部欠陥評価
装置の概略構成を示すブロック図。
FIG. 1 is a block diagram showing a schematic configuration of a sample internal defect evaluation apparatus according to an embodiment of the present invention.

【図2】 上記内部欠陥評価装置の要部拡大図。FIG. 2 is an enlarged view of a main part of the internal defect evaluation apparatus.

【図3】 第1のレンズ手段と試料の相対距離を変化さ
せることにより試料内部における深さ位置を変えて情報
を得る場合の説明図。
FIG. 3 is an explanatory diagram of a case where information is obtained by changing the depth position inside the sample by changing the relative distance between the first lens means and the sample.

【図4】 上記内部欠陥評価装置により観測されるPL
の一例を示すブラフ。
FIG. 4 is a PL observed by the internal defect evaluation apparatus.
Bluff showing an example.

【図5】 本発明の他の実施例に係る内部欠陥評価装置
の要部構成を示す説明図。
FIG. 5 is an explanatory diagram showing the main configuration of an internal defect evaluation apparatus according to another embodiment of the present invention.

【図6】 従来の内部欠陥評価装置の概略構成を示す要
部ブロック図。
FIG. 6 is a principal block diagram showing a schematic configuration of a conventional internal defect evaluation apparatus.

【符号の説明】[Explanation of symbols]

10,10′…励起光 11…励起光源 14…ビームスプリッタ 15…レンズ(第1のレンズ手段) 16…試料 17…X−Yステージ 18…レンズ(第2のレンズ手段) 19…マスク(マスク手段) 19a…ピンホール 20…分光器 21…検出器 22…制御装置 24…PL 25…レンズ駆動装置(移動手段) 27…検出装置 10, 10 '... Excitation light 11 ... Excitation light source 14 ... Beam splitter 15 ... Lens (first lens means) 16 ... Sample 17 ... XY stage 18 ... Lens (second lens means) 19 ... Mask (mask means) ) 19a ... pinhole 20 ... spectroscope 21 ... detector 22 ... control device 24 ... PL 25 ... lens drive device (moving means) 27 ... detection device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 勉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Morimoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Works, Ltd. Kobe Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 励起光源からの励起光を試料に照射する
ことにより発生するフォトルミネッセンス光を検出装置
により検出し,上記試料の内部欠陥を評価する装置にお
いて,上記試料からのフォトルミネッセンス光の光路上
に試料表面の法線方向に光軸を向けて配置される第1の
レンズ手段と,上記第1のレンズ手段を上記フォトルミ
ネッセンス光の光軸方向へ相対的に移動させる移動手段
と,上記第1のレンズ手段を通る光を集光する第2のレ
ンズ手段と,上記検出装置に併設され,上記第1のレン
ズ手段の焦点位置からのフォトルミネッセンス光のみを
該検出装置に向けて通過させるマスク手段とを具備して
なることを特徴とする試料の内部欠陥評価装置。
1. A device for detecting photoluminescence light generated by irradiating a sample with excitation light from an excitation light source by a detection device to evaluate internal defects of the sample, wherein light of photoluminescence light from the sample is detected. First lens means arranged on the road with its optical axis oriented in the direction normal to the sample surface; moving means for relatively moving the first lens means in the optical axis direction of the photoluminescent light; A second lens means for condensing light passing through the first lens means, and the detection device are provided side by side, and only the photoluminescent light from the focal position of the first lens means is passed toward the detection device. An internal defect evaluation apparatus for a sample, comprising a mask means.
JP17218494A 1994-07-25 1994-07-25 Internal-flaw evaluation apparatus of sample Pending JPH0835934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17218494A JPH0835934A (en) 1994-07-25 1994-07-25 Internal-flaw evaluation apparatus of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17218494A JPH0835934A (en) 1994-07-25 1994-07-25 Internal-flaw evaluation apparatus of sample

Publications (1)

Publication Number Publication Date
JPH0835934A true JPH0835934A (en) 1996-02-06

Family

ID=15937140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17218494A Pending JPH0835934A (en) 1994-07-25 1994-07-25 Internal-flaw evaluation apparatus of sample

