JPH08338345A - Combustion device for two cycle gasoline engine - Google Patents

Combustion device for two cycle gasoline engine

Info

Publication number
JPH08338345A
JPH08338345A JP7167920A JP16792095A JPH08338345A JP H08338345 A JPH08338345 A JP H08338345A JP 7167920 A JP7167920 A JP 7167920A JP 16792095 A JP16792095 A JP 16792095A JP H08338345 A JPH08338345 A JP H08338345A
Authority
JP
Japan
Prior art keywords
air
valve
fuel
fuel mixture
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7167920A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kawahara
芳隆 河原
Kazunori Kudo
和憲 工藤
Masaaki Nakachi
正明 中地
Shunichi Mori
俊一 森
Hiroshi Nakagawa
洋 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7167920A priority Critical patent/JPH08338345A/en
Publication of JPH08338345A publication Critical patent/JPH08338345A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE: To prevent the blowby flow of air-fuel mixture, improve combustion, reduce discharge of unburnt hydrocarbon, and thereby enhance a fuel consumption efficiency. CONSTITUTION: A cylinder head is equipped with an air-fuel mixture chamber 45 where an air-fuel mixture is formed out of fuel fed from an electromagnetic fuel valve 30, and of compressed air from the inside of its own cylinder. In the engine where an air-fuel mixture valve (poppet valve) 43 is disposed at a communication part with the air-fuel mixture chamber and a combustion chamber 7, and an air-fuel mixture formed at the air-fuel mixture chamber is injected into the combustion chamber, it is ignited so as to be burnt, and air is compressed in a pump chamber 12 which is formed while the stepped cylinder 1 of its own engine and its stepped piston 2 are being combined. And air pressure is so constituted as to act on the diaphragm 42 of a pressure type air-fuel mixture injection valve 40 so as to allow the poppet valve 43 to be driven.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2サイクルガソリンエン
ジンの燃焼装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-cycle gasoline engine combustion device.

【0002】[0002]

【従来の技術】図4は小形高速2サイクルガソリンエン
ジンの燃焼装置の従来例の構成説明図で、図5は図4に
示したエンジンにおけるシリンダヘッド回りの縦断面図
である。次に図4,5を参照して従来例の構成と作用に
ついて説明する。エンジン上部のシリンダヘッド104
には燃焼室104aが形成され、その上部壁面には電磁
駆動式の混合気弁107及び点火プラグ106が配設さ
れている。なお、前記混合気弁107のポペット弁10
8の弁傘の上部には混合気室104bが形成され、該混
合気室104bは燃料通路104dにより、前記混合気
弁107に近接してシリンダヘッド104に配設されて
いる電磁燃料弁105に連通されている。
2. Description of the Related Art FIG. 4 is a structural explanatory view of a conventional example of a combustion apparatus for a small high speed two-cycle gasoline engine, and FIG. 5 is a vertical sectional view around a cylinder head in the engine shown in FIG. Next, the configuration and operation of the conventional example will be described with reference to FIGS. Cylinder head 104 on top of engine
A combustion chamber 104a is formed therein, and an electromagnetically driven air-fuel mixture valve 107 and an ignition plug 106 are disposed on the upper wall surface thereof. The poppet valve 10 of the mixture valve 107
The air-fuel mixture chamber 104b is formed in the upper part of the valve umbrella of No. 8, and the air-fuel mixture chamber 104b is connected to the electromagnetic fuel valve 105 arranged in the cylinder head 104 in the vicinity of the air-fuel mixture valve 107 by the fuel passage 104d. It is in communication.

【0003】この燃焼装置は気化器を使用しない装置で
あって、電磁燃料弁105及び混合気弁107をクラン
ク軸110の回転と同期させて電気的に制御し、自シリ
ンダ101内の圧縮空気の一部を混合気室104bに溜
め、別経路で同じく混合気室104bに供給された燃料
噴霧と共に、燃焼室104a内に直接噴射する。
This combustion device is a device that does not use a carburetor, and electrically controls the electromagnetic fuel valve 105 and the air-fuel mixture valve 107 in synchronization with the rotation of the crankshaft 110 to generate compressed air in the cylinder 101 itself. A part of the mixture is stored in the air-fuel mixture chamber 104b and is directly injected into the combustion chamber 104a together with the fuel spray supplied to the air-fuel mixture chamber 104b through another route.

