JPH08338707A - Displacement gage - Google Patents

Displacement gage

Info

Publication number
JPH08338707A
JPH08338707A JP17144495A JP17144495A JPH08338707A JP H08338707 A JPH08338707 A JP H08338707A JP 17144495 A JP17144495 A JP 17144495A JP 17144495 A JP17144495 A JP 17144495A JP H08338707 A JPH08338707 A JP H08338707A
Authority
JP
Japan
Prior art keywords
light
measured
interference
displacement
displacement meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17144495A
Other languages
Japanese (ja)
Inventor
Masaharu Okabe
正治 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17144495A priority Critical patent/JPH08338707A/en
Publication of JPH08338707A publication Critical patent/JPH08338707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an inexpensive displacement gage capable of dealing with a wide range from a low speed to a high speed. CONSTITUTION: Laser light is introduced into a beam splitter 3 through a polarization plate, and divided into measured light and reference light, which are returned to the beam splitter 3 after they are reflected by a reference mirror R1 . The measuring light passes through a 1/8 wave length plate 4, the reference light through a 1/4 wave length plate 5 two times each respectively, they are returned to the beam splitter 3 and interference light C1 is produced. Because the measuring light is returned as circular polarization, the interference light C1 is divided into two polarization components, quantity of respective light is detected, the phase of energy vector of the interference light C1 is investigated and quantity of displacement of an object to be measured M1 is detected from the rotational frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小な物体の変位を光
の干渉を利用して測定する極めて高精度の変位計に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extremely high-precision displacement meter for measuring the displacement of a minute object by utilizing the interference of light.

【0002】[0002]

【従来の技術】従来、微小な物体の変位を高精度で測定
する方法としてヘテロダイン干渉法が知られている。ヘ
テロダイン干渉法は、わずかに異なる周波数をもつ2つ
の光を作り、被測定物体の測定面と参照面にそれぞれ入
射させ、両者の反射光を干渉させて光電変換することで
前記周波数の差に等しい周波数をもつ電気的なビート信
号を得たうえで、これと参照用のビート信号との位相差
を求めるもので、光の位相差を基準とした高精度な変位
測定が可能である。
2. Description of the Related Art Heretofore, a heterodyne interferometry method has been known as a method for measuring displacement of a minute object with high accuracy. The heterodyne interferometry method produces two lights having slightly different frequencies, makes them incident on the measurement surface and the reference surface of the object to be measured, respectively, and interferes the reflected light of both with photoelectric conversion to equalize the frequency difference. It obtains an electrical beat signal having a frequency and then obtains the phase difference between the beat signal for reference and the beat signal for reference, which enables highly accurate displacement measurement based on the phase difference of light.

【0003】図9はヘテロダイン干渉法を用いた一従来
例による変位計を説明するもので、HeNeレーザ等の
レーザ101から出たレーザ光は第1のビームスプリッ
タ130で二つの偏光成分に分割され、そのうちの一方
は周波数シフタ131でわずかに周波数の異なる光に変
換される。周波数シフタ131が例えば光音響偏向器で
あれば数十MHzの周波数シフトを与えることができ
る。周波数シフトを与えられた光を第2のビームスプリ
ッタ132へ導入し、第1のビームスプリッタ130を
透過した光と重ね合わせ、検光子141を経て光検出素
子142で光電変換すると、周波数シフタ131に与え
た周波数と同じ周波数のビート信号が得られる。これを
参照信号A0 として用いる。
FIG. 9 illustrates a displacement meter according to a conventional example using the heterodyne interferometry. A laser beam emitted from a laser 101 such as a HeNe laser is split into two polarization components by a first beam splitter 130. One of them is converted into light having a slightly different frequency by the frequency shifter 131. If the frequency shifter 131 is, for example, a photoacoustic deflector, it can give a frequency shift of several tens of MHz. The frequency-shifted light is introduced into the second beam splitter 132, superposed on the light transmitted through the first beam splitter 130, and photoelectrically converted by the photodetector element 142 via the analyzer 141. A beat signal having the same frequency as the given frequency can be obtained. This is used as the reference signal A 0 .

【0004】他方、第2のビームスプリッタ132で重
ね合わされて別の方向へ向かう光は第3のビームスプリ
ッタ133で再び分割される。該第3のビームスプリッ
タ133を透過して直進する光は偏波面と45度に置か
れた1/4波長板134を通して被測定物体M0 に照射
され、被測定物体M0 で反射されて再び第3のビームス
プリッタ133に戻る。このとき、1/4波長板134
の働きで偏光方向が90度回転するため、戻った光は第
3のビームスプリッタ133で反射されて光検出素子1
39へ導入される。
On the other hand, the light beams superposed in the second beam splitter 132 and traveling in another direction are split again by the third beam splitter 133. The light that has passed through the third beam splitter 133 and travels straight is irradiated to the object to be measured M 0 through the quarter-wave plate 134 placed at the polarization plane and 45 degrees, reflected by the object to be measured M 0 , and again. Returning to the third beam splitter 133. At this time, the quarter-wave plate 134
Since the polarization direction is rotated by 90 degrees by the action of, the returned light is reflected by the third beam splitter 133 and
Introduced to 39.

【0005】また、第3のビームスプリッタ133を直
進せず反射された偏光成分は、同じく1/4波長板13
6を通して参照ミラー137に照射され、反射されて再
び第3のビームスプリッタ133に戻る。この光も1/
4波長板136の働きで偏光方向が90度回転され、戻
った光は第3のビームスプリッタ133を透過して直進
し、検光子138を経て光検出素子139へ導入され
る。
Further, the polarized component reflected by the third beam splitter 133 without traveling straight is also the quarter wavelength plate 13
The reference mirror 137 is irradiated through 6 and reflected, and then returns to the third beam splitter 133 again. This light is also 1 /
The polarization direction is rotated by 90 degrees by the function of the four-wave plate 136, and the returned light is transmitted through the third beam splitter 133, goes straight, and is introduced into the photodetection element 139 through the analyzer 138.

【0006】このように検光子138を経て光検出素子
139へ導入され、ここで光電変換されて得られたビー
ト信号が測定信号B0 であり、測定信号B0 と参照信号
0の位相差を測定することで被測定物体M0 の変位を
検出する。
The beat signal thus introduced into the photodetector 139 through the analyzer 138 and photoelectrically converted therein is the measurement signal B 0 , and the phase difference between the measurement signal B 0 and the reference signal A 0 is obtained. Is measured to detect the displacement of the measured object M 0 .

