JPH0835692A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0835692A
JPH0835692A JP6190092A JP19009294A JPH0835692A JP H0835692 A JPH0835692 A JP H0835692A JP 6190092 A JP6190092 A JP 6190092A JP 19009294 A JP19009294 A JP 19009294A JP H0835692 A JPH0835692 A JP H0835692A
Authority
JP
Japan
Prior art keywords
heat
cooling
heat storage
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6190092A
Other languages
Japanese (ja)
Inventor
Tomio Mogi
富雄 茂木
Yukio Ishikawa
幸夫 石川
Kenichi Tanimoto
健一 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6190092A priority Critical patent/JPH0835692A/en
Publication of JPH0835692A publication Critical patent/JPH0835692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To eliminate lack of cooling capacity even when a demand time becomes long. CONSTITUTION:Control means 8 heat exchange corresponding to insufficient cooling capacity after heat is stored in a thermal storage tank 4 in heat exchanging means 5, and cools by using the heat storage of the tank 4 in the maximum demand time zone. The means 8 heat exchanges corresponding to the insufficient cooling capacity after the heat is stored in the tank at the means 5 when an atmospheric temperature is a predetermined temperature or lower, cools by using the heat storage of the tank corresponding to the insufficient cooling capacity of the maximum demand time zone. Further, flow rate regulating means so regulates the flow rate of cooling water of the tank 4 as to shift the temperature of the cooling water to a low temperature side in the demand time zone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置に係り、
特に非需要時間帯に水の顕熱変化あるいは潜熱変化を利
用して蓄熱を行い、当該蓄熱を需要時間帯に用いること
により、エネルギー効率の高い冷房を行うことが可能な
空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner,
In particular, the present invention relates to an air conditioner that can perform cooling with high energy efficiency by storing heat by utilizing a sensible heat change or latent heat change of water during a non-demand time zone and using the heat storage during a demand time zone.

【0002】[0002]

【従来の技術】従来よりエネルギー効率の高い空気調和
装置として、安価な夜間電力を利用し、水の顕熱変化あ
るいは潜熱変化によって蓄熱槽に熱エネルギーを蓄え、
この蓄えた熱エネルギーを昼間の冷房運転に用いること
により熱源設備容量を減らし、電気料金の軽減等が行え
る蓄熱型の空気調和装置がある。
2. Description of the Related Art Conventionally, as an air conditioner having high energy efficiency, inexpensive nighttime electric power is used to store heat energy in a heat storage tank by sensible heat change or latent heat change of water,
There is a heat storage type air conditioner that can reduce the heat source equipment capacity and the electricity bill by using the stored heat energy for cooling operation in the daytime.

【0003】さらにこのような蓄熱型の空気調和装置に
おいて、需要要求(デマンド要求)に応じて冷房能力を
変化させる空気調和装置も提案されている。
Further, in such a heat storage type air conditioner, an air conditioner has been proposed in which the cooling capacity is changed according to a demand request (demand request).

【0004】図6に従来の氷蓄熱型の空気調和装置の概
要構成ブロック図を示す。
FIG. 6 shows a schematic block diagram of a conventional ice heat storage type air conditioner.

【0005】空気調和装置51は、熱媒体としてのブラ
インを循環するブラインポンプ52と、循環しているブ
ラインを冷却するためのヒートポンプチラー53と、水
が充填され、ブラインと熱交換を行って熱蓄積を行う蓄
熱槽54と、ブラインと水との熱交換を直接的に行うブ
ライン/水熱交換器55と、負荷56の温度を一定とす
べく蓄熱槽54内の水またはブライン/水熱交換器55
からの水を循環する冷温水ポンプ7と、空気調和装置5
1全体を制御する制御装置58と、を備えて構成されて
いる。
The air conditioner 51 is filled with a brine pump 52 for circulating brine as a heat medium, a heat pump chiller 53 for cooling the circulating brine, and water to exchange heat with the brine. A heat storage tank 54 for storing, a brine / water heat exchanger 55 for directly exchanging heat between brine and water, and water or brine / water heat exchange in the heat storage tank 54 for keeping the temperature of the load 56 constant. Bowl 55
The hot and cold water pump 7 for circulating the water from the air and the air conditioner 5
1 and a control device 58 for controlling the whole.

【0006】次に図7を参照して一日の空気調和装置の
概要動作を説明する。
Next, the general operation of the air conditioner for one day will be described with reference to FIG.

【0007】まず、午後10時から午前8時までは、冷
房蓄熱運転を行う。より具体的には、ヒートポンプチラ
ー53により冷却されたブラインは蓄熱槽54に入り、
蓄熱槽54内の水と熱交換して再びヒートポンプチラー
53に戻る。この蓄冷運転開始後、数時間は、水の顕熱
変化(例えば、水温10℃→0℃)により蓄熱し、蓄熱
槽54内の温度が0℃になると潜熱変化を利用した製氷
蓄熱運転を行う。この場合において、氷量は水位変化と
して図示しない水位センサにより計測し、製氷量が所定
の目標値になると冷房蓄熱運転を終了する。
First, the cooling heat storage operation is performed from 10 pm to 8 am. More specifically, the brine cooled by the heat pump chiller 53 enters the heat storage tank 54,
It exchanges heat with the water in the heat storage tank 54 and returns to the heat pump chiller 53 again. For several hours after the start of the cold storage operation, heat is stored due to sensible heat change of water (for example, water temperature 10 ° C. → 0 ° C.), and when the temperature in the heat storage tank 54 becomes 0 ° C., ice making heat storage operation using latent heat change is performed. . In this case, the ice amount is measured as a water level change by a water level sensor (not shown), and when the ice making amount reaches a predetermined target value, the cooling heat storage operation is terminated.