【0004】燃料は燃料タンク112から燃料供給ポン
プ113により燃料圧レギュレータ114に導かれ、該
レギュレータにより約5kgf/cm2 に調圧されてか
ら電磁燃料弁105に導入される。電磁燃料弁105は
コントローラ116により開閉時期及び噴射量が制御さ
れる電磁制御弁で、クランク角信号センサ118によっ
て検出されるクランク軸110の回転角度信号と同期し
て混合気室104bに燃料を供給する。供給時期はおよ
そ混合気弁107の閉止中である。
Fuel is introduced from a fuel tank 112 to a fuel pressure regulator 114 by a fuel supply pump 113, regulated to about 5 kgf / cm 2 by the regulator, and then introduced into an electromagnetic fuel valve 105. The electromagnetic fuel valve 105 is an electromagnetic control valve whose opening / closing timing and injection amount are controlled by the controller 116, and supplies fuel to the air-fuel mixture chamber 104b in synchronization with the rotation angle signal of the crankshaft 110 detected by the crank angle signal sensor 118. To do. At the time of supply, the mixture valve 107 is being closed.

【0005】図6の(a)に図4,5で示したエンジン
の掃・排気ポートの開閉時期線図、(b)にポペット弁
及び電磁燃料弁の制御時期線図の例を示した。混合気弁
107もクランク角信号センサ118及びコントローラ
116により開閉が制御される電磁弁で、およそ排気作
用の終り頃から圧縮作用の初め頃までにポペット弁10
8を開弁し、およそ圧縮作用の中間頃から終わり頃まで
にポペット弁108を閉弁する。ポペット弁108開弁
中の前半期に混合気を混合気室104bから燃焼室10
4aに噴射し、後半期に自シリンダ101内から圧縮さ
れた空気を混合気室104b内に圧送し蓄圧している。
FIG. 6A shows an example of the opening / closing timing diagram of the engine exhaust / exhaust ports shown in FIGS. 4 and 5, and FIG. 6B shows an example of the control timing diagram of the poppet valve and the electromagnetic fuel valve. The air-fuel mixture valve 107 is also a solenoid valve whose opening and closing are controlled by the crank angle signal sensor 118 and the controller 116, and the poppet valve 10 is operated from the end of the exhaust action to the beginning of the compression action.
8 is opened, and the poppet valve 108 is closed from about the middle of compression operation to the end thereof. During the first half of the period when the poppet valve 108 is opened, the air-fuel mixture is supplied from the air-fuel mixture chamber 104b to the combustion chamber 10.
4a, and the compressed air from the cylinder 101 in the latter half of the period is pumped into the air-fuel mixture chamber 104b to accumulate the pressure.

【0006】前述のように前のサイクルのポペット弁開
弁中の後半期に混合気室104b内に蓄圧された圧力数
kgf/cm2 の空気中に電磁燃料弁105から燃料を
供給し、作動サイクルの圧縮作用の初期の頃に混合気弁
107の摺動ピン107aを介してポペット弁108を
開弁し、混合気室104bから燃焼室104aに混合気
を噴射し、ピストン103が上死点近傍に達した時期に
点火プラグ106の火花放電により混合気に点火し燃焼
させる装置であり、気化器を保有せず、自シリンダの圧
縮空気を利用することにより、均斉な混合気生成の促進
を図っている。
As described above, the fuel is supplied from the electromagnetic fuel valve 105 into the air having a pressure of several kgf / cm 2 accumulated in the air-fuel mixture chamber 104b in the latter half of the opening period of the poppet valve in the previous cycle to operate. At the beginning of the compression action of the cycle, the poppet valve 108 is opened via the sliding pin 107a of the mixture valve 107, the mixture is injected from the mixture chamber 104b to the combustion chamber 104a, and the piston 103 is at the top dead center. It is a device that ignites and burns the air-fuel mixture by the spark discharge of the spark plug 106 when it reaches the vicinity, and promotes the uniform air-fuel mixture generation by utilizing the compressed air of its own cylinder without having a vaporizer. I am trying.