【0007】数十MHzの測定信号B0 と参照信号A0
との位相差は位相計144で求める。すなわち、位相計
144の位相出力が被測定物体M0 の変位を表す出力信
号となる。被測定物体M0 が、図9の矢印P0 で示す方
向に、レーザ101のレーザ光の波長の1/2だけ変位
すると、位相計144の位相出力は360度変化する。
従って、HeNeレーザを用いた場合は、位相計144
の分解能が1度まであれば約2nmの分解能が得られる
ことになる。
Measurement signal B 0 of several tens of MHz and reference signal A 0
The phase difference between and is calculated by the phase meter 144. That is, the phase output of the phase meter 144 becomes an output signal representing the displacement of the measured object M 0 . When the measured object M 0 is displaced by ½ of the wavelength of the laser light of the laser 101 in the direction indicated by the arrow P 0 in FIG. 9, the phase output of the phase meter 144 changes by 360 degrees.
Therefore, when the HeNe laser is used, the phase meter 144
If the resolution of 1 is 1.degree., A resolution of about 2 nm can be obtained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、前述のように、2つのビート信号間の
位相差を位相計で測定することで変位を検出するヘテロ
ダイン干渉法によるものであり、微小な変位を極めて高
精度に測定できるという利点を有するが、一般的に、位
相計は応答周波数の帯域が狭く、高速度で移動する被測
定物体には追随できない。
However, according to the above-mentioned conventional technique, as described above, it is based on the heterodyne interferometry method in which the displacement is detected by measuring the phase difference between two beat signals with a phase meter. Although it has an advantage that minute displacements can be measured with extremely high accuracy, generally, the phase meter has a narrow response frequency band and cannot follow an object to be measured moving at high speed.

【0009】例えば、光源に波長632.8nmのHe
Neレーザを使い100MHzで周波数シフトすると
き、被測定物の移動速度が0〜10m/secの範囲で
変化すると、 10(m/sec)÷(632.8×10-9(m)/2)≒
32×106 (Hz) であるから、位相計に入力される測定信号(ビート信
号)の周波数は100MHzを中心に、±32MHzも
の範囲で変化する。すなわち、位相計に入力される測定
信号は、68MHz〜132MHzの周波数となり、応
答周波数帯域の狭い位相計による測定は極めて困難であ
る。
For example, a He light source having a wavelength of 632.8 nm is used.
When frequency is shifted at 100 MHz using a Ne laser and the moving speed of the measured object changes within the range of 0 to 10 m / sec, 10 (m / sec) ÷ (632.8 × 10 −9 (m) / 2) ≒
Since it is 32 × 10 6 (Hz), the frequency of the measurement signal (beat signal) input to the phase meter changes in the range of ± 32 MHz centering on 100 MHz. That is, the measurement signal input to the phase meter has a frequency of 68 MHz to 132 MHz, and it is extremely difficult to measure with a phase meter having a narrow response frequency band.

【0010】また、ヘテロダイン干渉法に不可欠である
周波数シフタや位相計はいずれも高価であるため、装置
の高価格化を避けることができない。
Further, since the frequency shifter and the phase meter, which are indispensable for the heterodyne interferometry, are expensive, it is inevitable to increase the cost of the device.

【0011】本発明は、上記従来の技術の有する問題点
に鑑みてなされたものであり、微小な物体の変位を、極
低速状態から高速状態まで広い速度範囲で高精度に検出
できるうえに、高価な計測部品を必要とせず従って安価
である変位計を提供することを目的とするものである。
The present invention has been made in view of the problems of the above-mentioned prior art, and is capable of detecting a displacement of a minute object with high accuracy in a wide speed range from an extremely low speed state to a high speed state. It is an object of the present invention to provide a displacement gauge that does not require expensive measuring parts and is therefore inexpensive.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明の変位計は、光源から発生された可干渉光を
偏光光束に変換する偏光手段と、前記偏光光束を参照光
と測定光に分割し、参照面と被測定物の表面によってそ
れぞれ反射させたうえで重ね合わせて干渉光を得る干渉
手段と、前記参照光の光路に配設された1/4波長移相
子と、前記測定光の光路に配設された1/8波長移相子
と、前記干渉光を2つの偏光成分に分割して両者の光量
を個別に検出する光量検出手段と、該光量検出手段の出
力に基づいて前記被測定物の変位量を演算する演算手段
を有することを特徴とする。
In order to achieve the above object, the displacement meter of the present invention comprises a polarizing means for converting coherent light generated from a light source into a polarized light beam, and the polarized light beam as a reference light and a measurement light. And an interfering means for obtaining interference light by superposing them on the reference surface and the surface of the object to be measured, respectively, a quarter-wave retarder arranged in the optical path of the reference light, A 1/8 wavelength phase shifter arranged in the optical path of the measuring light, a light amount detecting means for dividing the interference light into two polarization components and individually detecting the light amounts of the two polarized light components, and an output of the light amount detecting means. It is characterized by having a calculating means for calculating the displacement amount of the object to be measured based on the above.

【0013】測定光と参照光をそれぞれ被測定物の表面
と参照面に集光させる集光手段が設けられているとよ
い。
Condensing means for converging the measurement light and the reference light on the surface of the object to be measured and the reference surface, respectively, may be provided.

【0014】また、光量検出手段の受光面が集光手段の
デ・フォーカス位置に配設されているとよい。
Further, it is preferable that the light receiving surface of the light amount detecting means is disposed at the defocus position of the light collecting means.

【0015】また、干渉光の光路に1/2波長移相子が
配設されているとよい。
Further, it is preferable that a ½ wavelength retarder is provided in the optical path of the interference light.

【0016】また、演算手段が、干渉光の2つの偏光成
分のそれぞれの光量変化から前記干渉光のエネルギーベ
クトルの回転を検知する演算テーブルを有するとよい。
Further, it is preferable that the calculation means has a calculation table for detecting the rotation of the energy vector of the interference light from the change of the light quantity of each of the two polarization components of the interference light.

【0017】[0017]

【作用】被測定物の表面で反射されて干渉手段に戻る測
定光は、1/8波長移相子を2回通ることによって特定
の偏光成分に90度の位相遅れを生じる。このために干
渉手段に戻ったときの測定光は被測定物の移動とともに
エネルギーベクトルが回転する円偏光となる。
The measuring light reflected by the surface of the object to be measured and returning to the interference means passes through the ⅛ wavelength retarder twice to cause a 90 ° phase delay in the specific polarization component. For this reason, the measurement light returning to the interference means becomes circularly polarized light whose energy vector rotates as the object to be measured moves.

