JPH083558B2 - X-ray spectrometer - Google Patents

X-ray spectrometer

Info

Publication number
JPH083558B2
JPH083558B2 JP63021021A JP2102188A JPH083558B2 JP H083558 B2 JPH083558 B2 JP H083558B2 JP 63021021 A JP63021021 A JP 63021021A JP 2102188 A JP2102188 A JP 2102188A JP H083558 B2 JPH083558 B2 JP H083558B2
Authority
JP
Japan
Prior art keywords
crystal
dispersive
reference plane
center
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63021021A
Other languages
Japanese (ja)
Other versions
JPH01195399A (en
Inventor
暉士 平居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63021021A priority Critical patent/JPH083558B2/en
Publication of JPH01195399A publication Critical patent/JPH01195399A/en
Publication of JPH083558B2 publication Critical patent/JPH083558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は湾曲結晶を用いたX線分光器に関する。Detailed Description of the Invention a. TECHNICAL FIELD The present invention relates to an X-ray spectrometer using a curved crystal.

ロ.従来の技術 湾曲結晶を用いるX線分光器では分光用結晶を、その
格子面がトロイダル面になるように湾曲させると、ロー
ランド円上の一点から発するX線をローランド円上の一
点に収束させることができる。しかし固体を直交する二
方向に湾曲させることは困難であり、従来湾曲結晶を用
いるX線分光器では結晶を一方向にのみ湾曲させた円筒
状湾曲結晶を分光素子として用いていた。円筒面に湾曲
させた分光結晶を用いる場合、第5図に示すように分光
結晶C面に直交する一つの平面P上においてはローラン
ド円上の一点S1から発したX線をローランド円上の他の
一点S2に収束させることができるが、立体的に考えて、
S1点からP面と或る角度で発射されたX線束aはP面上
のX線において成立している回折条件が厳密には成立せ
ず、S2点においてP面に垂直に立てた線l上には或る収
差を伴って収束されることになり、線lに沿ってスリッ
トを設けた場合、X線の収束効率が低下し、また波長分
解能を低下する。
B. 2. Description of the Related Art In an X-ray spectroscope using a curved crystal, when a spectroscopic crystal is curved so that its lattice plane becomes a toroidal plane, X-rays emitted from one point on the Roland circle are converged on one point on the Roland circle. You can However, it is difficult to bend a solid in two directions orthogonal to each other, and conventionally, in an X-ray spectrometer using a curved crystal, a cylindrical curved crystal in which the crystal is curved in only one direction has been used as a spectroscopic element. When a dispersive crystal curved into a cylindrical surface is used, an X-ray emitted from a point S1 on the Rowland circle on one plane P orthogonal to the dispersive crystal C plane as shown in FIG. It can be converged to one point S2, but considering three-dimensionally,
The X-ray flux a emitted from the S1 point at a certain angle with the P-plane does not meet the diffraction conditions that are true for the X-rays on the P-plane, and the line l that is set up perpendicular to the P-plane at the S2 point. It will be converged with a certain aberration on the upper part, and if a slit is provided along the line 1, the X-ray convergence efficiency will decrease and the wavelength resolution will also decrease.

上述した問題は第5図で分光結晶を面P内でローラン
ド円Rの直系を半径とする曲率で湾曲させると共に、P
面と垂直の方向にS1,S2を結ぶ直線を回転軸とする回転
面になるように湾曲させることによって幾何光学的には
解決されるが、このようなことを具体的に実現するには
二つの点で困難性がある。その一つは前述したように固
体である結晶を二つの方向に湾曲させることが困難であ
ると云うことであり、もう一つは分光結晶の面Pと直交
する方向の曲率は、波長走査に伴って、即ちローランド
円上でS1,S2点を移動させるのに伴って、変化させねば
ならないと云う点である。
The above-mentioned problem is caused by bending the dispersive crystal in the plane P with a curvature whose radius is the direct system of the Rowland circle R in FIG.
The geometrical optics can be solved by curving a straight line connecting S1 and S2 in the direction perpendicular to the plane so that it becomes a plane of rotation about the axis of rotation. There are difficulties in one respect. One is that it is difficult to bend a solid crystal in two directions as described above, and the other is that the curvature in the direction orthogonal to the plane P of the dispersive crystal causes the wavelength scanning to change. With this, that is, as points S1 and S2 are moved on the Roland circle, they must be changed.