Country Status (1)

Country Link
JP (1) JPH0835934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148191A (en) * 2000-11-08 2002-05-22 Dowa Mining Co Ltd Semiconductor characteristic evaluation method and apparatus
JP2005098970A (en) * 2003-08-25 2005-04-14 Hitachi Kokusai Electric Inc Method and apparatus for identifying foreign matter
JP2009512198A (en) * 2005-10-11 2009-03-19 ビーティー イメージング ピーティーワイ リミテッド Method and system for inspecting indirect bandgap semiconductor structures
JP2015008284A (en) * 2013-05-29 2015-01-15 株式会社豊田中央研究所 Method and device for observing hetero junction field effect transistor phenomenon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148191A (en) * 2000-11-08 2002-05-22 Dowa Mining Co Ltd Semiconductor characteristic evaluation method and apparatus
JP2005098970A (en) * 2003-08-25 2005-04-14 Hitachi Kokusai Electric Inc Method and apparatus for identifying foreign matter
JP4523310B2 (en) * 2003-08-25 2010-08-11 株式会社日立国際電気 Foreign matter identification method and foreign matter identification device
JP2009512198A (en) * 2005-10-11 2009-03-19 ビーティー イメージング ピーティーワイ リミテッド Method and system for inspecting indirect bandgap semiconductor structures
KR101365336B1 (en) * 2005-10-11 2014-02-19 비티 이미징 피티와이 리미티드 Method and system for inspecting indirect bandgap semiconductor structure
KR101365363B1 (en) * 2005-10-11 2014-02-20 비티 이미징 피티와이 리미티드 Method and system for inspecting indirect bandgap semiconductor structure
US9234849B2 (en) 2005-10-11 2016-01-12 Bt Imaging Pty Limited Method and system for inspecting indirect bandgap semiconductor structure
US9909991B2 (en) 2005-10-11 2018-03-06 Bt Imaging Pty Limited Method and system for inspecting indirect bandgap semiconductor structure
JP2015008284A (en) * 2013-05-29 2015-01-15 株式会社豊田中央研究所 Method and device for observing hetero junction field effect transistor phenomenon

Similar Documents

Publication Publication Date Title
US9410880B2 (en) Laser differential confocal mapping-spectrum microscopic imaging method and device
JP4001862B2 (en) System and method for a wafer inspection system using multiple angle and multiple wavelength illumination
JP3323537B2 (en) Microstructure evaluation device and microstructure evaluation method
US5381016A (en) Method and apparatus for measuring photoluminescence in crystal
JP5469133B2 (en) Microscope system
CN1662808B (en) Optical technique for detecting buried defects in opaque films
JP2009530637A (en) Fluorescence reader
JP5038094B2 (en) Laser scanning microscope
CN105378463B (en) For detecting the device of binding affinity
US8223343B2 (en) Interferometric confocal microscope
US7019849B2 (en) Depth measuring apparatus
JPH0835934A (en) Internal-flaw evaluation apparatus of sample
JP2019045396A (en) Raman spectrometry device and method for raman spectrometry
US20050225764A1 (en) Device and method for detecting fluorescence comprising a light emitting diode as excitation source
GB2379011A (en) Apparatus for measuring the thickness of materials using the focal length of a lensed fibre
JP4738134B2 (en) Analysis equipment
JP3275022B2 (en) Photoluminescence measurement device in crystal
JPH10153561A (en) Photothermal transduction spectral analyzer
JPS61167838A (en) Particle analyzer
JP2007121025A5 (en)
JP4016938B2 (en) Optical microscope measuring device
JPH02183147A (en) Fine foreign matter inspecting device
JP2746852B2 (en) Transmitted light measurement device
EP4332557A1 (en) A system for optical inspection of a substrate using same or different wavelengths
WO2021019861A1 (en) Cantilever, scanning probe microscope, and measurement method using scanning probe microscope