JPH0835881A - Device for measuring shape of light beam - Google Patents

Device for measuring shape of light beam

Info

Publication number
JPH0835881A
JPH0835881A JP18985494A JP18985494A JPH0835881A JP H0835881 A JPH0835881 A JP H0835881A JP 18985494 A JP18985494 A JP 18985494A JP 18985494 A JP18985494 A JP 18985494A JP H0835881 A JPH0835881 A JP H0835881A
Authority
JP
Japan
Prior art keywords
light beam
measured
light
photoconductor
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18985494A
Other languages
Japanese (ja)
Inventor
Koji Sasaki
功治 佐々木
Kazunori Yashima
和範 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP18985494A priority Critical patent/JPH0835881A/en
Publication of JPH0835881A publication Critical patent/JPH0835881A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To provide a three dimensional light beam shape measuring device capable of measuring not only the shape of a light beam from a measuring light device on an X-Y plane but also the focal distance and astigmatism in the traveling derection of the light beam. CONSTITUTION:Constituted are of a scanning means 26 for moving a photoconductor 21 having electrodes 23, 24 constituted on a InP base in a direction perpendicular to a light beam 11, a scanning means 6 for moving in the traveling direction of the light beam 11, a resistance measuring means 27 for measuring the resistance between a pair of electrodes 23, 24, a converter means 28 for converting the resistance value to light intensity, and a display means 35 after obtaining the diameter of the light beam 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばコンパクトデ
ィスクレコーダの記録検出光ビームや各種光コンポーネ
メントに用いられる光ファイバーコリメータの出射光ビ
ームなどの光ビームの径の大きさや光ビームの形状を測
定すると共に焦点距離や非点収差等をも測定できる光ビ
ーム形状測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the diameter and shape of a light beam such as a recording detection light beam of a compact disc recorder and an output light beam of an optical fiber collimator used for various optical components. The present invention also relates to a light beam shape measuring instrument capable of measuring focal length, astigmatism, and the like.

【0002】[0002]

【従来の技術】本出願人は先に、特願平5−19045
0「光ビーム形状測定器」(出願日:平成5年7月30
日)でもって、フォトコンダクタ(光導電体)を光電変
換素子として用いたX−Y平面上の光ビーム形状測定器
を開示した。本願発明は、これを用いてX−Y平面上は
もとより、Z軸、即ち縦軸方向の焦点距離や非点収差等
をも分解能よく、精密に測定するものである。
2. Description of the Related Art The present applicant has previously filed Japanese Patent Application No. 5-19045.
0 "Light beam shape measuring instrument" (filing date: July 30, 1993)
(JP), a light beam shape measuring instrument on an XY plane using a photoconductor (photoconductor) as a photoelectric conversion element was disclosed. The present invention uses this to accurately measure not only on the XY plane but also on the Z axis, that is, the focal length and astigmatism in the vertical axis direction with good resolution.

【0003】従来は光ビームの径を測定するのに、図4
(A)に示すように、被測定光ビーム11をスリット1
2を通過させてフォトダイオードのような受光素子13
に投射し、スリット12を光ビーム11に対して直角方
向に移動させ、その各単位移動毎に受光素子13の出力
を測定し、スリット12の移動に対する受光素子13の
出力レベルの状態から光ビーム11の断面の光強度形状
を測定している。
Conventionally, in measuring the diameter of a light beam, FIG.
As shown in FIG.
Light receiving element 13 such as a photodiode that passes through 2
The slit 12 is moved in the direction perpendicular to the light beam 11, the output of the light receiving element 13 is measured for each unit movement, and the light beam is output from the state of the output level of the light receiving element 13 with respect to the movement of the slit 12. The light intensity shape of the cross section of 11 is measured.