【0018】そこで、測定光と参照光を合わせて得られ
る干渉光を、偏光方向が互いに異なる2つの偏光成分に
分割してそれぞれの光量を検出し、その組み合わせを検
討することで干渉光のエネルギーベクトルの正逆回転数
を求め、これを被測定物の変位量に換算する。
Therefore, the interference light obtained by combining the measurement light and the reference light is divided into two polarization components having different polarization directions, the respective light amounts are detected, and the combination thereof is examined to determine the energy of the interference light. The forward / reverse rotational speed of the vector is obtained and converted into the displacement amount of the object to be measured.

【0019】この変位計は、光源の光の波長の1/2を
測定単位とする極めて高精度な変位計であり、周波数シ
フタや位相計等の高価な計測部品を必要としないために
安価であり、また、広い応答周波数帯域に対応して被測
定物が高速で移動する場合から極低速状態まで広範囲に
適用できるという長所を有する。
This displacement meter is an extremely high-precision displacement meter whose measurement unit is 1/2 of the wavelength of the light from the light source, and is inexpensive because it does not require expensive measurement parts such as a frequency shifter or a phase meter. In addition, it has an advantage that it can be applied in a wide range from a case where the object to be measured moves at high speed corresponding to a wide response frequency band to an extremely low speed state.

【0020】[0020]

【実施例】本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0021】図1は一実施例による変位計を説明するも
のでこれは、光源であるHeNeレーザ1と、これから
発せられた可干渉光であるレーザ光L1 を単一の偏光方
向をもつ偏光光束に変える偏光手段である偏光板2と、
偏光板2を透過したレーザ光を測定光と参照光に分割す
る干渉手段であるビームスプリッタ3と、測定光の特定
の方向の偏光成分を1/8波長だけ遅らせる1/8波長
移相子である1/8波長板4と、参照光の特定の方向の
偏光成分を1/4波長だけ遅らせる1/4波長移相子で
ある1/4波長板5と、1/8波長板4と被測定物M1
の間に設けられた集光手段である対物レンズ6と、1/
4波長板5と参照面である参照ミラーR1 の間に設けら
れた集光手段である対物レンズ7を有し、偏光板2の偏
光面は紙面に対して90度の角度に設定される。
FIG. 1 illustrates a displacement meter according to an embodiment, in which a HeNe laser 1 as a light source and a laser beam L 1 as coherent light emitted from the HeNe laser 1 are polarized with a single polarization direction. A polarizing plate 2 which is a polarization means for converting into a light beam,
A beam splitter 3 which is an interference means for splitting the laser light transmitted through the polarizing plate 2 into a measurement light and a reference light, and a ⅛ wavelength retarder which delays the polarization component of the measurement light in a specific direction by ⅛ wavelength. A certain 1/8 wavelength plate 4, a 1/4 wavelength plate 5 that is a 1/4 wavelength retarder that delays the polarization component of the reference light in a specific direction by 1/4 wavelength, and a 1/8 wavelength plate 4 and Measured object M 1
Between the objective lens 6 which is a condensing means provided between
It has an objective lens 7 which is a condensing means provided between the four-wave plate 5 and a reference mirror R 1 which is a reference surface, and the polarization plane of the polarizing plate 2 is set at an angle of 90 degrees with respect to the paper surface. .

【0022】また、1/8波長板4は入射光の偏波方向
に対して45度の角度に設定されており、ビームスプリ
ッタ3の透過光である測定光は1/8波長板4を経て対
物レンズ6によって被測定物M1 の表面に集光され、該
表面で反射されて再び1/8波長板4を通過してビーム
スプリッタ3に戻る。このように、測定光は1/8波長
板4を2回通過するため、ビームスプリッタ3に戻ると
きには特定の方向の偏光成分に1/4波長の遅れが得ら
れる。また、1/8波長板4は、前述のように、入射光
の偏波方向に対して45度に設定されており、従って、
ビームスプリッタ3に戻る測定光は円偏光となる。
The ⅛ wave plate 4 is set at an angle of 45 ° with respect to the polarization direction of the incident light, and the measurement light transmitted through the beam splitter 3 passes through the ⅛ wave plate 4. It is condensed on the surface of the object to be measured M 1 by the objective lens 6, is reflected by the surface, passes through the 1/8 wavelength plate 4 again, and returns to the beam splitter 3. Thus, since the measurement light passes through the 1/8 wavelength plate 4 twice, when returning to the beam splitter 3, a 1/4 wavelength delay is obtained in the polarization component in a specific direction. Further, the 1/8 wavelength plate 4 is set to 45 degrees with respect to the polarization direction of the incident light as described above, and therefore,
The measurement light returning to the beam splitter 3 becomes circularly polarized light.

【0023】他方、ビームスプリッタ3の反射光である
参照光は1/4波長板5を経て対物レンズ7によって参
照ミラーR1 の表面に集光され、該表面で反射されて再
び1/4波長板5を通過してビームスプリッタ3に戻
る。このように参照光は1/4波長板5を往復で2回通
過するため、ビームスプリッタ3に戻ったときには特定
の方向の偏光成分に1/2波長の遅れが得られる。1/
4波長板5の設定角度を入射光の偏光方向に対し45度
とすれば、参照光の偏波面は90度回転する。
On the other hand, the reference light, which is the reflected light of the beam splitter 3, passes through the quarter-wave plate 5 and is condensed on the surface of the reference mirror R 1 by the objective lens 7, and is reflected by the surface and again the quarter-wavelength. It passes through the plate 5 and returns to the beam splitter 3. In this way, the reference light passes through the quarter-wave plate 5 twice, so that when it returns to the beam splitter 3, a polarization component of a specific direction is delayed by a half wavelength. 1 /
When the set angle of the four-wave plate 5 is 45 degrees with respect to the polarization direction of the incident light, the plane of polarization of the reference light rotates by 90 degrees.

【0024】ビームスプリッタ3に偏光特性がある場合
には、このように偏光方向が変わることでビームスプリ
ッタ3での参照光の反射特性が変わり、光の利用効率が
良くなる。すなわち、1/4波長板5を設けることで光
の利用効率が上がり、検出信号の強度が向上する。
When the beam splitter 3 has the polarization characteristic, the reflection characteristic of the reference light at the beam splitter 3 changes due to the change of the polarization direction, and the light utilization efficiency is improved. That is, by providing the quarter-wave plate 5, the light utilization efficiency is improved and the intensity of the detection signal is improved.