【0008】そして午前8時になると蓄熱槽54に蓄え
た蓄熱を利用して冷房運転を開始する。
At 8:00 am, the cooling operation is started by utilizing the heat stored in the heat storage tank 54.

【0009】さらに時間が経過し、時刻Tx になると蓄
熱槽54に蓄えた熱エネルギーだけでは冷房能力が不足
するため、冷房追掛運転を行う。より具体的には、ヒー
トポンプチラー53により冷却されたブライン(例え
ば、約3℃)は、負荷56から戻ってきた冷水(例え
ば、約12℃)とブライン/水熱交換器55により直接
的に熱交換を行い、再びヒートポンプチラー53に戻
る。この場合において制御装置58は、時刻、氷量等を
検知し、負荷56に応じてヒートポンプチラー53を運
転することとなる。
When the time further elapses and the time Tx is reached, the cooling capacity is insufficient only with the thermal energy stored in the heat storage tank 54, so the cooling follow-up operation is performed. More specifically, the brine (eg, about 3 ° C.) cooled by the heat pump chiller 53 is directly heated by the cold water (eg, about 12 ° C.) returned from the load 56 and the brine / water heat exchanger 55. After exchanging, it returns to the heat pump chiller 53 again. In this case, the control device 58 detects the time, the amount of ice, etc., and operates the heat pump chiller 53 according to the load 56.

【0010】[0010]

【発明が解決しようとする課題】上記従来の蓄熱型空気
調和装置においては、与えられたデマンド要求に応じて
冷房能力を変化させることができる。
In the above conventional heat storage type air conditioner, the cooling capacity can be changed according to the demand demand given.

【0011】ところで、このような蓄熱型空気調和装置
においては、デマンド要求が短時間であれば、容易に対
応することができるが、デマンド要求時間が長時間(例
えば、1時間以上)にわたる場合、本来の熱源設備容量
が小さく押さえられているため、ピーク負荷時に冷房能
力が不足してしまうという問題点があった。
By the way, in such a heat storage type air conditioner, if the demand request is short, it can be easily dealt with, but if the demand request time is long (for example, 1 hour or more), Since the original capacity of the heat source was kept small, there was a problem that the cooling capacity was insufficient at peak load.

【0012】そこで、本発明の目的は、デマンド時間が
長時間になる場合であっても、冷房能力が不足すること
のない空気調和装置を提供することにある。
Therefore, an object of the present invention is to provide an air conditioner in which the cooling capacity does not become insufficient even when the demand time is long.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、冷却装置により冷却した一
次系の熱媒体を循環させて蓄熱槽の槽内温度を所定の温
度に保持し、この蓄熱槽を介して前記熱媒体との熱交換
を行って二次系の冷却水を生成し、前記冷却水を循環す
ることにより冷房を行う空気調和装置において、前記蓄
熱槽を介さずに前記熱媒体と前記冷却水の熱交換を直接
的に行う熱交換手段と、前記冷却装置の冷却能力に基づ
いて最大需要時間帯に要求されると予想される最大負荷
に対する不足冷却能力を算出する算出手段と、前記熱交
換手段に前記蓄熱槽への熱蓄積の後に前記不足冷却能力
に相当する熱交換を行わせるとともに、前記最大需要時
間帯に前記蓄熱槽の蓄熱を利用して冷房を行う制御手段
と、を備えて構成する。
In order to solve the above-mentioned problems, the invention according to claim 1 maintains the temperature inside the heat storage tank at a predetermined temperature by circulating the heat medium of the primary system cooled by the cooling device. Then, the heat exchange with the heat medium is performed through this heat storage tank to generate the secondary system cooling water, and in the air conditioner that performs cooling by circulating the cooling water, without going through the heat storage tank. And a heat exchange means for directly exchanging heat between the heat medium and the cooling water, and an insufficient cooling capacity for the maximum load expected to be required in the maximum demand time zone is calculated based on the cooling capacity of the cooling device. The calculating means and the heat exchange means to perform heat exchange corresponding to the insufficient cooling capacity after heat storage in the heat storage tank, and perform cooling using the heat storage of the heat storage tank in the maximum demand time zone. Control means for performing .