【0004】このように従来においてはスリット12を
移動させるため、スリット12と受光素子13との間に
は必ず間隔Dが存在し、この間隔Dは数mm程度にもな
る。分解能を高めるためスリット12の幅Wを小にする
と、スリット12の回折効果が大になって図4(B)に
示すようにスリット12を通過した光が広がって受光素
子13に到達して、スリット12を通過した光の強度を
正しく測定することができない。一方スリット12の幅
Wを広くすると、回折効果による広がりは減少するが、
スリット幅が広いため測定分解能が減少する。
As described above, since the slit 12 is conventionally moved, there is always a gap D between the slit 12 and the light receiving element 13, and the gap D is about several mm. When the width W of the slit 12 is reduced to increase the resolution, the diffraction effect of the slit 12 becomes large, and the light passing through the slit 12 spreads and reaches the light receiving element 13, as shown in FIG. 4B. The intensity of the light passing through the slit 12 cannot be measured correctly. On the other hand, if the width W of the slit 12 is widened, the spread due to the diffraction effect is reduced,
Since the slit width is wide, the measurement resolution is reduced.

【0005】[0005]

【発明が解決しようとする課題】そこで特願平5−19
0450では、受光面に被測定光ビームの径より小さい
間隔で形成された一対の電極を有するフォトコンダクタ
を設け、そのフォトコンダクタの受光面に被測定光ビー
ムを入射させ、その被測定光ビームとフォトコンダクタ
とがその電極の配列方向に、つまり被測定光ビームに対
して直角方向に走査手段により移動させる。そのときの
電極間の抵抗値を抵抗測定手段で測定し、その測定抵抗
値を光強度に変換し、その変換した光強度の上記移動に
もとずく変化から被測定光ビームの径を求め、その結果
を表示するものである。
[Patent Document 1] Japanese Patent Application No. 5-19
In 0450, a photoconductor having a pair of electrodes formed at intervals smaller than the diameter of the light beam to be measured is provided on the light receiving surface, and the light beam to be measured is made incident on the light receiving surface of the photoconductor. The photoconductor and the photoconductor are moved by the scanning means in the arrangement direction of the electrodes, that is, in the direction perpendicular to the light beam to be measured. The resistance value between the electrodes at that time is measured by a resistance measuring means, the measured resistance value is converted into light intensity, and the diameter of the light beam to be measured is obtained from the change of the converted light intensity based on the movement. The result is displayed.

【0006】上記のフォトコンダクタを用いた光ビーム
形状測定器は、従来に比して分解能が高く、精度よく光
ビームを測定できるが、X−Y平面のみを考慮してお
り、Z軸、即ち焦点距離の測定や非点収差の測定はでき
なかった。この発明は、光ビームを発生する被測定光デ
バイスの焦点距離や非点収差の測定を行うものである。
The light beam shape measuring instrument using the above photoconductor has a higher resolution than the conventional one and can measure the light beam with high accuracy, but it considers only the XY plane, and the Z axis, that is, It was not possible to measure the focal length or astigmatism. This invention measures the focal length and astigmatism of an optical device to be measured that generates a light beam.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明は特願平5−190450記載のフォトコ
ンダクタを用いた光ビーム形状測定器を用いて、光ビー
ムの進行方向、つまりZ軸方向に前後に移動するZステ
ージを設けて、これに被測定光デバイスを装着し、その
Zステージ上の被測定光デバイスをZ軸にそって移動さ
せ、各ポイントでの光ビームの形状を測定し、表示する
ものである。
In order to achieve the above object, the present invention uses a light beam shape measuring instrument using a photoconductor described in Japanese Patent Application No. 5-190450 and uses the light beam traveling direction, that is, Z direction. A Z stage that moves back and forth in the axial direction is provided, an optical device to be measured is mounted on the Z stage, and the optical device to be measured on the Z stage is moved along the Z axis to determine the shape of the light beam at each point. It is what is measured and displayed.