【0007】[0007]

【発明が解決しようとする課題】2サイクルガソリンエ
ンジンには掃気作用と排気作用のオーバーラップに起因
する混合気の吹き抜けという2サイクル方式に固有の欠
点があり、未燃炭化水素の排出、燃料消費効率の低下な
どの要因となっている。従来例として説明した2サイク
ルガソリンエンジンの燃焼装置は前記した問題点の解決
を目的として自己圧縮空気アシスト燃焼方式を採用して
いる。
The two-cycle gasoline engine has a drawback inherent to the two-cycle system in which the air-fuel mixture is blown through due to the overlap of the scavenging action and the exhaust action. This is a factor of reduced efficiency. The combustion apparatus for a two-cycle gasoline engine described as a conventional example employs a self-compressed air assisted combustion system for the purpose of solving the above-mentioned problems.

【0008】該燃焼方式を採用したことにより、掃気の
吹き抜けの防止や、安定した良好な燃焼が実現され、未
燃炭化水素の排出の低減や燃料消費効率の向上などを図
ることができた。しかし、前記燃焼装置を構成するうえ
で、燃料弁の駆動にも、混合気弁の駆動にも電磁力を利
用する方式を採用しソレノイドが使用されている。従っ
て小形・軽量で十分な高速応答性を有し且つコストの低
廉なソレノイドとその制御装置及びそれらの電源を必要
とすることが実用上、特に小形高速エンジンへの適用上
での課題とされている。
By adopting the combustion method, it is possible to prevent blow-through of scavenging gas, realize stable and good combustion, reduce emission of unburned hydrocarbons, and improve fuel consumption efficiency. However, in constructing the combustion apparatus, a solenoid is used by adopting a method that uses electromagnetic force to drive both the fuel valve and the mixture valve. Therefore, the need for a solenoid that is small and lightweight, has sufficient high-speed responsiveness, and has low cost, its control device, and their power supply is a practical issue, especially when it is applied to a small high-speed engine. There is.

【0009】本発明の目的は前記問題点を解決し、掃気
の吹き抜けに起因する2サイクルエンジン固有の欠点で
ある未燃炭化水素の排出や燃費効率の低下などを改善す
ると共に、シリンダヘッドの混合気室からシリンダ内に
混合気を噴射する混合気噴射弁を自シリンダで発生させ
た圧縮空気で駆動する構成とすることによりエンジンの
小形、軽量化とコストの低減を実現し得る2サイクルガ
ソリンエンジンの燃焼装置を提供するにある。
The object of the present invention is to solve the above-mentioned problems and to improve the discharge of unburned hydrocarbons and the reduction of fuel efficiency, which are the drawbacks peculiar to the two-cycle engine due to the blow-by of the scavenging air, and to mix the cylinder heads. A two-stroke gasoline engine that can realize a compact, lightweight engine and cost reduction by configuring a mixture injection valve that injects an air-fuel mixture from an air chamber into a cylinder by using compressed air generated in the cylinder itself. To provide a combustion device of.

【0010】[0010]