【0014】請求項2記載の発明は、冷却装置により冷
却した一次系の熱媒体を循環させて蓄熱槽の槽内温度を
所定の温度に保持し、この蓄熱槽を介して前記熱媒体と
の熱交換を行ってその一部が氷結状態の二次系の冷却水
を生成し、前記冷却水を循環することにより冷房を行う
氷蓄熱型の空気調和装置において、前記蓄熱槽を介さず
に前記熱媒体と前記冷却水の熱交換を直接的に行う熱交
換手段と、所定時刻における外気温を測定する気温測定
手段と、前記外気温、前記蓄熱の量及び冷却装置の冷却
能力に基づいて予想される最大需要時間帯に消費すべき
不足冷房能力を算出する算出手段と、前記外気温が所定
の温度以下である場合に前記熱交換手段に前記蓄熱槽へ
の熱蓄積の後に前記不足冷房能力に相当する熱交換を行
わせ、かつ、前記蓄熱槽の蓄熱を利用して冷房を行うと
ともに、前記最大需要時間帯に前記不足冷房能力に相当
する前記蓄熱槽の蓄熱を利用して冷房を行う制御手段
と、を備えて構成する。
According to a second aspect of the present invention, the heat medium of the primary system cooled by the cooling device is circulated to maintain the temperature inside the heat storage tank at a predetermined temperature, and the heat medium is connected to the heat medium via the heat storage tank. In an ice storage type air conditioner that performs heat exchange to generate cooling water of a secondary system, a part of which is frozen, and cools by circulating the cooling water, the heat storage tank is not used and the above Heat exchange means for directly exchanging heat between the heat medium and the cooling water, air temperature measuring means for measuring the outside air temperature at a predetermined time, and prediction based on the outside air temperature, the amount of the stored heat and the cooling capacity of the cooling device. Calculation means for calculating the insufficient cooling capacity to be consumed during the maximum demand time zone, and the insufficient cooling capacity after the heat storage means accumulates heat in the heat storage tank when the outside air temperature is equal to or lower than a predetermined temperature. The heat exchange corresponding to Performs cooling by utilizing the heat storage of the heat tank, configure and control means for performing cooling by utilizing the heat storage of the heat storage tank which corresponds to the insufficient cooling capacity in the maximum demand time slot.

【0015】請求項3記載の発明は、冷却装置により冷
却した一次系の熱媒体を循環させて蓄熱槽の槽内温度を
所定の温度に保持し、この蓄熱槽を介して前記熱媒体と
の熱交換を行って二次系の冷却水を生成し、前記冷却水
を循環することにより冷房を行う空気調和装置におい
て、需要時間帯に前記冷却水の温度を低温側へシフトす
べく、前記蓄熱槽の前記冷却水の流量を調整する流量調
整手段を備えて構成する。
According to the third aspect of the present invention, the primary system heat medium cooled by the cooling device is circulated to maintain the temperature inside the heat storage tank at a predetermined temperature, and the heat medium is connected to the heat medium via the heat storage tank. In an air conditioner that performs heat exchange to generate cooling water of a secondary system and circulates the cooling water to cool, in order to shift the temperature of the cooling water to a low temperature side during a demand time period, the heat storage A flow rate adjusting means for adjusting the flow rate of the cooling water in the tank is provided.

【0016】[0016]

【作用】請求項1記載の発明によれば、算出手段は、冷
却装置の冷却能力に基づいて最大需要時間帯に要求され
ると予想される最大負荷に対する不足冷却能力を算出す
る。
According to the first aspect of the present invention, the calculating means calculates the insufficient cooling capacity for the maximum load expected to be required in the maximum demand time zone based on the cooling capacity of the cooling device.

【0017】これにより制御手段は、熱交換手段に蓄熱
槽への熱蓄積の後に不足冷却能力に相当する熱交換を行
わせるとともに、最大需要時間帯に蓄熱槽の蓄熱を利用
して冷房を行う。
As a result, the control means causes the heat exchange means to perform heat exchange corresponding to the insufficient cooling capacity after heat storage in the heat storage tank, and also performs cooling by using the heat storage of the heat storage tank during the maximum demand time zone. .

【0018】したがって、最大需要時間帯にも蓄熱槽に
は十分な蓄熱があり、この蓄熱を利用して冷房能力が不
足することなく冷房運転を行うことができる。
Therefore, sufficient heat is stored in the heat storage tank even during the maximum demand time, and this heat storage can be used to perform the cooling operation without insufficient cooling capacity.

【0019】請求項2記載の発明によれば、気温測定手
段は、所定時刻における外気温を測定し、算出手段は、
外気温、蓄熱の量及び冷却装置の冷却能力に基づいて予
想される最大需要時間帯に消費すべき不足冷房能力を算
出する。
According to the second aspect of the invention, the air temperature measuring means measures the outside air temperature at a predetermined time, and the calculating means:
Based on the outside air temperature, the amount of heat storage, and the cooling capacity of the cooling device, the insufficient cooling capacity to be consumed during the predicted maximum demand time period is calculated.

【0020】これらにより制御手段は、外気温が所定の
温度以下である場合に熱交換手段に蓄熱槽への熱蓄積の
後に不足冷房能力に相当する熱交換を行わせ、かつ、蓄
熱槽の蓄熱を利用して冷房を行うとともに、最大需要時
間帯に不足冷房能力に相当する蓄熱槽の蓄熱を利用して
冷房を行う。
With these, the control means causes the heat exchange means to perform the heat exchange corresponding to the insufficient cooling capacity after the heat accumulation in the heat storage tank when the outside air temperature is lower than the predetermined temperature, and the heat storage of the heat storage tank. Is used for cooling, and at the maximum demand time, cooling is performed by using the heat storage of the heat storage tank corresponding to the insufficient cooling capacity.