上述したような困難であるため、従来円筒面に湾曲さ
せただけの分光結晶が主に使われてきた。また円筒面に
湾曲させた分光結晶を第5図の面Pと平行に2乃至3個
に切断して各切断片を傾けて一つのトロイダル面に近似
させることも提案されているが、この構成では面Pと直
交する方向の結晶の曲率が一つに固定されるため、或る
特定の波長においてのみ効果があり、広い波長範囲の走
査には適さないと云う問題があった。
Because of the difficulty as described above, a dispersive crystal simply curved into a cylindrical surface has been mainly used conventionally. It is also proposed that the dispersive crystal curved into a cylindrical surface is cut into two or three pieces in parallel with the plane P of FIG. 5 and each cut piece is inclined to approximate one toroidal surface. However, since the crystal curvature in the direction orthogonal to the plane P is fixed to one, there is a problem that it has an effect only at a certain specific wavelength and is not suitable for scanning in a wide wavelength range.

ハ.発明が解決しようとする問題点 上述したように湾曲結晶を用いたX線分光器ではX線
の収束効率を高め分解能を向上させるために分光結晶を
トロイダル面に湾曲させると共に、トロイダル面の一方
の曲率を波長走査に伴って変化させねばならないと云う
困難性を解決しようとするものある。
C. DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, in the X-ray spectrometer using the curved crystal, the spectral crystal is curved to the toroidal surface in order to increase the X-ray focusing efficiency and improve the resolution. There is an attempt to solve the difficulty that the curvature must be changed with wavelength scanning.

ニ.問題点解決のための手段 第1図に示すように湾曲結晶Cを分光素子とするX線
分光器において、上記湾曲結晶Cをその中心を通るロー
ランド円Rを含む基準面Pと平行な線に沿って複数部分
1,2,3に分割し、上記基準面と交わる分光結晶2は基板
7に固定し、上記基準面交わらない分光結晶1,3は夫々
の結晶表面中心に垂直な方向の位置および上記基準面に
対する傾きを可変に上記基板7に取付け、上記基板と3
上記可動な分光結晶との間に駆動装置6,6′を介在させ
て上記可動分光結晶の各表面中心に立てた法線が常に、
上記基準面上でX線の入射点S1収束点S2を結ぶ直線とロ
ーランド円Rの中心からこの直線に下した垂線との交点
0を通るように、上記各可動分光結晶の前後方向位置お
よび傾きを制御する制御手段を設けた。
D. Means for Solving Problems In an X-ray spectrometer having a curved crystal C as a spectroscopic element as shown in FIG. 1, the curved crystal C is formed into a line parallel to a reference plane P including a Rowland circle R passing through the center thereof. Multiple parts along
The dispersive crystal 2, which is divided into 1, 2 and 3 and intersects with the reference plane, is fixed to the substrate 7, and the dispersive crystals 1 and 3 which do not intersect with the reference plane are positioned in the direction perpendicular to the respective crystal surface centers and the reference plane. The inclination with respect to
The normal line which is erected at the center of each surface of the movable dispersive crystal by interposing the driving devices 6 and 6'with the movable dispersive crystal is always
The position and inclination of each movable dispersive crystal in the front-rear direction so as to pass through an intersection point 0 of a straight line connecting the X-ray incident point S1 and the convergent point S2 on the reference plane and a perpendicular line drawn from the center of the Rowland circle R to this straight line. A control means for controlling the is provided.

ホ.作 用 前述したように湾曲結晶を用いるX線分光器では分光
結晶は理想的にはトロイダル面に湾曲させる必要があ
り、かつ分光結晶のローランド円と直交する面内の曲率
を波長走査と連動させて変化させる必要があるが、本発
明によれば、分光結晶が基準面と平行な線によって複数
に分割され、分割された各部分の中心法線がトロイダル
面の回転軸と交わるように制御されることになるので、
分光器の全波長範囲で良好な収束性が得られ、分解能も
向上させることができる。
E. Operation As described above, in an X-ray spectroscope using a curved crystal, the dispersive crystal should ideally be curved in a toroidal plane, and the curvature in the plane orthogonal to the Rowland circle of the dispersive crystal should be interlocked with wavelength scanning. According to the present invention, the dispersive crystal is divided into a plurality of lines by a line parallel to the reference plane, and the center normal of each divided portion is controlled so as to intersect with the rotation axis of the toroidal plane. Because it will be
Good convergence can be obtained in the entire wavelength range of the spectroscope, and the resolution can be improved.