【0008】つまり光ビーム形状測定器の制御部からの
制御信号をステップモータに与え、ステップモータで被
測定光デバイスをZ軸方向に微小間隔毎に移動させ、被
測定光デバイスの移動毎に光ビームの径を測定し、表示
させるものである。このステップ移動の距離が短く、サ
ンプリング数が多いほど、分解能は高くなる。以下、本
発明の実施例について説明する。
That is, a control signal from the control unit of the light beam shape measuring instrument is applied to the step motor, and the measured optical device is moved by the step motor in the Z-axis direction at every minute interval. The diameter of the beam is measured and displayed. The shorter the distance of this step movement and the larger the number of samplings, the higher the resolution. Examples of the present invention will be described below.

【0009】[0009]

【実施例】図1に本発明の一実施例の構成図を、図2に
Zステージ上の被測定光デバイスを移動させたときの測
定結果のデータ及び図面を、図3に測定した光ビームの
形状図を示す。図1を用いて本発明の光ビーム形状測定
器を説明する。図1(B)に示すように、フォトコンダ
クタ21は、FeをドープしたInP基板上に金属膜で
形成された電極部(23、24)を持つもので、電極構
造は電極幅Lが約400μmで、ギャップ幅Wが約3μ
mの対向電極である。この電極ギャップ内に光を入射す
ると、電極部は電気的に導通し、光量に応じた抵抗値が
発生する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is data and drawings of measurement results when an optical device to be measured on a Z stage is moved, and FIG. The shape figure of is shown. The light beam shape measuring instrument of the present invention will be described with reference to FIG. As shown in FIG. 1B, the photoconductor 21 has an electrode portion (23, 24) formed of a metal film on an Fe-doped InP substrate. The electrode structure has an electrode width L of about 400 μm. And the gap width W is about 3μ
m counter electrode. When light enters the electrode gap, the electrode portion is electrically conducted, and a resistance value corresponding to the amount of light is generated.

【0010】この抵抗値を、図1(A)に示す、抵抗測
定部27で測定する。抵抗値は光パワーと反比例の関係
を持つことから、抵抗値の逆数を光強度の相対値として
用いることができるので、強度変換部28で光強度に変
換する。従ってフォトコンダクタ21をXステージ25
に固定し、光ビーム11に対し直角方向にステップモー
タ26で移動させ、移動毎に光強度を測定して光ビーム
の形状を得るようにする。
This resistance value is measured by the resistance measuring section 27 shown in FIG. Since the resistance value is inversely proportional to the optical power, the reciprocal of the resistance value can be used as the relative value of the light intensity, so that the intensity conversion unit 28 converts it into the light intensity. Therefore, the photoconductor 21 is connected to the X stage 25.
Then, the stepper motor 26 is moved in a direction perpendicular to the light beam 11 and the light intensity is measured for each movement to obtain the shape of the light beam.

【0011】電極形状補正部29では、光ビーム11の
正しい強度特性を得るための演算を行う。即ち光ビーム
11の強度分布は通常ガウス分布であり、関数f(x,
y)で表される。また、フォトコンダクタ21の電極の
間隔形状は関数g(x,y)で表される。そして光ビー
ム11の照射点をフォトコンダクタ21の電極が走査す
ると、そのときの出力波形は次式で表される。
The electrode shape correction unit 29 performs a calculation for obtaining the correct intensity characteristic of the light beam 11. That is, the intensity distribution of the light beam 11 is usually a Gaussian distribution, and the function f (x,
y). In addition, the interval shape of the electrodes of the photoconductor 21 is represented by a function g (x, y). When the electrode of the photoconductor 21 scans the irradiation point of the light beam 11, the output waveform at that time is expressed by the following equation.