【0021】したがって、一日の冷房運転後に蓄熱槽内
に残存する氷量をほぼ零とすることができ、無駄なく効
率的な冷房運転が行える。
Therefore, the amount of ice remaining in the heat storage tank can be reduced to substantially zero after one day of cooling operation, and efficient cooling operation can be performed without waste.

【0022】請求項3記載の発明によれば、流量調整手
段は、需要時間帯に冷却水の温度を低温側へシフトすべ
く、蓄熱槽の冷却水の流量を調整する。
According to the third aspect of the present invention, the flow rate adjusting means adjusts the flow rate of the cooling water in the heat storage tank so as to shift the temperature of the cooling water to the low temperature side during the demand time period.

【0023】したがって、負荷の増減に対応した温度の
冷却水を供給することができ、効率の良い冷房を行え
る。
Therefore, the cooling water having a temperature corresponding to the increase and decrease of the load can be supplied, and the cooling can be performed efficiently.

【0024】[0024]

【実施例】次に図面を参照して本発明の好適な実施例を
説明する。 第1実施例 図1に第1実施例の空気調和装置の概要構成ブロック図
を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described with reference to the drawings. First Embodiment FIG. 1 shows a schematic block diagram of the air conditioner of the first embodiment.

【0025】空気調和装置1は、熱媒体としてのブライ
ンを循環するブラインポンプ2と、循環しているブライ
ンを冷却するためのヒートポンプチラー3と、冷却水が
充填され、ブラインと熱交換を行って熱蓄積を行う蓄熱
槽4と、ブラインと冷却水との熱交換を直接的に行うブ
ライン/水熱交換器5と、負荷6を冷却すべく蓄熱槽4
内の冷却水またはブライン/水熱交換器5からの冷却水
を循環する冷温水ポンプ7と、空気調和装置1全体を制
御する制御装置8と、外気温を測定する気温センサ9
と、を備えて構成されている。
The air conditioner 1 is filled with a brine pump 2 for circulating brine as a heat medium, a heat pump chiller 3 for cooling the circulating brine, and cooling water to exchange heat with the brine. A heat storage tank 4 for heat storage, a brine / water heat exchanger 5 for directly exchanging heat between brine and cooling water, and a heat storage tank 4 for cooling a load 6.
A hot / cold water pump 7 that circulates the internal cooling water or the cooling water from the brine / water heat exchanger 5, a control device 8 that controls the entire air conditioner 1, and an air temperature sensor 9 that measures the outside air temperature.
And are provided.

【0026】次に図2を参照して盛夏時におけるピーク
負荷時のデマンド要求に対応した空気調和装置1の一日
の概要動作を説明する。
Next, with reference to FIG. 2, an outline of the operation of the air conditioner 1 for one day in response to a demand request during peak load during the summer months will be described.

【0027】まず、午後10時から午前8時までは、冷
房蓄熱運転を行う。より具体的には、ブラインはヒート
ポンプチラー3により冷却されて蓄熱槽4に入り、蓄熱
槽4内の水と熱交換して再びヒートポンプチラー3に戻
る。
First, the cooling heat storage operation is performed from 10 pm to 8:00 am. More specifically, the brine is cooled by the heat pump chiller 3, enters the heat storage tank 4, exchanges heat with the water in the heat storage tank 4, and returns to the heat pump chiller 3 again.

【0028】この蓄冷運転開始後、数時間は、水の顕熱
変化(例えば、水温10℃→0℃)により蓄熱し、蓄熱
槽4内の温度が0℃になると潜熱変化を利用した製氷蓄
熱運転を行う。この場合において、氷量は水位変化とし
て図示しない水位センサにより計測し、製氷量が所定の
目標値になると冷房蓄熱運転を終了する。
For several hours after the start of the cold storage operation, heat is stored by sensible heat change of water (for example, water temperature 10 ° C. → 0 ° C.), and when the temperature in the heat storage tank 4 reaches 0 ° C., ice heat storage utilizing the latent heat change Drive. In this case, the ice amount is measured as a water level change by a water level sensor (not shown), and when the ice making amount reaches a predetermined target value, the cooling heat storage operation is terminated.

【0029】そして午前8時になると制御装置8は、ヒ
ートポンプチラー3の冷却能力、季節、外気温等に基づ
いてピークデマンド(最大需要)時間帯に要求されると
予想される最大冷房能力に対する不足冷却能力を算出
し、この算出した不足冷却能力に対応する時間だけ冷房
追掛運転を行う。より具体的には、図3に示すように、
ヒートポンプチラー3により冷却されたブライン(例え
ば、約3℃)は、負荷6から戻ってきた冷水(例えば、
約12℃)とブライン/水熱交換器5により直接的に熱
交換を行い、再びヒートポンプチラー3に戻る。この場
合において制御装置8は、時刻、氷量等を検知し、負荷
6に応じてヒートポンプチラー3を運転することとな
る。
At 8:00 am, the control device 8 causes insufficient cooling with respect to the maximum cooling capacity expected to be required in the peak demand (maximum demand) time zone based on the cooling capacity of the heat pump chiller 3, the season, the outside temperature, and the like. The capacity is calculated, and the cooling follow-up operation is performed for the time corresponding to the calculated insufficient cooling capacity. More specifically, as shown in FIG.
The brine (eg, about 3 ° C.) cooled by the heat pump chiller 3 is cooled by the cold water (eg, about 3 ° C.) returned from the load 6.
(About 12 ° C.) and the brine / water heat exchanger 5 directly perform heat exchange, and then return to the heat pump chiller 3 again. In this case, the control device 8 detects the time, the amount of ice, etc., and operates the heat pump chiller 3 according to the load 6.