ヘ.実施例 第2図に本発明の一実施例の要部を示す。この図は分
光結晶のローランド円上の曲率中心を通りローランド円
に垂直な断面を示す。1,2,3が分光結晶で、ローランド
円の直径を半径とする円筒面に湾曲させた結晶をその円
筒軸と直交する平面で三分割したものである。中央の分
光結晶2の中心を通り、その点において結晶表面に垂直
な線yを含み、図の紙面に垂直な平面Pを分光器の基準
面とする。分光結晶2のこの基準面内の曲率半径がロー
ランド円の直径に等しく、その曲率中心はy軸上D点に
ある。y軸上0点は分光器の基準面P上でローランド円
上に位置するX線の入射点および出射点を結ぶ直線のy
軸との交点であり、理想的な分光結晶はこの0点を中心
として中央の分光結晶2の表面中心qにおいて同結晶表
面に接する円弧rに沿うように湾曲されたものであり、
この実施例は分光結晶を1,2,3の三個の断片に分割する
ことにより、各断片結晶が夫々上記円弧rに接するよう
にするものである。即ち中央の結晶2は基板7に固定さ
れており、両側の結晶1,3は夫々駆動機構6,6′を介して
基板7に取付けられ、駆動機構6,6′は分光器の波長走
査によって0点がy軸上を移動するのに追従して、常に
各結晶1,3の表面中心に立てた垂線が0点を通るように
結晶1,3を駆動する。
F. Embodiment FIG. 2 shows an essential part of an embodiment of the present invention. This figure shows a cross section perpendicular to the Rowland circle that passes through the center of curvature of the Rowland circle of the dispersive crystal. Reference numerals 1, 2, and 3 are dispersive crystals, which are obtained by dividing a crystal, which is curved into a cylindrical surface whose radius is the diameter of a Rowland circle, into three parts in a plane orthogonal to the cylindrical axis. A plane P that passes through the center of the central dispersive crystal 2 and includes a line y perpendicular to the crystal surface at that point and that is perpendicular to the plane of the drawing is the reference plane of the spectroscope. The radius of curvature of the dispersive crystal 2 in this reference plane is equal to the diameter of the Rowland circle, and the center of curvature is at point D on the y-axis. The 0 point on the y-axis is the y of the straight line connecting the incident point and the emission point of the X-ray located on the Rowland circle on the reference plane P of the spectrometer.
It is the intersection with the axis, and the ideal dispersive crystal is one that is curved centering on this 0 point along the arc r that is in contact with the surface of the dispersive crystal 2 at the center q.
In this embodiment, the dispersive crystal is divided into three pieces of 1, 2, and 3 so that each piece of crystal is in contact with the arc r. That is, the crystal 2 in the center is fixed to the substrate 7, and the crystals 1 and 3 on both sides are attached to the substrate 7 through the driving mechanisms 6 and 6 ', respectively, and the driving mechanisms 6 and 6'are determined by the wavelength scanning of the spectroscope. Following the movement of the 0 point on the y-axis, the crystals 1 and 3 are driven so that the perpendicular line standing at the surface center of each crystal 1 and 3 always passes through the 0 point.