【0012】 ∫∫f(τ,σ)g(x−τ,y−σ)dτdσ 積分は−無限大から+無限大まで つまりf(x,y)とg(x,y)とをコンボリュージ
ョンした結果となる。そこで強度変換部28の出力を電
極形状補正部29でg(x,y)によりデコンボリュー
ジョンすると、光ビームの正しい強度特性が得られる。
このデコンボリュージョンは、例えばガウス・ザイデル
法によればよい。
∫∫f (τ, σ) g (x−τ, y−σ) dτdσ The integral is from −infinity to + infinity, that is, f (x, y) and g (x, y) are convoluted. The result is John. Therefore, when the output of the intensity conversion unit 28 is deconvoluted by g (x, y) in the electrode shape correction unit 29, the correct intensity characteristic of the light beam can be obtained.
This deconvolution may be based on the Gauss-Seidel method, for example.

【0013】この電極形状補正部29の出力波形のピ−
クの1/e2 の所の幅から光ビ−ム径としてもよい。
しかしレンズ等の歪みなどから実際には出力波形が比較
的がたついたものになっていることが多い。よって、こ
の波形をガウシアンフィット演算部32で演算を行って
滑らかなガウス関数曲線とし、その補正された曲線のピ
ークの1/e2 となる所の幅をビーム径演算部34で
求め、その値を測定光ビーム径として表示部35に表示
する。この表示部35には、この他、測定に関する種種
の波形や数値表示が表示できるようにする。以上の手順
により、X−Y平面での光ビーム形状測定ができる。
The peak of the output waveform of the electrode shape correction unit 29
The diameter of the light beam may be determined from the width of 1 / e2 of the beam.
However, the output waveform is often relatively wavy due to distortion of the lens or the like. Therefore, this waveform is calculated by the Gaussian fit calculation unit 32 to form a smooth Gaussian function curve, and the width at the 1 / e2 of the peak of the corrected curve is calculated by the beam diameter calculation unit 34, and the value is calculated. The measurement light beam diameter is displayed on the display unit 35. In addition to this, various kinds of waveforms and numerical values relating to the measurement can be displayed on the display unit 35. With the above procedure, the light beam shape can be measured on the XY plane.

【0014】次にZ軸方向での測定を説明する。光ビー
ム11はフォトコンダクタ21の真上、Z軸方向から照
射される。従って、被測定光デバイス1の焦点距離や非
点収差等を測定するには、被測定光デバイス1をZ軸上
で微小間隔毎に移動させて、それぞれの点で光ビーム径
を測定して表示する。表示は、図2(A)に示すような
データ図や、図2(B)に示すようなグラフ図がある。
Next, the measurement in the Z-axis direction will be described. The light beam 11 is emitted right above the photoconductor 21 from the Z-axis direction. Therefore, in order to measure the focal length, astigmatism, etc. of the optical device to be measured 1, the optical device to be measured 1 is moved in small intervals on the Z axis, and the light beam diameter is measured at each point. indicate. The display includes a data diagram as shown in FIG. 2 (A) and a graph diagram as shown in FIG. 2 (B).

【0015】そのために、図1(A)のフォトコンダク
タ21の真上にZステージ5を設け、そのZステージ5
に被測定光デバイス1を装着し、制御部36からの制御
信号でステップモ−タ6を駆動し、ステップモータ6の
駆動でZステージ5上の被測定光デバイス1をZ軸にそ
って移動させる。そして移動毎に光ビーム11の径を測
定するものである。
For this purpose, the Z stage 5 is provided directly above the photoconductor 21 of FIG.
The optical device 1 to be measured is mounted on, and the step motor 6 is driven by the control signal from the control unit 36, and the optical device 1 to be measured on the Z stage 5 is moved along the Z axis by driving the step motor 6. . Then, the diameter of the light beam 11 is measured for each movement.