【0030】そして算出した不足冷却能力に対応する冷
房追掛運転が終了し、デマンド信号を受け付けると、ブ
ラインポンプ2及びヒートポンプチラー3の運転を停止
し、蓄熱槽4に蓄えた蓄熱を利用して冷房運転を開始す
る。
When the cooling follow-up operation corresponding to the calculated insufficient cooling capacity is completed and the demand signal is received, the operation of the brine pump 2 and the heat pump chiller 3 is stopped, and the heat stored in the heat storage tank 4 is used. Start cooling operation.

【0031】さらに時間が経過し、デマンド要求が終了
すると、蓄熱槽4に蓄えた熱エネルギーだけでは冷房能
力が不足するため、再度冷房追掛運転を行う。
When the demand request is completed after a further lapse of time, the cooling capacity is insufficient only with the thermal energy stored in the heat storage tank 4, so the cooling follow-up operation is performed again.

【0032】上述したように、本第1実施例によれば、
ピーク負荷時のデマンド要求にも確実に対応可能な空気
調和装置を容易に構成することができる。 第2実施例 図4を参照して中間期(初夏、晩夏)におけるピーク負
荷時のデマンド要求に対応した空気調和装置1の一日の
概要動作を説明する。
As described above, according to the first embodiment,
It is possible to easily configure an air conditioner that can reliably meet demand demands during peak loads. Second Embodiment With reference to FIG. 4, a general operation of the air conditioner 1 for one day corresponding to a demand request during a peak load in an intermediate period (early summer and late summer) will be described.

【0033】本第2実施例の空気調和装置の構成は、図
1の第1実施例と同様であるので、その詳細な説明を省
略する。
The structure of the air conditioner of the second embodiment is the same as that of the first embodiment of FIG. 1, so detailed description thereof will be omitted.

【0034】まず、午後10時から午前8時までは、冷
房蓄熱運転を行う。より具体的には、ブラインはヒート
ポンプチラー3により冷却されて蓄熱槽4に入り、蓄熱
槽4内の水と熱交換して再びヒートポンプチラー3に戻
る。
First, the cooling heat storage operation is performed from 10 pm to 8 am. More specifically, the brine is cooled by the heat pump chiller 3, enters the heat storage tank 4, exchanges heat with the water in the heat storage tank 4, and returns to the heat pump chiller 3 again.

【0035】そして午前8時になると制御装置8は、冷
房追掛運転を行う。より具体的には、ヒートポンプチラ
ー3により冷却されたブライン(例えば、約3℃)は、
負荷6から戻ってきた冷水(例えば、約12℃)とブラ
イン/水熱交換器5により直接的に熱交換を行い、再び
ヒートポンプチラー3に戻る。この場合において制御装
置8は、時刻、氷量等を検知し、負荷6に応じてヒート
ポンプチラー3を運転することとなる。
Then, at 8:00 am, the control device 8 performs the cooling following operation. More specifically, the brine (eg, about 3 ° C.) cooled by the heat pump chiller 3 is
Heat is directly exchanged with the cold water (for example, about 12 ° C.) returned from the load 6 and the brine / water heat exchanger 5, and the heat is returned to the heat pump chiller 3 again. In this case, the control device 8 detects the time, the amount of ice, etc., and operates the heat pump chiller 3 according to the load 6.

【0036】そして午前10時になると、制御装置8
は、気温センサ9により外気温を検出し、当該時期にお
ける所定の目標温度以下であるか否かを判別する。
Then, at 10 am, the controller 8
Detects the outside temperature with the temperature sensor 9 and determines whether or not the temperature is below a predetermined target temperature at the time.

【0037】この判別により、実際の外気温が所定の目
標温度以下である場合には、冷房能力はあまり必要とさ
れないものと判別し、蓄熱槽4の蓄熱及び冷房追掛運転
を併用することにより冷房運転を行う。
According to this determination, when the actual outside air temperature is equal to or lower than the predetermined target temperature, it is determined that the cooling capacity is not required so much, and the heat storage of the heat storage tank 4 and the cooling follow-up operation are used in combination. Perform cooling operation.

【0038】この場合において、冷房追掛運転でまかな
う空調負荷と、デマンド要求に対応してデマンド制御を
行っている時の空調負荷とが、ほぼ等しくなるように不
足冷却能力を算出して冷房追掛運転を行う。
In this case, the insufficient cooling capacity is calculated so that the air conditioning load that is satisfied by the cooling follow-up operation and the air conditioning load when the demand control is being performed in response to the demand request are approximately equal. Perform a hanging operation.