【課題を解決するための手段】第1発明の2サイクルガ
ソリンエンジンの燃焼装置は、シリンダヘッド2に電磁
燃料弁30から供給される燃料と自シリンダ1内からの
圧縮空気によって混合気を生成する混合気室45を備
え、該混合気室とシリンダ側の燃焼室7との連通部に該
連通部を開閉する混合気弁43を配設し、前記混合気室
で生成された混合気を前記燃焼室に直接噴射し、点火プ
ラグ19により点火し燃焼させる2サイクルガソリンエ
ンジンにおいて、前記混合気弁を燃焼室側に開弁するポ
ペット弁として形成すると共に、シリンダ内に吸入され
ピストン3の往復動によって発生する圧縮空気の圧力が
作用するダイヤフラム42と、前記混合気弁と、混合気
弁を閉止状態に保持する弁ばね44とが組込まれた圧力
式混合気噴射弁40をシリンダヘッドに装着し、前記混
合気弁を空気圧が作用するダイヤフラムによって駆動す
ることを特徴とする。
A two-stroke gasoline engine combustion apparatus according to the first aspect of the present invention produces a mixture by fuel supplied from an electromagnetic fuel valve 30 to a cylinder head 2 and compressed air from the cylinder 1 itself. An air-fuel mixture chamber 45 is provided, and an air-fuel mixture valve 43 for opening and closing the air-fuel mixture chamber is provided in a communication portion between the air-fuel mixture chamber and the combustion chamber 7 on the cylinder side. In a two-stroke gasoline engine in which fuel is directly injected into a combustion chamber and ignited by a spark plug 19 to burn, the mixture valve is formed as a poppet valve that opens to the combustion chamber side, and the piston 3 is reciprocated by being sucked into the cylinder. A pressure type mixture injection valve 40 in which a diaphragm 42 on which the pressure of compressed air generated by the mixture acts, the mixture valve, and a valve spring 44 for holding the mixture valve in a closed state are incorporated. Attached to the cylinder head, the air pressure the mixture valve and drives the diaphragm acting.

【0011】第2発明の2サイクルガソリンエンジンの
燃焼装置は、前記圧力式混合気噴射弁の駆動用の圧縮空
気をダイヤフラム42の一方の側に導く加圧空気連通路
16中に、逆止弁15及び規定以上の圧力が作用した場
合に作動する高圧空気逃し弁17を設けてなることを特
徴とする。
In the combustion apparatus of the two-stroke gasoline engine of the second invention, the check valve is provided in the pressurized air communication passage 16 for guiding the compressed air for driving the pressure type mixture injection valve to one side of the diaphragm 42. It is characterized in that a high pressure air relief valve 17 is provided which is activated when a pressure of 15 or more or more than a prescribed pressure is applied.

【0012】第3発明の2サイクルガソリンエンジンの
燃焼装置は、前記ピストン3の下部に大径部3bを設
け、該ピストンの大径部と前記シリンダ1の下部に形成
した大径部1bとの間に前記圧縮空気を発生するポンプ
室12を形成してなることを特徴とする。
In the combustion apparatus for a two-cycle gasoline engine of the third invention, a large diameter portion 3b is provided in the lower portion of the piston 3, and the large diameter portion of the piston and the large diameter portion 1b formed in the lower portion of the cylinder 1 are provided. A pump chamber 12 for generating the compressed air is formed between them.

【0013】[0013]

【作用】次に前記構成による作用について、その作動の
タイミングを示す図3を参照して説明する。燃焼室7内
での燃焼ガスの圧力の圧力によってピストン3が下降
し、排気ポート8が開孔すると燃焼室7内の燃焼ガスが
自身のガス圧で排気ポート8から噴き出し、次いで掃気
ポート9が開孔する時点には、ピストン3の下降時にそ
の背面によって圧縮されたクランクケース6内の空気が
主掃気通路(図示されていない)を介して掃気ポート9
に導かれ、該掃気ポートから燃焼室7内に流入し、燃焼
室7内の残留ガスを排気ポート8側へ掃出する。
Next, the operation of the above configuration will be described with reference to FIG. 3 showing the timing of the operation. When the piston 3 descends due to the pressure of the combustion gas in the combustion chamber 7 and the exhaust port 8 opens, the combustion gas in the combustion chamber 7 blows out from the exhaust port 8 with its own gas pressure, and then the scavenging port 9 At the time of opening, the air in the crankcase 6 compressed by the back surface of the piston 3 when the piston 3 descends is transferred to the scavenging port 9 through the main scavenging passage (not shown).
Is introduced into the combustion chamber 7 through the scavenging port and the residual gas in the combustion chamber 7 is scavenged to the exhaust port 8 side.