【0016】測定分解能は電極のギャップ幅が前述した
ように約3μmであるので、5μm程度と考える。図2
に測定結果の一例を示す。図2(A)及び図2(B)よ
りこの被測定光デバイス1の焦点距離は5.45mmで
あって、そのときの光ビーム11の径は20.0μmで
あることが判る。この測定分解能の今以上の向上は、フ
ォトコンダクタ21の電極間の狭ギャップ化により実現
可能である。オン抵抗はギャップ幅の2乗に反比例する
ことから、狭ギャップ化に伴う感度の低下もなく、高感
度で高分解能な測定が実現できる。
The measurement resolution is considered to be about 5 μm because the electrode gap width is about 3 μm as described above. Figure 2
Shows an example of the measurement result. 2A and 2B that the measured optical device 1 has a focal length of 5.45 mm and the diameter of the light beam 11 at that time is 20.0 μm. This improvement in measurement resolution can be realized by narrowing the gap between the electrodes of the photoconductor 21. Since the on-resistance is inversely proportional to the square of the gap width, it is possible to realize high-sensitivity and high-resolution measurement without lowering the sensitivity accompanying the narrowing of the gap.

【0017】図3にこの光ビーム形状測定器で測定した
光ビームの形状を示す。光ビーム径が、6.3μmとい
う微小な測定ができている。。
FIG. 3 shows the shape of the light beam measured by this light beam shape measuring instrument. The light beam diameter is as small as 6.3 μm. .

【0018】[0018]

【発明の効果】以上説明したように、この発明は、被測
定光デバイス1からの光ビーム11の形状はもとより、
焦点距離や非点収差をも測定でき、つまり光ビームを3
次元で測定でき、しかも分解能も従来より格段と向上
し、その技術的効果は大である。
As described above, according to the present invention, not only the shape of the light beam 11 from the measured optical device 1 but also the
The focal length and astigmatism can also be measured, that is, the light beam
It can be measured in two dimensions, and the resolution is significantly improved compared to the conventional one, and its technical effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図であり、図1(A)
は全体の構成図で、図1(B)はフォトコンダクタ21
の平面図である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG.
Is an overall configuration diagram, and FIG.
FIG.

【図2】本発明の光ビーム測定器による測定結果の図で
あり、図2(A)は測定データの図であり、図2(B)
は測定データをグラフ化した図である。
FIG. 2 is a diagram of a measurement result by the light beam measuring device of the present invention, FIG. 2 (A) is a diagram of measurement data, and FIG.
[Fig. 4] is a graph of measurement data.

【図3】本発明の光ビーム測定器による測定結果の光ビ
ーム径の図である。
FIG. 3 is a diagram of a light beam diameter as a measurement result by the light beam measuring device of the present invention.

【図4】従来の測定法を示す図である。FIG. 4 is a diagram showing a conventional measurement method.

【符号の説明】[Explanation of symbols]