【0039】蓄熱槽4の蓄熱及び冷房追掛運転を併用す
ることにより冷房運転を行い、デマンド信号を受け付け
ると、ブラインポンプ2及びヒートポンプチラー3の運
転を停止し、蓄熱槽4に蓄えた蓄熱を利用して冷房運転
を開始する。
When the cooling operation is performed by using the heat storage of the heat storage tank 4 and the cooling follow-up operation together and the demand signal is received, the operation of the brine pump 2 and the heat pump chiller 3 is stopped, and the heat storage stored in the heat storage tank 4 is stopped. Use it to start cooling operation.

【0040】さらに時間が経過し、デマンド要求が終了
すると、蓄熱槽4に蓄えた熱エネルギーだけでは冷房能
力が不足するため、再度冷房追掛運転を行う。
When the demand is completed after a further time elapses, the cooling capacity is insufficient only with the thermal energy stored in the heat storage tank 4, so the cooling follow-up operation is performed again.

【0041】上述したように、本第2実施例によれば、
ピーク負荷時のデマンド要求にも確実に対応可能な空気
調和装置を容易に構成することができるとともに、デマ
ンド要求前の冷房追掛運転により得られる熱エネルギー
と、デマンド要求時に用いられる蓄熱槽4に蓄えられた
熱エネルギーとは、ほぼ等しいので、一日の空調時間終
了後の蓄熱槽内の残氷はほとんど零となり、夜間に不要
な冷房蓄熱運転を行う必要がなくなり、無駄なく効率的
な冷房運転が行える。 第3実施例 図5に第3実施例の空気調和装置の概要構成ブロック図
を示す。本第3実施例の空気調和装置の構成は、図1の
第1実施例と同様であるので、その詳細な説明を省略す
る。本第3実施例の空気調和装置が図1の第1実施例の
空気調和装置と異なる点は、3方弁10を比例弁とし、
3方弁10の負荷側出口の冷却水温度を検出するセンサ
11を設けた点である。
As described above, according to the second embodiment,
It is possible to easily configure an air conditioner capable of reliably responding to demand demands during peak loads, and to provide the heat energy obtained by the cooling follow-up operation before demand demands and the heat storage tank 4 used at the time of demand demands. Since the stored heat energy is almost the same, the remaining ice in the heat storage tank after the air conditioning time of the day is almost zero, and there is no need to perform unnecessary cooling heat storage operation at night, and there is no waste and efficient cooling. Can drive. Third Embodiment FIG. 5 shows a schematic block diagram of the air conditioner of the third embodiment. The configuration of the air conditioner of the third embodiment is the same as that of the first embodiment of FIG. 1, so detailed description thereof will be omitted. The air conditioner of the third embodiment differs from the air conditioner of the first embodiment of FIG. 1 in that the three-way valve 10 is a proportional valve,
The point is that a sensor 11 for detecting the cooling water temperature at the load side outlet of the three-way valve 10 is provided.

【0042】これにより流量調整手段としての3方弁1
0は、センサ11の検出温度に対応してデマンド要求時
間帯に冷却水の温度を低温側へシフトすべく、蓄熱槽4
の冷却水の流量を調整する。より具体的には、通常は約
7℃の3方弁10の負荷側出口側の冷却水温度をデマン
ド要求時間帯には、約4℃にシフトする。
As a result, the three-way valve 1 as the flow rate adjusting means
0 is the heat storage tank 4 in order to shift the temperature of the cooling water to the low temperature side during the demand request time period in accordance with the temperature detected by the sensor 11.
Adjust the cooling water flow rate. More specifically, the cooling water temperature on the load side outlet side of the three-way valve 10 which is normally about 7 ° C. is shifted to about 4 ° C. during the demand request time zone.

【0043】したがって、負荷の増減に対応した温度の
冷却水を供給することができ、効率の良い冷房を行え
る。
Therefore, the cooling water having a temperature corresponding to the increase or decrease of the load can be supplied, and the cooling can be performed efficiently.

【0044】[0044]

【発明の効果】請求項1記載の発明によれば、制御手段
は、熱交換手段に蓄熱槽への熱蓄積の後に不足冷却能力
に相当する熱交換を行わせるとともに、最大需要時間帯
に蓄熱槽の蓄熱を利用して冷房を行うので、最大需要時
間帯(ピーク負荷時)にも蓄熱槽には十分な蓄熱があ
り、この蓄熱を利用して冷房能力が不足することなく冷
房運転を行うことができ、ピーク負荷時のデマンド要求
にも確実に対応可能な空気調和装置を容易に構成するこ
とができる。
According to the invention described in claim 1, the control means causes the heat exchange means to perform heat exchange corresponding to the insufficient cooling capacity after heat storage in the heat storage tank, and stores heat in the maximum demand time zone. Since the heat is stored in the tank to perform cooling, the heat storage tank has sufficient heat storage even during the maximum demand time (peak load), and this heat storage is used to perform the cooling operation without insufficient cooling capacity. Therefore, it is possible to easily configure the air conditioner capable of surely meeting the demand demand at the peak load.