【0025】ビームスプリッタ3は被測定物M1 と参照
ミラーR1 から戻ってきた測定光と参照光を再び重ね合
わせ、干渉光C1 として光量検出手段である光検出部8
へ導入する。測定光が円偏光で戻るために、重ね合わさ
れた直後の干渉光C1 は、被測定物M1 が1/2波長だ
け移動(変位)するごとにそのエネルギーベクトルが1
回転するものとなり、回転方向は被測定物の移動方向に
よって時計回りあるいは反時計回りとなる。
The beam splitter 3 superimposes the measurement light and the reference light returned from the DUT M 1 and the reference mirror R 1 again, and as a coherent light C 1 , a light detecting section 8 which is a light quantity detecting means.
Introduce to. Since the measurement light returns as circularly polarized light, the energy vector of the interference light C 1 immediately after being superposed is 1 each time the object to be measured M 1 moves (displaces) by 1/2 wavelength.
It rotates, and the rotation direction is clockwise or counterclockwise depending on the moving direction of the object to be measured.

【0026】すなわち、参照光と測定光をそれぞれ紙面
に対し45度の偏光成分と135度の偏光成分に分けて
考えると、参照光は紙面に平行な直線偏光であるから、
45度成分と135度成分に位相差はないが、測定光は
円偏光であるため、45度成分と135度成分に90度
の位相差が存在する。従って、これらが重ね合わされて
得られる干渉光C1 の45度成分の光量と135度成分
の光量は、それぞれ被測定物M1 の変位によって90度
の位相差で変化するものとなり、これらの光量変化をそ
れぞれ測定して干渉光C1 のエネルギーベクトルの正逆
回転数を求めることで、被測定物M1 の変位量を知るこ
とができる。
That is, when the reference light and the measurement light are divided into a polarization component of 45 degrees and a polarization component of 135 degrees with respect to the paper surface, the reference light is linearly polarized light parallel to the paper surface.
Although there is no phase difference between the 45-degree component and the 135-degree component, since the measurement light is circularly polarized light, there is a 90-degree phase difference between the 45-degree component and the 135-degree component. Therefore, the amount of light of the 45-degree component and the amount of light of the 135-degree component of the interference light C 1 obtained by superimposing these changes with the phase difference of 90 degrees due to the displacement of the DUT M 1 , respectively. The amount of displacement of the object to be measured M 1 can be known by measuring the changes and obtaining the normal and reverse rotation speeds of the energy vector of the interference light C 1 .

【0027】光検出部8は1/2波長移相子である1/
2波長板81を有し、これを紙面に対して22.5度の
角度に設定することで干渉光C1 の偏波面を45度回転
させる。その結果、干渉光C1 の45度の偏光成分と1
35度の偏光成分の偏波面は0度と90度とになり、後
述する光検出部ビームスプリッタ83や光検出素子8
4,85を含む光学系の配置が複雑になるのを防ぐこと
ができる。1/2波長板81を省略すると、光検出部ビ
ームスプリッタ83を紙面に対し45度の角度に設定
し、光検出素子85を光検出部ビームスプリッタ83の
反射光の光軸上に設定しなければならない。
The photodetector 8 is a 1/2 wavelength retarder 1 /
A two-wave plate 81 is provided, and the plane of polarization of the interference light C 1 is rotated by 45 ° by setting this at an angle of 22.5 ° with respect to the paper surface. As a result, the polarization component of the interference light C 1 at 45 degrees and 1
The polarization planes of the polarization component of 35 degrees are 0 degree and 90 degrees, and the photodetector beam splitter 83 and the photodetector 8 which will be described later are provided.
It is possible to prevent the arrangement of the optical system including 4,85 from becoming complicated. If the half-wave plate 81 is omitted, the photodetector beam splitter 83 should be set at an angle of 45 degrees with respect to the paper surface, and the photodetector element 85 should be set on the optical axis of the reflected light of the photodetector beam splitter 83. I have to.

【0028】1/2波長板81を通過した干渉光C1
は、視野絞り82を経て光検出部ビームスプリッタ83
に入射する。視野絞り82は各対物レンズ6,7の結像
面に配置され、従って干渉光C1 は視野絞り82の上に
結像する。視野絞り82の絞り径は、例えば、直径50
μmであり、各対物レンズ6,7が10倍の対物レンズ
であれば、被測定物M1 の表面の直径5μmの領域が測
定スポットである。この測定スポットサイズは、視野絞
り82の大きさを変えることで変更できる。なお、この
ように測定スポットサイズが直径5μmであれば、直径
約20μmの穴の中にある液体の液面昇降を高精度で測
定できる。
Interfering light C 1 which has passed through the half-wave plate 81
Passes through the field stop 82 and the photodetector beam splitter 83.
Incident on. The field stop 82 is arranged on the image plane of each of the objective lenses 6 and 7, so that the interference light C 1 is imaged on the field stop 82. The diaphragm diameter of the field diaphragm 82 is, for example, 50 mm in diameter.
a [mu] m, if the objective lens 6 and 7 10 × objective lens, a measurement spot diameter region of 5μm on the surface of the object to be measured M 1. This measurement spot size can be changed by changing the size of the field stop 82. If the measurement spot size is 5 μm in diameter in this way, the elevation of the liquid level in the hole having a diameter of about 20 μm can be measured with high accuracy.

【0029】光検出部ビームスプリッタ83は干渉光C
1 を紙面に対し0度の偏光成分A1と90度の偏光成分
1 とに分割する。被測定物M1 の移動に伴う両偏光成
分の光量変化は、前述のように、互いに90度の位相差
を有し、これらをそれぞれ第1、第2の光検出素子8
4,85によって測定する。
The photodetector beam splitter 83 receives the interference light C
1 to the sheet surface is divided into 0 degree polarization component A 1 with 90 ° polarization component B 1. As described above, the changes in the amounts of light of the two polarized components due to the movement of the object to be measured M 1 have a phase difference of 90 degrees with each other.
4,85.

【0030】なお、視野絞り82を対物レンズ6,7の
結像面に配設し、両光検出素子84,85をデ・フォー
カス位置に配設することで、これらの精密な位置合わせ
が不必要になるという利点がある。
By disposing the field stop 82 on the image forming plane of the objective lenses 6 and 7 and disposing both the photo-detecting elements 84 and 85 at the de-focus position, precise alignment of these is not possible. It has the advantage of being required.

【0031】両偏光成分A1 ,B1 はそれぞれ光検出素
子84,85で電気信号に変えられ、増幅器86,87
で増幅され、それぞれ第1、第2の検出信号S1 、T1
となる。被測定物M1 が図1の矢印P1 で示す方向に往
復移動した場合、両検出信号S1 、T1 は図2の(a)
に示す被測定物M1 の移動波形に対して同図(b),
(c)に示すように互いに90度の位相差でほぼ周期的
に変化する。
Both polarization components A 1 and B 1 are converted into electric signals by photodetectors 84 and 85, respectively, and amplifiers 86 and 87 are used.
Are amplified by the first and second detection signals S 1 and T 1 , respectively.
Becomes When the DUT M 1 reciprocates in the direction indicated by the arrow P 1 in FIG. 1, both detection signals S 1 and T 1 are shown in FIG.
The moving waveform of the device under test M 1 shown in FIG.
As shown in (c), they change substantially periodically with a phase difference of 90 degrees.