1 被測定光デバイス 5 Zステージ 6 ステップモータ 11 光ビーム 21 フォトコンダクタ 22 受光面 23、24 電極 25 Xステージ 26 ステップモータ 27 抵抗測定部 28 強度変換部 29 電極形状補正部 32 ガウシアンフィット演算部 34 ビーム径演算部 35 表示部 36 制御部 1 Optical device to be measured 5 Z stage 6 Step motor 11 Light beam 21 Photoconductor 22 Light receiving surface 23, 24 Electrode 25 X stage 26 Step motor 27 Resistance measuring unit 28 Intensity converting unit 29 Electrode shape correcting unit 32 Gaussian fit computing unit 34 Beam Diameter calculation unit 35 Display unit 36 Control unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定光デバイス(1)からの光ビーム
(11)の径よりも小さい間隔で受光面に形成された一
対の電極を有するフォトコンダクタ(21)と、 上記フォトコンダクタ(21)の受光面に上記光ビーム
(11)を入射した状態で、その入射点を上記一対の電
極の配列方向に移動させる走査手段と、 上記フォトコンダクタ(21)の受光面に上記光ビーム
(11)を入射した状態で、上記被測定光デバイス
(1)を上記光ビ−ム(11)の進行方向の前後に移動
させる走査手段と、 上記一対の電極間の抵抗値を測定する抵抗測定手段と、 上記測定した抵抗値を光強度に変換する変換手段と、 その変換された光強度の上記光ビーム(11)進行方向
の移動及び上記電極の配列方向の移動にもとづく変化か
ら上記被測定光デバイス(1)からの上記光ビーム(1
1)の径を求めて表示する手段と、を具備することを特
徴とする光ビーム形状測定器。。
1. A photoconductor (21) having a pair of electrodes formed on a light receiving surface at an interval smaller than a diameter of a light beam (11) from an optical device under test (1), and the photoconductor (21). Scanning means for moving the incident point in the arrangement direction of the pair of electrodes in a state where the light beam (11) is incident on the light receiving surface of the light beam, and the light beam (11) on the light receiving surface of the photoconductor (21). Scanning means for moving the measured optical device (1) forward and backward in the traveling direction of the optical beam (11), and resistance measuring means for measuring the resistance value between the pair of electrodes. A conversion means for converting the measured resistance value into light intensity; and a change in the converted light intensity due to movement in the traveling direction of the light beam (11) and movement in the arrangement direction of the electrodes, the optical device to be measured. The light beam from the 1) (1
A means for obtaining and displaying the diameter of 1), and a light beam shape measuring instrument. .
【請求項2】 フォトコンダクタ(21)はInP基板
上に金属膜で微小間隔で対向した一対の電極により構成
されている請求項1記載の光ビーム形状測定器。
2. The light beam shape measuring instrument according to claim 1, wherein the photoconductor (21) is composed of a pair of electrodes facing each other at a minute interval with a metal film on the InP substrate.
JP18985494A 1994-07-20 1994-07-20 Device for measuring shape of light beam Withdrawn JPH0835881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18985494A JPH0835881A (en) 1994-07-20 1994-07-20 Device for measuring shape of light beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18985494A JPH0835881A (en) 1994-07-20 1994-07-20 Device for measuring shape of light beam

Publications (1)

Publication Number Publication Date
JPH0835881A true JPH0835881A (en) 1996-02-06

Family

ID=16248300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18985494A Withdrawn JPH0835881A (en) 1994-07-20 1994-07-20 Device for measuring shape of light beam

Country Status (1)

Country Link
JP (1) JPH0835881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014583A (en) * 2001-07-04 2003-01-15 Ricoh Co Ltd Beam profile verification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014583A (en) * 2001-07-04 2003-01-15 Ricoh Co Ltd Beam profile verification method

Similar Documents

Publication Publication Date Title
CN107131855A (en) A kind of Spectral Confocal measuring system caliberating device and scaling method
DE3830417C2 (en)
US4659936A (en) Line width measuring device and method
DE3534193A1 (en) EDGE DETECTING DEVICE IN AN OPTICAL MEASURING INSTRUMENT
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JPS63305259A (en) Voltage detecting apparatus
JPH0835881A (en) Device for measuring shape of light beam
JPS6022614A (en) Optical device for measuring shape
JP2842310B2 (en) Optical module optical axis adjusting apparatus and method
EP0356563A1 (en) Method and measuring device for determining crack lengths and/or elongations in construction parts or samples
JPH0743210A (en) Instrument for measuring shape of light beam
CN107860327A (en) A kind of deformation measuring device
JPS60244802A (en) Distance measuring instrument
JPS59210304A (en) Displacement measuring device
SU1705698A1 (en) Photoelectric movement converter
JPH067045B2 (en) Non-contact diameter measuring device
RU2171452C1 (en) Process determining differential radial velocity in solar atmosphere
Saxena et al. Studies on Deflection Mapping with a Babinet Compensator
JPS58168905A (en) Optical measuring system of displacement
JPS6316232A (en) Measuring method for diameter of laser beam
JPS6375627A (en) Wavelength correction jig for raman spectroscopy
JPH0457209B2 (en)
JPH0575060B2 (en)
JPS6222004A (en) Detecting method for optical axis position
JPS58139044A (en) Measuring method for focus distance and distance between principal points of lens

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002