【0045】請求項2記載の発明によれば、制御手段
は、外気温が所定の温度以下である場合に熱交換手段に
蓄熱槽への熱蓄積の後に不足冷房能力に相当する熱交換
を行わせ、かつ、蓄熱槽の蓄熱を利用して冷房を行うと
ともに、最大需要時間帯に不足冷房能力に相当する蓄熱
槽の蓄熱を利用して冷房を行うので、一日の冷房運転後
に蓄熱槽内に残存する氷量をほぼ零とすることができ、
夜間に不要な冷房蓄熱運転を行う必要がなくなり、無駄
なく効率的な冷房運転が行える。
According to the second aspect of the present invention, the control means performs the heat exchange corresponding to the insufficient cooling capacity after the heat exchange means accumulates heat in the heat storage tank when the outside air temperature is equal to or lower than the predetermined temperature. In addition, the heat storage of the heat storage tank is used for cooling, and the heat storage of the heat storage tank corresponding to the insufficient cooling capacity during the maximum demand time is used for cooling. The amount of ice remaining in the can be almost zero,
There is no need to perform unnecessary cooling heat storage operation at night, and efficient cooling operation can be performed without waste.

【0046】請求項3記載の発明によれば、流量調整手
段は、需要時間帯に冷却水の温度を低温側へシフトすべ
く、蓄熱槽の冷却水の流量を調整するので、負荷の増減
に対応した温度の冷却水を供給することができ、効率の
良い冷房を行える。
According to the third aspect of the present invention, the flow rate adjusting means adjusts the flow rate of the cooling water in the heat storage tank so as to shift the temperature of the cooling water to the low temperature side during the demand time period. Cooling water of a corresponding temperature can be supplied, and efficient cooling can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の空気調和装置の概要構成ブロック
図(冷房蓄熱運転時)である。
FIG. 1 is a schematic configuration block diagram (during cooling heat storage operation) of an air conditioner of a first embodiment.

【図2】第1実施例の動作説明図である。FIG. 2 is an operation explanatory diagram of the first embodiment.

【図3】第1実施例の空気調和装置の概要構成ブロック
図(冷房追掛運転時)である。
FIG. 3 is a schematic configuration block diagram (during a cooling following operation) of the air conditioning apparatus of the first embodiment.

【図4】第2実施例の動作説明図である。FIG. 4 is an operation explanatory diagram of the second embodiment.

【図5】第3実施例の空気調和装置の概要構成ブロック
図である。
FIG. 5 is a schematic configuration block diagram of an air conditioner of a third embodiment.

【図6】従来の空気調和装置の概要構成ブロック図であ
る。
FIG. 6 is a schematic configuration block diagram of a conventional air conditioner.