第3図は上述実施例の全体を示すもので、Sは試料で
あり、eは試料S上の一点S1に収束されている電子ビー
ムであり、試料Sはこの電子ビームにより励起されてS1
点からX線が放射される。分光器は分光結晶1,2,3のう
ち中央の結晶2の表面中心qがS1点を通り、装置に固定
された直線Lに沿って移動せしめられる。S2はX線出射
スリットで、GはS2と一体的に配置されたX線検出器で
ある。図でS1,q,S2を含む面つまり図の紙面が分光器の
基準面PでS1,q,S2はこの基準面上のローランド円R上
に位置しているように機構的に連結されている。これら
の連結機構は任意で既に色々な型のものが実用されてい
る。この実施例では、分光結晶1,2.3を保持している基
板7が直線Lと平行に配置された送りねじTに螺合させ
てあるナット(基板7の下にあって図では見えない)に
q点を通る垂直軸周りに回転可能に取付けられており、
基準面Pと平行な平面上におけるS1点の投影点に一端を
有し、長さがローランド円Rの半径と等しいリンクl1と
一端Qにおいてl1と連結され、Qqの長さがl1と等しいリ
ンクl2が基板7と一体化されており、分光結晶1,2,3が
常にローランド円の中心Rに向うようになっている。更
にq点から延びるリンクl3上に同リンクの長手方向に摺
動可能にスリットS2が設けられ、同スリットは常に分光
結晶1,2,3の方を向いていると共にリンクl1,l2とQ点で
連結されQS2の長さがl1,l2と等しいリンクl4に回動自在
に連結され、S1q=qS2となるようにリンクl3上の位置が
制御されている。
FIG. 3 shows the whole of the above-described embodiment, S is a sample, e is an electron beam focused on a point S1 on the sample S, and the sample S is excited by this electron beam to generate S1.
X-rays are emitted from the points. The spectroscope is moved along a straight line L fixed to the apparatus, with the surface center q of the central crystal 2 of the dispersive crystals 1, 2, 3 passing through point S1. S2 is an X-ray emission slit, and G is an X-ray detector arranged integrally with S2. The plane including S1, q, S2 in the figure, that is, the plane of the figure is the reference plane P of the spectroscope, and S1, q, S2 are mechanically connected so that they are located on the Rowland circle R on this reference plane. There is. These connecting mechanisms are arbitrary and various types are already in practical use. In this embodiment, a substrate 7 holding the dispersive crystals 1 and 2.3 is attached to a nut (under the substrate 7 and not visible in the figure) screwed into a feed screw T arranged parallel to the straight line L. It is attached so that it can rotate around a vertical axis that passes through q,
A link l1 having one end at the projection point of S1 on a plane parallel to the reference plane P and having a length equal to the radius of the Rowland circle R and a link connected to l1 at one end Q and having a length Qq equal to l1. l2 is integrated with the substrate 7 so that the dispersive crystals 1, 2, and 3 are always directed to the center R of the Rowland circle. Further, a slit S2 is provided on the link l3 extending from the point q so as to be slidable in the longitudinal direction of the link, and the slit always faces the dispersive crystals 1, 2, and 3 and the links l1, l2 and the point Q. Is rotatably connected to a link l4 which has a length of QS2 equal to l1 and l2, and the position on the link l3 is controlled so that S1q = qS2.

送りねじTは制御回路10から送られて来る駆動パルス
によって作動せしめられるステンピングモータMによっ
て回転せしめられ、これによって分光結晶1,2,3が直線
Lに沿い移動せしめられて波長走査が行われ、制御回路
10はステッピングモータMに送ったパルスを計数するこ
とによってスリットS2から検出器Gに出射される分光さ
れたX線の波長を検知している。また制御回路10は上記
したパルス計数値によって分光結晶1,3の駆動装置6,6′
を制御している。
The feed screw T is rotated by a stamping motor M operated by a drive pulse sent from the control circuit 10, whereby the dispersive crystals 1, 2 and 3 are moved along a straight line L to perform wavelength scanning. , Control circuit
Reference numeral 10 detects the wavelength of the dispersed X-ray emitted from the slit S2 to the detector G by counting the pulses sent to the stepping motor M. Further, the control circuit 10 controls the driving devices 6, 6'of the dispersive crystals 1, 3 according to the above-mentioned pulse count values.
Are in control.