【0014】ピストン3が下死点(BDC)を過ぎ上昇
の行程に移行した初めのころにポペット弁43を開弁し
混合気室45から燃焼室7へ前のサイクルで形成された
混合気を噴射する。ポペット弁43は、段付きシリンダ
と段付きピストンの組合せで形成されたポンプ室12で
ピストン3の変位により加圧された空気を、加圧空気連
通路16を介して圧力式混合気噴射弁40の圧力作動室
41に導入し、その空気圧を利用してダイヤフラム42
を押し下げることによって開弁され、弁ばね44の付勢
力によって常時閉弁状態に保持されている。
At the beginning of when the piston 3 has passed the bottom dead center (BDC) and moved to the upward stroke, the poppet valve 43 is opened to transfer the mixture formed from the mixture chamber 45 to the combustion chamber 7 in the previous cycle. To jet. The poppet valve 43 supplies air pressurized by displacement of the piston 3 in a pump chamber 12 formed by a combination of a stepped cylinder and a stepped piston, through a pressurized air communication passage 16 to a pressure type mixture injection valve 40. Of the diaphragm 42 using the air pressure introduced into the pressure working chamber 41 of
The valve is opened by pushing down, and is normally kept closed by the urging force of the valve spring 44.

【0015】前記加圧空気連通路16の管路の途中には
高圧空気逃し弁17が介装され、加圧空気連通路16内
の空気圧が設定圧力を超えると開弁して高圧空気を大気
中に放出する。これによりダイヤフラム42に作用する
空気圧及びシリンダ内の圧力とポペット弁の作動状況は
図3に示すようになる。
A high pressure air relief valve 17 is provided in the middle of the pressurized air communication passage 16 and is opened when the air pressure in the pressurized air communication passage 16 exceeds a set pressure to release the high pressure air to the atmosphere. Release inside. As a result, the air pressure acting on the diaphragm 42, the pressure in the cylinder, and the operating condition of the poppet valve are as shown in FIG.

【0016】その後ピストン3が更に上昇して掃気ポー
ト9が閉じられ、続いて排気ポート8も閉じられて圧縮
の作用に入る。圧縮の作用の進行に伴いシリンダ側から
圧縮された空気と混合気との混合ガスが混合気室45内
に蓄圧されてからポペット弁43が閉じられ、封入され
た圧縮空気(ガス)は次のサイクルの圧縮初めのころま
で混合気室45内に溜め置かれる。なお、この間の所定
の時期に電磁燃料弁30から混合気室45内に所定量の
燃料を注入して混合気を形成させておく。
Thereafter, the piston 3 is further raised to close the scavenging port 9, and subsequently the exhaust port 8 is also closed to start the action of compression. As the action of compression progresses, a mixed gas of air and a mixture compressed from the cylinder side is accumulated in the mixture chamber 45, and then the poppet valve 43 is closed. It is stored in the air-fuel mixture chamber 45 until the beginning of compression in the cycle. In addition, at a predetermined time during this period, a predetermined amount of fuel is injected from the electromagnetic fuel valve 30 into the air-fuel mixture chamber 45 to form the air-fuel mixture.

【0017】ピストン3が更に上昇して圧縮作用の終り
の上死点(TDC)近くに達した時期に、シリンダヘッ
ド2に装着した点火プラグ19での火花放電により燃焼
室7内の混合気に点火すると、放電した電極部に火炎核
が生成され、そこから火炎が伝播して燃焼が進行する。
At the time when the piston 3 further rises and reaches near the top dead center (TDC) at the end of the compression action, a spark discharge from the spark plug 19 mounted on the cylinder head 2 causes a mixture gas in the combustion chamber 7. When ignited, a flame nucleus is generated in the discharged electrode portion, and the flame propagates from there to progress combustion.

【0018】開弁時の弁の応答性を考慮して、ポペット
弁43は掃気ポート9、排気ポート8が閉じられる直前
のころに開弁され、混合気室45内から燃焼室7へ混合
気を吹き込むので、燃料の排気ポートへの吹き抜けが防
止される。また、混合気室45には自シリンダからの圧
縮空気が貯め置かれているので、ポペット弁43の開弁
時には空気アシスト効果によって良好な燃料噴霧が得ら
れ安定した良好な燃焼となる。
In consideration of the responsiveness of the valve when the valve is opened, the poppet valve 43 is opened immediately before the scavenging port 9 and the exhaust port 8 are closed, and the mixture gas from the mixture chamber 45 to the combustion chamber 7 is mixed. As a result, the fuel is prevented from blowing through to the exhaust port. Further, since the compressed air from the own cylinder is stored in the air-fuel mixture chamber 45, when the poppet valve 43 is opened, good fuel spray is obtained by the air assist effect, and stable and good combustion is achieved.