【図7】従来例の動作説明図である。FIG. 7 is an operation explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1、1’ 空気調和装置 2 ブラインポンプ 3 ヒートポンプチラー 4 蓄熱槽 5 冷温水センサ 6 負荷 7 冷温水二次側ポンプ 8 制御装置 9 気温センサ 10 3方弁 11 センサ 1, 1'Air conditioner 2 Brine pump 3 Heat pump chiller 4 Heat storage tank 5 Cold / hot water sensor 6 Load 7 Cold / hot water secondary pump 8 Controller 9 Air temperature sensor 10 3-way valve 11 Sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷却装置により冷却した一次系の熱媒体
を循環させて蓄熱槽の槽内温度を所定の温度に保持し、
この蓄熱槽を介して前記熱媒体との熱交換を行って二次
系の冷却水を生成し、前記冷却水を循環することにより
冷房を行う空気調和装置において、 前記蓄熱槽を介さずに前記熱媒体と前記冷却水の熱交換
を直接的に行う熱交換手段と、 前記冷却装置の冷却能力に基づいて最大需要時間帯に要
求されると予想される最大負荷に対する不足冷却能力を
算出する算出手段と、 前記熱交換手段に前記蓄熱槽への熱蓄積の後に前記不足
冷却能力に相当する熱交換を行わせるとともに、前記最
大需要時間帯に前記蓄熱槽の蓄熱を利用して冷房を行う
制御手段と、 を備えたことを特徴とする空気調和装置。
1. A primary system heat medium cooled by a cooling device is circulated to maintain the temperature inside the heat storage tank at a predetermined temperature,
In an air conditioner that performs heat exchange with the heat medium via this heat storage tank to generate cooling water of a secondary system and performs cooling by circulating the cooling water, the heat storage tank is not used, and the cooling water is circulated. A heat exchanging means for directly exchanging heat between the heat medium and the cooling water, and a calculation for calculating the insufficient cooling capacity for the maximum load expected to be required in the maximum demand time zone based on the cooling capacity of the cooling device. Means for causing the heat exchange means to perform heat exchange corresponding to the insufficient cooling capacity after heat storage in the heat storage tank, and control for performing cooling by using heat storage of the heat storage tank during the maximum demand time zone An air conditioner comprising:
【請求項2】 冷却装置により冷却した一次系の熱媒体
を循環させて蓄熱槽の槽内温度を所定の温度に保持し、
この蓄熱槽を介して前記熱媒体との熱交換を行ってその
一部が氷結状態の二次系の冷却水を生成し、前記冷却水
を循環することにより冷房を行う氷蓄熱型の空気調和装
置において、 前記蓄熱槽を介さずに前記熱媒体と前記冷却水の熱交換
を直接的に行う熱交換手段と、 所定時刻における外気温を測定する気温測定手段と、 前記外気温、前記蓄熱の量及び冷却装置の冷却能力に基
づいて予想される最大需要時間帯に消費すべき不足冷房
能力を算出する算出手段と、 前記外気温が所定の温度以下である場合に前記熱交換手
段に前記蓄熱槽への熱蓄積の後に前記不足冷房能力に相
当する熱交換を行わせ、かつ、前記蓄熱槽の蓄熱を利用
して冷房を行うとともに、前記最大需要時間帯に前記不
足冷房能力に相当する前記蓄熱槽の蓄熱を利用して冷房
を行う制御手段と、 を備えたことを特徴とする空気調和装置。
2. A primary system heat medium cooled by a cooling device is circulated to maintain the temperature inside the heat storage tank at a predetermined temperature,
An ice storage type air conditioner that performs heat exchange with the heat medium via this heat storage tank to generate secondary system cooling water, a part of which is frozen, and performs cooling by circulating the cooling water. In the device, a heat exchange means for directly exchanging heat with the heat medium and the cooling water without going through the heat storage tank, an air temperature measurement means for measuring an outside air temperature at a predetermined time, the outside air temperature, and the heat storage Calculating means for calculating the insufficient cooling capacity to be consumed in the maximum demand time zone expected based on the amount and the cooling capacity of the cooling device; and when the outside air temperature is below a predetermined temperature, the heat storage means stores the heat. After heat accumulation in the tank, the heat exchange corresponding to the insufficient cooling capacity is performed, and cooling is performed by using the heat storage of the heat storage tank, and the above-mentioned insufficient cooling capacity corresponds to the maximum demand time zone. Cooling using the heat storage of the heat storage tank An air conditioner characterized by comprising:
【請求項3】 冷却装置により冷却した一次系の熱媒体
を循環させて蓄熱槽の槽内温度を所定の温度に保持し、
この蓄熱槽を介して前記熱媒体との熱交換を行って二次
系の冷却水を生成し、前記冷却水を循環することにより
冷房を行う空気調和装置において、 需要時間帯に前記冷却水の温度を低温側へシフトすべ
く、前記蓄熱槽の前記冷却水の流量を調整する流量調整
手段を備えたことを特徴とする空気調和装置。
3. A primary system heat medium cooled by a cooling device is circulated to maintain the temperature inside the heat storage tank at a predetermined temperature,
In an air conditioner which performs cooling by circulating heat of the secondary system by exchanging heat with the heat medium through the heat storage tank, and cooling the cooling water in a demand time zone. An air conditioner comprising flow rate adjusting means for adjusting the flow rate of the cooling water in the heat storage tank so as to shift the temperature to a low temperature side.
JP6190092A 1994-07-20 1994-07-20 Air conditioner Pending JPH0835692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6190092A JPH0835692A (en) 1994-07-20 1994-07-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6190092A JPH0835692A (en) 1994-07-20 1994-07-20 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0835692A true JPH0835692A (en) 1996-02-06

Family

ID=16252241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6190092A Pending JPH0835692A (en) 1994-07-20 1994-07-20 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0835692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036046A (en) * 2017-10-06 2018-03-08 ヤフー株式会社 Air conditioning system, building and data center

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036046A (en) * 2017-10-06 2018-03-08 ヤフー株式会社 Air conditioning system, building and data center

Similar Documents

Publication Publication Date Title
US6913068B2 (en) Engine exhaust heat recovering apparatus
KR100363823B1 (en) Ice heat storage cooling unit
JP5032181B2 (en) Heat consumer device for district cooling and heating system and operation method thereof
JPH09287797A (en) Method for controlling device operation in ice heat accumulating system
JPH0835692A (en) Air conditioner
JP3552625B2 (en) Heat storage device
JP3583869B2 (en) Thermal storage air conditioning system device and its control method
JPH02309140A (en) Controlling method for thermal accumulation type air conditioning system
JPH0293234A (en) Method of controlling air conditioning system
JPH0835708A (en) Ice cold heat storage type refrigerator unit and operating method therefor
JPH09159232A (en) Controlling method for ice storage type water chiller
JP2003322414A (en) Hot water storage type water heater
JP2637510B2 (en) Thermal storage cooling and heating system
JPH085111A (en) Cooling-heating equipment
CN109579177B (en) Air conditioner and hot water supply system
JP3062565B2 (en) Cooling water inlet temperature control method for refrigerator in water heat storage system
JP2001317794A (en) Thermal storage air conditioning system and its operation method
JPH094906A (en) Heat storage type freezing/air conditioning apparatus
JP2574536B2 (en) Ice storage device
CN118258083A (en) Expansion valve control method and controller of water-ground-fluorine-containing system and water-ground-fluorine-containing system
JPH01244227A (en) Control method for heat accumulation type air-conditioning system
JPS6248775B2 (en)
JPS63251743A (en) Control apparatus for heat accumulation type air conditioner
JPH0289941A (en) Heat storage type air conditioning device
JPH05172383A (en) Control method of operation in ice heat accumulation system