【0032】被測定物M1 が1/2波長だけ移動する
と、干渉光C1 のエネルギーベクトルは1回転し、両検
出信号S1 ,T1 はそれぞれ位相が360度変化する。
被測定物M1 が10m/secの高速度で移動する状態
まで測定したい場合は、HeNeレーザ1のレーザ光L
1 の波長が632.8nmであるから、検出信号S1
1 の周波数は 10(m/sec)÷(632.8×10-9(m)/2)≒
32×106 (Hz) となる。従って、光検出素子84,85、増幅器86,
87にはこれ以上の周波数特性のあるものを用いる。ま
た、後述するアナログデジタル変換器88にはこの周波
数の約4倍の130MHz以上のサンプリング速度でデ
ジタル変換するものを用いる。
When the DUT M 1 moves by ½ wavelength, the energy vector of the interference light C 1 makes one rotation, and the phases of both detection signals S 1 and T 1 change by 360 degrees.
When it is desired to measure the object M 1 to be moved at a high speed of 10 m / sec, the laser light L of the HeNe laser 1 is used.
Since the wavelength of 1 is 632.8 nm, the detection signal S 1 ,
The frequency of T 1 is 10 (m / sec) ÷ (632.8 × 10 -9 (m) / 2) ≈
It becomes 32 × 10 6 (Hz). Therefore, the photodetector elements 84 and 85, the amplifier 86,
For 87, one having a frequency characteristic higher than this is used. An analog-to-digital converter 88, which will be described later, is one that performs digital conversion at a sampling rate of 130 MHz or more, which is about four times this frequency.

【0033】両検出信号S1 ,T1 は2チャンネルのア
ナログデジタル変換器88でデジタル信号に変換され、
演算手段である信号処理部89に入力され、信号処理部
89は、図3のフローチャートに示す手順によって被測
定物M1 の変位量を算出し、その結果を表示部9に表示
する。
Both detection signals S 1 and T 1 are converted into digital signals by a 2-channel analog-digital converter 88,
This signal is input to the signal processing unit 89, which is a calculation means, and the signal processing unit 89 calculates the displacement amount of the object to be measured M 1 by the procedure shown in the flowchart of FIG. 3, and displays the result on the display unit 9.

【0034】信号処理部89における演算の手順は以下
の通りである。まず、信号処理部89のチャンネル1か
ら入力される第1の検出信号S1 のデータをX0(i) 、
チャンネル2から入力される第2の検出信号T1 のデー
タをY0(i) と呼ぶことにする。
The calculation procedure in the signal processing unit 89 is as follows. First, the data of the first detection signal S 1 input from the channel 1 of the signal processing unit 89 is converted into X 0 (i),
The data of the second detection signal T 1 input from the channel 2 will be called Y 0 (i).

【0035】ステップS1で変数の初期化を行なう。す
なわち、データ番号i、位相の初期値ph0、被測定物
位置の初期値Z(0)をそれぞれ0にする。X0(i) ,
0(i) は、光量や迷光などの影響で、図2の(b)お
よび(c)に示すように、あるオフセット値を中心に振
動する信号となっているため、ステップS2でチャンネ
ル1の信号X0(i) とチャンネル2の信号Y0(i) から
それぞれのオフセット値Xofs,Yofsを差し引い
て0を中心に振動するデータX,Yを得る。
In step S1, variables are initialized. That is, the data number i, the initial value ph0 of the phase, and the initial value Z (0) of the measured object position are set to 0, respectively. X 0 (i),
Y 0 (i) is a signal that oscillates around a certain offset value as shown in (b) and (c) of FIG. 2 due to the influence of the amount of light or stray light. The offset values Xofs and Yofs are subtracted from the signal X 0 (i) and the signal Y 0 (i) of the channel 2 to obtain data X and Y oscillating around 0.

【0036】ステップS3でXとYの組み合わせが以下
の8種類の組み合わせのいずれであることを判別するこ
とで、干渉光C1 のエネルギーベクトルの位相phが図
4に示す8つの領域ph=0〜7のいずれにあるかを知
る。
By determining in step S3 which of the following eight combinations the combination of X and Y is, the phase ph of the energy vector of the coherent light C 1 has eight regions ph = 0 shown in FIG. Know which of ~ 7.

【0037】 X≧0かつY≧0かつ|X|≧|Y|のときph=0 X≧0かつY≧0かつ|X|<|Y|のときph=1 X<0かつY≧0かつ|X|<|Y|のときph=2 X<0かつY≧0かつ|X|≧|Y|のときph=3 X<0かつY<0かつ|X|≧|Y|のときph=4 X<0かつY<0かつ|X|<|Y|のときph=5 X≧0かつY<0かつ|X|<|Y|のときph=6 X≧0かつY<0かつ|X|≧|Y|のときph=7 とする。この動作をする関数をphase(X,Y)で
表す。
When X ≧ 0 and Y ≧ 0 and | X | ≧ | Y | ph = 0, when X ≧ 0 and Y ≧ 0 and | X | <| Y |, ph = 1 X <0 and Y ≧ 0 And when | X | <| Y | ph = 2 X <0 and Y ≧ 0 and | X | ≧ | Y | ph = 3 X <0 and Y <0 and | X | ≧ | Y | When ph = 4 X <0 and Y <0 and | X | <| Y | ph = 5 X ≧ 0 and Y <0 and | X | <| Y | ph = 6 X ≧ 0 and Y <0 When | X | ≧ | Y |, ph = 7. The function that performs this operation is represented by phase (X, Y).