【0019】燃焼ガスの膨張によってピストン3はシリ
ンダ1内を下死点(BDC)に向って下降を始め、ピス
トン3の下降に伴って排気ポート8が開孔して燃焼ガス
が該ポートから噴き出し、続いて掃気ポート9が開孔し
て残留ガスを排気ポート8から掃出する。
The expansion of the combustion gas causes the piston 3 to descend in the cylinder 1 toward the bottom dead center (BDC), and as the piston 3 descends, the exhaust port 8 is opened and the combustion gas is ejected from the port. Then, the scavenging port 9 is opened and residual gas is scavenged from the exhaust port 8.

【0020】[0020]

【実施例】図1は第1ないし第3発明の実施例に係る小
形高速2サイクルガソリンエンジンの縦断面図で、図2
は図1に示したエンジンの燃焼装置の構成説明図であ
る。次に図1,2を参照して実施例の構成について説明
する。
1 is a vertical sectional view of a small high speed two-cycle gasoline engine according to an embodiment of the first to third inventions.
FIG. 2 is a configuration explanatory view of a combustion device for the engine shown in FIG. 1. Next, the configuration of the embodiment will be described with reference to FIGS.

【0021】図1において、1はシリンダ、1aは該シ
リンダの上部に形成された小径部、1bは該シリンダの
下部に形成された大径部、2はシリンダヘッド、3は小
径部3aと大径部3bよりなる段付きのピストンで、前
記小径部1aと大径部1bよりなる段付き形状のシリン
ダ1に摺動自在に嵌入される。なお、ピストン3の小径
部3aの上部にはピストンリング3cが嵌め込まれ、大
径部3bにはシールリング3dが嵌め込まれている。
In FIG. 1, 1 is a cylinder, 1a is a small diameter portion formed on the upper portion of the cylinder, 1b is a large diameter portion formed on the lower portion of the cylinder, 2 is a cylinder head, and 3 is a small diameter portion 3a. A stepped piston having a diameter portion 3b is slidably fitted into the stepped cylinder 1 having the small diameter portion 1a and the large diameter portion 1b. A piston ring 3c is fitted on the small diameter portion 3a of the piston 3, and a seal ring 3d is fitted on the large diameter portion 3b.

【0022】ピストン3の小径部3aの頂面とシリンダ
1の小径部1aとシリンダヘッド2の下面によって燃焼
室7が形成され、ピストン3の小径部3aとシリンダ1
の大径部1bとによってポンプ室12が形成される。4
はコネクティングロッドで、5はクランク軸、6はクラ
ンクケース、7は前記した燃焼室である。8はシリンダ
1の小径部1aに穿設された排気ポートで、9は掃気ポ
ートであり、10はクランクケース6に設けられた吸気
口で逆止弁11を介して大気と連通されている。該逆止
弁11はクランクケース6側に向う空気の流れのみを許
容するように構成され、クランクケース6は主掃気通路
(図示せず)を介して前記掃気ポート9に連通されてい
る。
A combustion chamber 7 is formed by the top surface of the small diameter portion 3a of the piston 3, the small diameter portion 1a of the cylinder 1 and the lower surface of the cylinder head 2, and the small diameter portion 3a of the piston 3 and the cylinder 1 are formed.
The pump chamber 12 is formed by the large-diameter portion 1b. Four
Is a connecting rod, 5 is a crankshaft, 6 is a crankcase, and 7 is the above-mentioned combustion chamber. Reference numeral 8 is an exhaust port formed in the small diameter portion 1a of the cylinder 1, 9 is a scavenging port, and 10 is an intake port provided in the crankcase 6, which communicates with the atmosphere via a check valve 11. The check valve 11 is configured to allow only the flow of air toward the crankcase 6 side, and the crankcase 6 is connected to the scavenging port 9 via a main scavenging passage (not shown).