第2図に戻って駆動装置6,6′について詳述する。分
光結晶1,3は保持板5,5′に固定されている。保持板5,
5′は夫々が基板7上でy軸と平行な摺動溝8内をy軸
方向に摺動可能な滑子9に共通のピン11によって枢着さ
れており、従って5,5′は基準面P内で回動自在であ
る。滑子9と溝8の一端との間にはばね12が介在されて
滑子9は常に図で右方に押圧されており、滑子9と溝8
の反対側の端との間に圧電駆動装置6が介在させてあ
る。保持板5,5′からは後方に腕51,51′が延出されてお
り、腕51,51′の端の間には引張ばね13が張架されて腕5
1,51′は常に引寄せられている。6′はもう一つの圧電
駆動装置であって、腕51,51′の間に介在させてある。
今長波長側から短波長側へ波長走査を行う場合を考える
と、第2図で0点は次第にq点に近付き円弧rの半径は
小さくなる。これに伴い滑子9は右方へ移動し、腕51,5
1′の間は押し広げられる必要がある。即ち駆動装置6
は長さが縮小せしめられ駆動装置6′は長さが伸張せし
められる必要がある。この縮小量および伸張量は分光器
の波長走査範囲の長波長端位置における駆動装置6,6′
の長さを基準にして波長の関数として決まっている。制
御装置10はステッピングモータMに送ったパルスの計数
値に基いて上記した縮小量,伸張量を算出し、それに応
じた数のパルスを駆動装置6,6′に送って夫々の長さを
制御する。リンク14,14は保持板5,5′が対称的に動くよ
うにするためのものである。
Returning to FIG. 2, the drive devices 6, 6'will be described in detail. The dispersive crystals 1 and 3 are fixed to holding plates 5 and 5 '. Holding plate 5,
5'is respectively pivoted by a pin 11 common to a slider 9 slidable in the y-axis direction in a slide groove 8 parallel to the y-axis on the substrate 7, and 5'and 5 ' It is freely rotatable in the plane P. A spring 12 is interposed between the slider 9 and one end of the groove 8 so that the slider 9 is always pressed to the right in the figure.
A piezoelectric drive device 6 is interposed between the piezoelectric drive device 6 and the opposite end. Arms 51 and 51 'are extended rearward from the holding plates 5 and 5', and a tension spring 13 is stretched between the ends of the arms 51 and 51 'so that the arms 5 and 51' are extended.
1,51 'is always attracted. 6'is another piezoelectric drive device, which is interposed between the arms 51, 51 '.
Considering the case of performing wavelength scanning from the long wavelength side to the short wavelength side, the 0 point gradually approaches the q point in FIG. 2 and the radius of the arc r decreases. Along with this, the slider 9 moves to the right and the arms 51, 5
It needs to be spread during 1 '. That is, the drive device 6
Must be reduced in length and drive 6'can be extended in length. This reduction amount and extension amount are the driving devices 6, 6'at the long wavelength end position of the wavelength scanning range of the spectrometer.
Is determined as a function of wavelength with reference to the length of. The control device 10 calculates the above-mentioned reduction amount and extension amount based on the count value of the pulses sent to the stepping motor M, and sends the corresponding number of pulses to the driving devices 6 and 6'to control the respective lengths. To do. The links 14 and 14 are for allowing the holding plates 5 and 5'to move symmetrically.

第4図は駆動装置6,6′の構成を示す。この装置の動
力部分はインチウォームと呼ばれる圧電素子を利用した
装置で、三個の圧電素子p1,p2,p3を含み、これらに順次
一パルスを加えることで一ステップの移動を行い、印加
パルスの順序を変えることで前進後退が切換られ、一ス
テップの移動量は圧電素子p2に印加する電圧によって異
り、0.01μm〜1μmの範囲で任意に設定できる。背中
合わせの二つのK字形の片k1,k2が圧電素子p2をはさん
で一体的に接着されてガイド溝Vに嵌められている。今
圧電素子p1に電圧を印加すると、片k1の腕が拡げられて
k1が溝Vにクランプされる。この状態でp2に電圧を印加
するとp2が延び片k2が右方ヘーステップ移動せしめられ
る。p1,p2に電圧が印加されている状態でp3に電圧を印
加すると片k2が溝Vにクランプされる。そこでp1,p2に
印加している電圧を解除すると片k1右方へ引かれて全体
の一ステップの移動が完了する。全体を左方へ移動させ
るときは電圧印加の順序を逆にすればよい。駆動装置6,
6′は溝Vを形成した本体Bと片k1に結合された棒bと
よりなっており、本体Bの右端と棒bの左端との間の長
さを変えることによって結晶1,3を駆動するのである。
FIG. 4 shows the construction of the drive devices 6, 6 '. The power part of this device is a device using a piezoelectric element called an inch worm, which includes three piezoelectric elements p1, p2, p3, and one pulse is sequentially added to these to perform one step movement, and the applied pulse The forward and backward movements are switched by changing the order, and the amount of movement of one step varies depending on the voltage applied to the piezoelectric element p2, and can be arbitrarily set within the range of 0.01 μm to 1 μm. Two back-to-back K-shaped pieces k1 and k2 are integrally bonded by sandwiching the piezoelectric element p2 and fitted in the guide groove V. Now, when voltage is applied to the piezoelectric element p1, the arm of the piece k1 is expanded.
k1 is clamped in the groove V. When a voltage is applied to p2 in this state, p2 extends and piece k2 is moved rightward by a step. When voltage is applied to p3 while voltage is applied to p1 and p2, the piece k2 is clamped in the groove V. Therefore, when the voltage applied to p1 and p2 is released, one side of k1 is pulled to the right and the entire one-step movement is completed. When moving the whole to the left, the order of voltage application may be reversed. Drive unit 6,
6'comprises a body B having a groove V formed therein and a rod b joined to the piece k1, and drives the crystals 1 and 3 by changing the length between the right end of the body B and the left end of the rod b. To do.