【0038】ステップS4で被測定物M1 の移動距離
(変位量)Z(i)を積算演算する。被測定物M1 が近
づくときには干渉光C1 のエネルギーベクトルの位相p
hは正方向(反時計回り)に回転し、逆に遠ざかるとき
は負方向(時計回り)に回転する。そこで位相phが正
方向に1回転するごとにZ(i)を+1、逆に被測定物
1 が遠ざかり、位相phが負方向に1回転するごとに
Z(i)を−1することで移動距離が求められる。本実
施例においてはこれを、一つ前の位相ph0から次の位
相phに変化する際に図4のX軸の正側を矢印Eで示す
ように正方向に横切るとき+1、矢印F方向で示すよう
に負方向に横切るとき−1することで実現している。位
置ph0とphの組み合わせによるZ(i)の増減を演
算テーブルである表にしたものを図5に示す。この表を
参照することでZ(i)に対する増減を即座に決定でき
る。
In step S4, the moving distance (displacement amount) Z (i) of the object to be measured M 1 is integrated. When the DUT M 1 approaches, the phase p of the energy vector of the interference light C 1
h rotates in the positive direction (counterclockwise), and conversely rotates in the negative direction (clockwise) when moving away. Therefore, Z (i) is incremented by 1 each time the phase ph makes one rotation in the positive direction, and conversely, the object M 1 moves away, and Z (i) is decremented by 1 each time the phase ph makes one rotation in the negative direction. The distance traveled is required. In the present embodiment, this is +1 when the positive side of the X axis in FIG. 4 is crossed in the positive direction as indicated by arrow E when changing from the previous phase ph0 to the next phase ph in the direction of arrow F. As shown in the figure, it is realized by -1 when crossing in the negative direction. FIG. 5 shows a table, which is a calculation table, for increasing / decreasing Z (i) depending on the combination of the positions ph0 and ph. By referring to this table, increase / decrease with respect to Z (i) can be immediately determined.

【0039】ステップS5で信号の異常の検出を行な
う。異常原因は受光光量不足による異常と位相回転の異
常の二つの論理和で求める。受光光量は被測定物M1
表面状態で変化し、受光光量が不足すると信号のノイズ
分が相対的に大きくなり、正しく測定できなくなる。ま
た、位相回転の異常は位相の回転方向が判断できない場
合である。この原因としては被測定物M1 の移動速度が
速すぎて、1サンプル期間中に位相が180度以上回転
してしまう場合やノイズの混入によるものが考えられ
る。この場合も正しく測定できなくなる。
In step S5, a signal abnormality is detected. The cause of the abnormality is obtained by the logical sum of two, that is, the abnormality due to insufficient received light amount and the abnormality in phase rotation. The amount of received light changes depending on the surface condition of the object to be measured M 1. If the amount of received light is insufficient, the noise component of the signal becomes relatively large, and correct measurement cannot be performed. The abnormal phase rotation is when the direction of phase rotation cannot be determined. This may be because the moving speed of the object to be measured M 1 is too fast and the phase rotates 180 degrees or more during one sample period, or the noise is mixed. Also in this case, correct measurement cannot be performed.

【0040】まず受光光量不足は、オフセット分を差し
引いたX,Yの振動分を自乗平均した受光光量Powか
ら判断する。すなわち、 Pow>(X2 +Y21/2 が下限値PowLimitより小さい場合に異常と判断
する。この受光光量を算出する関数をPower(X,
Y)で表わす。
First, whether the received light amount is insufficient is judged from the received light amount Pow which is the root mean square of the X and Y vibration components after subtracting the offset component. That is, when Pow> (X 2 + Y 2 ) 1/2 is smaller than the lower limit value PowLimit, it is determined to be abnormal. A function for calculating the amount of received light is Power (X,
It is represented by Y).

【0041】一方、位相回転の異常は、正方向に位相が
回転したか、負方向に位相が回転したか判断がつかない
時に異常と判断する。すなわち一つ前の位相ph0から
次の位相phへの変化が、 ph0=0 → ph=4 ph0=1 → ph=5 ph0=2 → ph=6 ph0=3 → ph=7 ph0=4 → ph=0 ph0=5 → ph=1 ph0=6 → ph=2 ph0=7 → ph=3 のいずれかの場合には回転方向が不明となる。回転方向
不明を1として第2の演算テーブルである表にしたもの
を図6に示す。この表を参照することで異常である組み
合わせを即座に求めることができる。この表を引く動作
をerror(ph,ph0)と表わす。
On the other hand, the abnormal phase rotation is judged to be abnormal when it cannot be determined whether the phase has rotated in the positive direction or the negative direction. That is, the change from the previous phase ph0 to the next phase ph is as follows: ph0 = 0 → ph = 4 ph0 = 1 → ph = 5 ph0 = 2 → ph = 6 ph0 = 3 → ph = 7 ph0 = 4 → ph = 0 ph0 = 5 → ph = 1 ph0 = 6 → ph = 2 ph0 = 7 → ph = 3, the rotation direction becomes unknown. FIG. 6 shows a table as a second calculation table in which the unknown rotation direction is set to 1. By referring to this table, an abnormal combination can be immediately obtained. The operation of drawing this table is expressed as error (ph, ph0).

【0042】ステップS6で繰り返しの準備としてph
0の値の更新と、iの1増加を行なう。
In step S6, ph is prepared for repetition.
The value of 0 is updated and i is incremented by 1.

【0043】ステップS7で繰り返しの判断を行なう。
処理すべきデータがまだあるならA点まで戻ってステッ
プS2から繰り返し、処理すべきデータが終わりならこ
のルーチンを終了する。
In step S7, repeated determination is made.
If there is more data to be processed, the process returns to point A and repeats from step S2. If the data to be processed is over, this routine ends.

【0044】ルーチン終了時にはZ(0)〜Z(i)に
被測定物M1 の移動距離が格納され、err(0)〜e
rr(i−1)には異常検出情報がそれぞれ格納されて
いる。移動距離の単位は使用するレーザ光の波長の1/
2が単位となっている。波長が632.8nmのHeN
eレーザが使用されているならば、距離の単位をμmで
表わすには、Z(0)〜Z(i)を0.3164倍すれ
ばよい。
At the end of the routine, the moving distance of the object to be measured M 1 is stored in Z (0) to Z (i), and err (0) to e
The abnormality detection information is stored in rr (i-1). The unit of movement distance is 1 / wavelength of the laser light used.
2 is a unit. HeN with a wavelength of 632.8 nm
If the e-laser is used, Z (0) to Z (i) may be multiplied by 0.3164 to express the unit of distance in μm.

【0045】この測定結果は表示部9の画面に表示され
る。
The measurement result is displayed on the screen of the display unit 9.

【0046】本実施例によれば、被測定物によって反射
された測定光を円偏光にして直線偏光の参照光と重ね合
わせることで、被測定物の移動によってエネルギーベク
トルが回転する干渉光を作り、90度の位相差を有する
2つの偏光成分の光量をそれぞれ検出して前記エネルギ
ーベクトルの回転方向と回転数を求めることで、被測定
物の移動方向と移動量を測定するものである。
According to the present embodiment, the measuring light reflected by the object to be measured is converted into circularly polarized light and superposed on the linearly polarized reference light, thereby creating interference light whose energy vector is rotated by the movement of the object to be measured. , The amount of rotation of the energy vector and the number of rotations of the energy vector are detected to detect the amount of light of each of the two polarization components having a phase difference of 90 degrees, thereby measuring the moving direction and the moving amount of the measured object.