【0023】13はポンプ室12内にエヤクリーナ18
を介して空気を導入するための空気流入路で、逆止弁1
4を介してポンプ室12に連通され、該逆止弁14は空
気流入路13側からポンプ室12に向う空気の流れのみ
を許容するように構成されている。
13 is an air cleaner 18 in the pump chamber 12.
An air inflow path for introducing air through the check valve 1
The check valve 14 is communicated with the pump chamber 12 via 4, and the check valve 14 is configured to allow only the flow of air from the air inflow passage 13 side toward the pump chamber 12.

【0024】ポンプ室12の出口側には逆止弁15を介
して加圧空気連通路16が接続され、ポンプ室12と圧
力式混合気噴射弁40の圧力作動室41を連通してい
る。前記逆止弁15はポンプ室12側から加圧空気連通
路16に向う空気の流れのみを許容するように構成され
ている。17は加圧空気連通管16の管路の途中に配設
された高圧空気逃し弁で、設定値以上の空気圧が作用す
ると開弁するように構成されている。
A pressurized air communication passage 16 is connected to the outlet side of the pump chamber 12 via a check valve 15 to communicate the pump chamber 12 and the pressure working chamber 41 of the pressure type mixture injection valve 40. The check valve 15 is configured to allow only the flow of air from the pump chamber 12 side toward the pressurized air communication passage 16. Reference numeral 17 is a high-pressure air relief valve disposed in the middle of the conduit of the pressurized air communication pipe 16, and is configured to open when an air pressure above a set value acts.

【0025】30はシリンダヘッド2に配設される電磁
燃料弁で、該燃料弁に供給する燃料は、燃料タンク34
から燃料供給ポンプ33によって燃料圧レギュレータ3
2に導かれ、該レギュレータにより調圧されてから電磁
燃料弁30に導入される。該電磁燃料弁30は、クラン
ク角信号センサ51で検出した信号を入力するコントロ
ーラ50によって燃料を噴射する時期及び噴射量が制御
される電磁制御弁である。
Reference numeral 30 denotes an electromagnetic fuel valve provided in the cylinder head 2, and the fuel supplied to the fuel valve is a fuel tank 34.
From the fuel supply pump 33 to the fuel pressure regulator 3
The pressure is regulated by the regulator, and then introduced into the electromagnetic fuel valve 30. The electromagnetic fuel valve 30 is an electromagnetic control valve whose fuel injection timing and injection amount are controlled by a controller 50 which receives a signal detected by a crank angle signal sensor 51.

【0026】40は圧力式混合気噴射弁で、前記加圧空
気連通路16を介してポンプ室12から圧送される加圧
空気を導入する圧力作動室41と、空気圧によってポペ
ット形の混合気弁(ポペット弁)43を押し下げるダイ
ヤフラム42と、ポペット弁43を常時閉止状態に付勢
するばね44と、前記電磁燃料弁30から供給される燃
料と自シリンダ内から封入した圧縮空気によって混合気
を形成する混合気室45と、該混合気室45と燃焼室7
の連通部を開閉する前記ポペット弁43によって構成さ
れている。
Reference numeral 40 denotes a pressure type air-fuel mixture injection valve, which is a pressure working chamber 41 for introducing pressurized air pressure-fed from the pump chamber 12 through the pressurized air communication passage 16, and a poppet type air-fuel mixture valve by air pressure. A diaphragm 42 that pushes down the (poppet valve) 43, a spring 44 that urges the poppet valve 43 to a normally closed state, a fuel supplied from the electromagnetic fuel valve 30 and compressed air sealed from the cylinder itself to form a mixture. The air-fuel mixture chamber 45, and the air-fuel mixture chamber 45 and the combustion chamber 7
The poppet valve 43 that opens and closes the communication part of the.