ト.効 果 本発明は、分光結晶を分割して理想的なトロイダル面
に近似させたものであるが、分割された結晶を相互に固
定せず、分光器の基準面に対する傾きを制御することに
より、基準面に垂直な断面における曲率を波長走査と連
動して常に理想のトロイダル面の曲率に合せるようにし
たから、分光器の全測定波長範囲で同じ高い効率および
分解能を得ることができる。
G. Effect The present invention is one in which a dispersive crystal is divided and approximated to an ideal toroidal surface, but the divided crystals are not fixed to each other, and the tilt with respect to the reference plane of the spectroscope is controlled, Since the curvature in the cross section perpendicular to the reference plane is always matched with the curvature of the ideal toroidal surface in conjunction with the wavelength scanning, the same high efficiency and resolution can be obtained in the entire measurement wavelength range of the spectrometer.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の概要を説明する斜視図、第2図は本発
明の一実施例の要部縦断面図、第3図は同実施例の全体
図、第4図は同実施例における駆動装置6,6′の平面
図、第5図は従来例の斜視図である。 S1……分光器へのX線入射点、S2……分光器のX線収束
点、C,1,2,3……分光結晶、R……ローランド円、5,5′
……保持板、6,6′……駆動装置、7……基板、8……
溝、9……滑子、10……制御回路、11……ピン、12……
ばね、13……引張ばね、G……X線検出器、e……電子
ビーム、S……試料、V……溝、k1,k2……片、p1,p2,p
3……圧電素子、B……駆動装置本体、b……棒。
FIG. 1 is a perspective view for explaining the outline of the present invention, FIG. 2 is a longitudinal sectional view of an essential part of an embodiment of the present invention, FIG. 3 is an overall view of the same embodiment, and FIG. 4 is for the same embodiment. FIG. 5 is a plan view of the driving device 6, 6 ', and FIG. 5 is a perspective view of a conventional example. S1 …… X-ray incident point on the spectrograph, S2 …… X-ray converging point on the spectrograph, C, 1,2,3 …… Dispersing crystal, R …… Roland circle, 5,5 ′
…… Holding plate, 6,6 ′ …… Drive device, 7 …… Substrate, 8 ……
Groove, 9 …… Slipper, 10 …… Control circuit, 11 …… Pin, 12 ……
Spring, 13 ... tension spring, G ... X-ray detector, e ... electron beam, S ... sample, V ... groove, k1, k2 ... piece, p1, p2, p
3 ... Piezoelectric element, B ... Driving device body, b ... Rod.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】湾曲結晶を分光素子とするX線分光器にお
いて、上記湾曲結晶をその中心を通るローランド円を含
む基準面に平行な線に沿って複数に分割し、これら分割
された各分光結晶のうち上記基準面と交わるものは基板
に固定し、交わらない分光結晶は夫々の結晶表面中心に
垂直な方向の位置および上記基準面に対する傾きを可変
に上記基板に取付け、上記基板と上記可動な分光結晶と
の間に駆動装置を介在させて、上記可動が各分光結晶の
表面中心法線が常に、上記基準面上でX線の入射点およ
び集束点を結ぶ直線と同基準上のローランド円中心から
上記直線に下した垂線との交点を通るように上記駆動装
置を制御する手段を設け、上記基板を波長走査機構によ
り駆動するようにしたX線分光器。
1. An X-ray spectroscope having a curved crystal as a spectroscopic element, wherein the curved crystal is divided into a plurality of lines along a line parallel to a reference plane including a Rowland circle passing through the center, and each of the divided spectra. The crystal that intersects with the reference plane is fixed to the substrate, and the dispersive crystals that do not intersect are mounted on the substrate so that the position in the direction perpendicular to the center of each crystal surface and the inclination with respect to the reference plane are variably attached, and the crystal is movable with the substrate. A movable device is interposed between the dispersive crystal and the surface of the dispersive crystal so that the normal to the surface center of each dispersive crystal is always the same as the straight line connecting the incident point and the focusing point of the X-ray on the reference plane. An X-ray spectroscope in which means for controlling the driving device is provided so as to pass through an intersection with a perpendicular line drawn from the center of the circle to the straight line, and the substrate is driven by a wavelength scanning mechanism.
JP63021021A 1988-01-29 1988-01-29 X-ray spectrometer Expired - Lifetime JPH083558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021021A JPH083558B2 (en) 1988-01-29 1988-01-29 X-ray spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021021A JPH083558B2 (en) 1988-01-29 1988-01-29 X-ray spectrometer