【0047】従って、被測定物が高速度で移動する場合
には、応答周波数の高い光検出素子や増幅器を用いるこ
とでこれに対応できる。従来例のように応答周波数の帯
域の狭い位相計を必要としないため、極低速で移動する
被測定物の変位の測定から例えば10m/secの高速
度で移動する被測定物の変位の測定まで、極めて広範囲
に高精度で測定できるという長所を有する。
Therefore, when the object to be measured moves at a high speed, this can be dealt with by using a photodetector or an amplifier having a high response frequency. Since a phase meter having a narrow response frequency band is not required unlike the conventional example, from the measurement of the displacement of the measured object moving at an extremely low speed to the measurement of the displacement of the measured object moving at a high speed of 10 m / sec, for example. , It has the advantage that it can measure extremely wide range with high accuracy.

【0048】また、使用するレーザ光の波長の1/2の
単位まで測定可能であり、測定スポットサイズも極めて
小さくできるため、微小物体の微小な変位を測定するの
に好適である。
Further, since it is possible to measure up to a unit of 1/2 of the wavelength of the laser light used and the measurement spot size can be made extremely small, it is suitable for measuring a minute displacement of a minute object.

【0049】さらに、被測定物に照射するだけで非接触
であるから、被測定物に与える影響が少ないという利点
もあり、加えて、従来例のように高価な周波数シフタや
位相計を必要としないために、変位計の低価格化に大き
く貢献できる。
Furthermore, since the object to be measured is not contacted by irradiating the object to be measured, there is an advantage that it has little influence on the object to be measured. In addition, an expensive frequency shifter or phase meter as in the conventional example is required. Since it does not, it can greatly contribute to the price reduction of the displacement gauge.

【0050】図7は本実施例の一変形例を示すもので、
これは、HeNeレーザ1から発せられたレーザ光L1
をビームスプリッタ11によって2分し、一方をモニタ
用のテレビカメラ12に導入し、被測定物M1 に対する
測定光の位置すなわち測定スポットの位置を画面13に
よってモニタするとともに、アナログデジタル変換器8
8の替わりに、第1、第2の検出信号S1 ,T1 を2値
にデジタル変換するための2値化回路14,15と、パ
ルス変換器16と、16ビットのアップダウンカウンタ
17と、デジタルアナログ変換器18を用いたものであ
る。
FIG. 7 shows a modification of this embodiment.
This is the laser beam L 1 emitted from the HeNe laser 1.
Is split into two by a beam splitter 11, one of which is introduced into a television camera 12 for monitoring, the position of the measurement light with respect to the object M 1 to be measured, that is, the position of the measurement spot is monitored by a screen 13, and the analog-digital converter 8
Instead of 8, binarization circuits 14 and 15 for digitally converting the first and second detection signals S 1 and T 1 into two values, a pulse converter 16, and a 16-bit up / down counter 17. The digital-analog converter 18 is used.

【0051】被測定物M1 が図8の(a)に示すように
移動すると、干渉光C1 の2つの偏光成分に基づく第
1、第2の検出信号S1 ,T1 (図8の(b),(c)
に示す)がそれぞれ2値化回路14,15においてデジ
タル変換されて図8の(d),(e)に示すパルス波形
となる。2値化の閾値は可変抵抗器によって可変に設定
されており、これによって被測定物M1 の反射光の光量
変化に起因するオフセット電圧の変化に対応する。
[0051] When the DUT M 1 is moved as shown in (a) of FIG. 8, the first based on two polarization components of the interference light C 1, the second detection signal S 1, T 1 (FIG. 8 (B), (c)
(Shown in FIG. 8) are digitally converted in the binarization circuits 14 and 15, respectively, to obtain pulse waveforms shown in (d) and (e) of FIG. The threshold for binarization is variably set by the variable resistor, and this corresponds to the change in the offset voltage due to the change in the light amount of the reflected light of the device under test M 1 .

【0052】また、極低速状態(DC)までの測定はで
きなくなるが、反射光の光量変化があってもAC結合と
すれば閾値を0Vに固定したままで対応できる。
Although it is impossible to measure up to an extremely low speed (DC), even if there is a change in the amount of reflected light, AC coupling can be used with the threshold fixed at 0V.

【0053】2値化回路14,15の出力はアップダウ
ンカウンタ17によってそれぞれ図8の(f),(g)
に示すアップパルスとダウンパルスに変換される。アッ
プダウンカウンタ17には一般の2相式ロータリーエン
コーダ用の回路をそのまま使うことができる。
The outputs of the binarization circuits 14 and 15 are output by the up / down counter 17 from (f) and (g) of FIG.
It is converted into an up pulse and a down pulse shown in. A circuit for a general two-phase rotary encoder can be used as it is for the up / down counter 17.

【0054】アップダウンカウンタ17の出力をデジタ
ルアナログ変換することで図8の(h)に示すグラフが
得られる。本変形例は信号処理が簡略で測定結果を汎用
のペンレコーダやオシロスコープ等によってリアルタイ
ムで得ることができるという利点を有する。
By converting the output of the up / down counter 17 from digital to analog, the graph shown in (h) of FIG. 8 is obtained. This modification has the advantage that the signal processing is simple and the measurement result can be obtained in real time by a general-purpose pen recorder, oscilloscope, or the like.

【0055】[0055]

【発明の効果】本発明は上述のとおり構成されているの
で、次に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0056】微小な物体の変位を広い速度範囲で高精度
に検出できるうえに、高価な計測部品を必要とせず、従
って、安価である変位計を実現できる。
The displacement of a minute object can be detected with high precision in a wide speed range, and expensive measuring parts are not required. Therefore, an inexpensive displacement meter can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例による変位計を説明する説明図であ
る。
FIG. 1 is an explanatory diagram illustrating a displacement meter according to an embodiment.

【図2】被測定物の位置と2つの検出信号の変化をグラ
フで示すものである。
FIG. 2 is a graph showing a position of an object to be measured and changes in two detection signals.

【図3】図1の変位計の演算手順を示すフローチャート
である。
FIG. 3 is a flowchart showing a calculation procedure of the displacement meter of FIG.

【図4】光検出部の出力の位相を説明する図である。FIG. 4 is a diagram illustrating a phase of an output of a light detection unit.