Publications (2)

Publication Number Publication Date
JPH01195399A JPH01195399A (en) 1989-08-07
JPH083558B2 true JPH083558B2 (en) 1996-01-17

Family

ID=12043378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021021A Expired - Lifetime JPH083558B2 (en) 1988-01-29 1988-01-29 X-ray spectrometer

Country Status (1)

Country Link
JP (1) JPH083558B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601308B2 (en) * 2012-10-31 2017-03-21 Hitachi, Ltd. Spectroscopic element and charged particle beam device using the same
CN108254391B (en) * 2018-01-29 2020-10-16 中国工程物理研究院激光聚变研究中心 Bent crystal detection method and device
US11699567B2 (en) 2020-11-27 2023-07-11 Jeol Ltd. X-ray detection apparatus and method
JP7245885B2 (en) * 2020-11-27 2023-03-24 日本電子株式会社 X-ray detection device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231198A (en) * 1986-03-31 1987-10-09 株式会社島津製作所 Curved crystal element for x-ray diffraction

Also Published As

Publication number Publication date
JPH01195399A (en) 1989-08-07

Similar Documents

Publication Publication Date Title
AU624660B2 (en) Microdrive apparatus
JP3280037B2 (en) Lithographic exposure apparatus and lithographic processing
US7542548B2 (en) X-ray optical system
JP3721305B2 (en) Single-corner Kirkpatrick Baez beam conditioning optics assembly
US20090257709A1 (en) Optical switch
US3797908A (en) Optical arrangements and apparatus
EP1739687A2 (en) X-ray monochromator and x-ray analysis apparatus
JPH0216198B2 (en)
JPH083558B2 (en) X-ray spectrometer
GB2096789A (en) Optical mechanical scanning system
JPH1177577A (en) Wire driving type manipulator
EP1403882B1 (en) Parabolic mirror and movable X-ray source for obtaining parallel x-ray beams having different wavelengths
JP4323096B2 (en) Device for deflecting electromagnetic radiation or radiation flux in the optical spectral region
JPH04219717A (en) Optical-beam forming device and optical wedge
JPH058368B2 (en)
JPH01152406A (en) Collimating device
US4528490A (en) Two axis drive for stage
JPH05215898A (en) X-ray collimator
US3701589A (en) Variable width slit mechanism for use in a scanning monochromator
WO2022112061A1 (en) Field facet system and lithography apparatus
JP3471477B2 (en) Variable slit device for X-ray equipment
JPH09159935A (en) Variable pinhole mechanism
JP2861736B2 (en) X-ray spectrometer
JP2548928B2 (en) Multi-beam scanning optical device
JP3130920B2 (en) Double monochromator