【図5】光検出部の出力の位相に基づいて被測定物の変
位量を演算するための表を示す。
FIG. 5 shows a table for calculating the displacement amount of the object to be measured based on the phase of the output of the light detection unit.

【図6】変位計の出力の位相に基づいてエラー信号を発
生するための表を示す。
FIG. 6 shows a table for generating an error signal based on the phase of the displacement gauge output.

【図7】一変形例による変位計を説明する説明図であ
る。
FIG. 7 is an explanatory diagram illustrating a displacement meter according to a modification.

【図8】被測定物の位置と2つの検出信号の変化とこれ
らを2値化したものと、アップダウンカウンタの出力と
測定結果をグラフで示すものである。
FIG. 8 is a graph showing a position of an object to be measured, changes in two detection signals, binarization of these, output of an up-down counter and measurement results.

【図9】従来例による変位計を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a displacement meter according to a conventional example.

【符号の説明】[Explanation of symbols]

1 HeNeレーザ 3 ビームスプリッタ 4 1/8波長板 5 1/4波長板 6,7 対物レンズ 8 光検出部 9 表示部 12 テレビカメラ 81 1/2波長板 83 光検出部ビームスプリッタ 1 HeNe laser 3 Beam splitter 4 1/8 wavelength plate 5 1/4 wavelength plate 6,7 Objective lens 8 Photodetector 9 Display 12 TV camera 81 1/2 wavelength plate 83 Photodetector beam splitter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源から発生された可干渉光を偏光光束
に変換する偏光手段と、前記偏光光束を参照光と測定光
に分割し、参照面と被測定物の表面によってそれぞれ反
射させたうえで重ね合わせて干渉光を得る干渉手段と、
前記参照光の光路に配設された1/4波長移相子と、前
記測定光の光路に配設された1/8波長移相子と、前記
干渉光を2つの偏光成分に分割して両者の光量を個別に
検出する光量検出手段と、該光量検出手段の出力に基づ
いて前記被測定物の変位量を演算する演算手段を有する
変位計。
1. A polarizing means for converting coherent light generated from a light source into a polarized light beam, and dividing the polarized light beam into a reference light and a measurement light, which are respectively reflected by the reference surface and the surface of the object to be measured. Interference means to obtain the interference light by overlapping with
The 1/4 wavelength phase shifter arranged in the optical path of the reference light, the 1/8 wavelength phase shifter arranged in the optical path of the measurement light, and the interference light are divided into two polarization components. A displacement meter having a light amount detecting means for individually detecting the light amounts of both and a calculating means for calculating the displacement amount of the object to be measured based on the output of the light amount detecting means.
【請求項2】 測定光と参照光をそれぞれ被測定物の表
面と参照面に集光させる集光手段が設けられていること
を特徴とする請求項1記載の変位計。
2. The displacement meter according to claim 1, further comprising a condensing unit that condenses the measurement light and the reference light on the surface of the object to be measured and the reference surface, respectively.
【請求項3】 光量検出手段の受光面が集光手段のデ・
フォーカス位置に配設されていることを特徴とする請求
項2記載の変位計。
3. The light receiving surface of the light amount detecting means is a defocusing means.
The displacement meter according to claim 2, wherein the displacement meter is arranged at a focus position.
【請求項4】 干渉光の光路に1/2波長移相子が配設
されていることを特徴とする請求項1ないし3いずれか
1項記載の変位計。
4. The displacement meter according to claim 1, wherein a 1/2 wavelength phase shifter is arranged in the optical path of the interference light.
【請求項5】 演算手段が、干渉光の2つの偏光成分の
それぞれの光量変化から前記干渉光のエネルギーベクト
ルの回転を検知する演算テーブルを有することを特徴と
する請求項1ないし4いずれか1項記載の変位計。
5. The calculation means has a calculation table for detecting the rotation of the energy vector of the interference light based on changes in the light amounts of the two polarization components of the interference light. Displacement meter described in paragraph.
【請求項6】 演算手段が、干渉光の2つの偏光成分の
それぞれの光量変化から干渉光の異常を検知する第2の
演算テーブルを有することを特徴とする請求項1ないし
5いずれか1項記載の変位計。
6. The calculation means has a second calculation table for detecting an abnormality of the interference light based on a change in the amount of light of each of the two polarization components of the interference light. Displacement meter described.
JP17144495A 1995-06-14 1995-06-14 Displacement gage Pending JPH08338707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17144495A JPH08338707A (en) 1995-06-14 1995-06-14 Displacement gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17144495A JPH08338707A (en) 1995-06-14 1995-06-14 Displacement gage

Publications (1)

Publication Number Publication Date
JPH08338707A true JPH08338707A (en) 1996-12-24

Family

ID=15923232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17144495A Pending JPH08338707A (en) 1995-06-14 1995-06-14 Displacement gage

Country Status (1)

Country Link
JP (1) JPH08338707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212467A (en) * 2007-03-14 2007-08-23 Topcon Corp System and method for measuring optical image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212467A (en) * 2007-03-14 2007-08-23 Topcon Corp System and method for measuring optical image

Similar Documents

Publication Publication Date Title
Rembe et al. Measuring MEMS in motion by laser Doppler vibrometry
US5737085A (en) Precision optical displacement measurement system
DK155250B (en) METHOD AND APPARATUS FOR MEASURING DISTANCE VARIATIONS
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
GB2266366A (en) Light beam angle detection
JPH08338707A (en) Displacement gage
US6295131B1 (en) Interference detecting system for use in interferometer
JP3108866B2 (en) Laser vibration displacement measuring device
JP3235368B2 (en) Laser Doppler velocity measuring device
WO1999005471A1 (en) Length measuring instrument
Li et al. Simulation on signal processing of focusing and leveling measurement system
Usuda et al. Development of laser interferometer for a sine-approximation method
JP2001343222A (en) Method and apparatus for measuring three-dimensional shape
WO2002063237A2 (en) Interferometer
JP4580579B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP3350113B2 (en) Incident light amount monitor circuit for laser length measuring machine
JP2866784B2 (en) Vibration detection method
JPH0545140A (en) Method and device for measuring radius of curvature
JP2884117B2 (en) Dimension measuring device
JPS6199805A (en) Step measuring instrument
JPS58225301A (en) Optical type displacement measuring apparatus
CN117805431A (en) Laser Doppler instantaneous rotating speed measuring device and method
JPH07270183A (en) Fixed point-detecting apparatus
CN115325932A (en) Equivalent testing device for detection error caused by optical power and contrast change of heterodyne laser interferometer
JPS60100006A (en) Measuring device for surface by optical heterodyne interference method