【0027】次に前記構成による作用について、その作
動のタイミングを示す図3を参照して説明する。燃焼室
7内での燃焼ガスの圧力の圧力によってピストン3が下
降し、排気ポート8が開孔すると燃焼室7内の燃焼ガス
が自身のガス圧で排気ポート8から噴き出し、次いで掃
気ポート9が開孔する時点には、ピストン3の下降時に
その背面によって圧縮されたクランクケース6内の空気
が主掃気通路(図示されていない)を介して掃気ポート
9に導かれ、該掃気ポートから燃焼室7内に流入し、燃
焼室7内の残留ガスを排気ポート8側へ掃出する。
Next, the operation of the above configuration will be described with reference to FIG. 3 showing the operation timing. When the piston 3 descends due to the pressure of the combustion gas in the combustion chamber 7 and the exhaust port 8 opens, the combustion gas in the combustion chamber 7 blows out from the exhaust port 8 with its own gas pressure, and then the scavenging port 9 At the time of opening, the air in the crankcase 6 compressed by the back surface of the piston 3 when the piston 3 descends is guided to the scavenging port 9 through the main scavenging passage (not shown), and the combustion chamber is discharged from the scavenging port. 7, and the residual gas in the combustion chamber 7 is swept out to the exhaust port 8 side.

【0028】ピストン3が下死点(BDC)を過ぎ上昇
の行程に移行した初めのころにポペット弁43を開弁し
混合気室45から燃焼室7へ前のサイクルで形成された
混合気を噴射する。ポペット弁43は、段付きシリンダ
と段付きピストンの組合せで形成されたポンプ室12で
ピストン3の変位により加圧された空気を、加圧空気連
通路16を介して圧力式混合気噴射弁40の圧力作動室
41に導入し、その空気圧を利用してダイヤフラム42
を押し下げることによって開弁され、弁ばね44の付勢
力によって常時閉弁状態に保持されている。
At the beginning of when the piston 3 has passed the bottom dead center (BDC) and moved to the upward stroke, the poppet valve 43 is opened to transfer the air-fuel mixture formed in the previous cycle from the air-fuel mixture chamber 45 to the combustion chamber 7. To jet. The poppet valve 43 pressurizes the air pressurized by the displacement of the piston 3 in the pump chamber 12 formed by the combination of the stepped cylinder and the stepped piston through the pressurized air communication passage 16 to the pressure type mixture injection valve 40. Of the diaphragm 42 using the air pressure introduced into the pressure working chamber 41 of
The valve is opened by pushing down, and is normally kept closed by the urging force of the valve spring 44.

【0029】前記加圧空気連通路16の管路の途中には
高圧空気逃し弁17が介装され、加圧空気連通路16内
の空気圧が設定圧力を超えると開弁して高圧空気を大気
中に放出する。これによりダイヤフラム42に作用する
空気圧及びシリンダ内の圧力とポペット弁の作動状況は
図3に示すようになる。
A high-pressure air relief valve 17 is provided in the middle of the pressurized air communication passage 16 and opens when the air pressure in the pressurized air communication passage 16 exceeds a set pressure to release the high pressure air to the atmosphere. Release inside. As a result, the air pressure acting on the diaphragm 42, the pressure in the cylinder, and the operating condition of the poppet valve are as shown in FIG.

【0030】その後ピストン3が更に上昇して掃気ポー
ト9が閉じられ、続いて排気ポート8も閉じられて圧縮
の作用に入る。圧縮の作用の進行に伴いシリンダ側から
圧縮された空気と混合気との混合ガスが混合気室45内
に蓄圧されてからポペット弁43が閉じられ、封入され
た圧縮空気(ガス)は次のサイクルの圧縮初めのころま
で混合気室45内に溜め置かれる。なお、この間の所定
の時期に電磁燃料弁30から混合気室45内に所定量の
燃料を注入して混合気を形成させておく。
After that, the piston 3 further rises and the scavenging port 9 is closed, and then the exhaust port 8 is also closed to start the action of compression. As the action of compression progresses, a mixed gas of air and a mixture compressed from the cylinder side is accumulated in the mixture chamber 45, and then the poppet valve 43 is closed. It is stored in the air-fuel mixture chamber 45 until the beginning of compression in the cycle. In addition, at a predetermined time during this period, a predetermined amount of fuel is injected from the electromagnetic fuel valve 30 into the air-fuel mixture chamber 45 to form the air-fuel mixture.

【0031】ピストン3が更に上昇して圧縮作用の終り
の上死点(TDC)近くに達した時期に、シリンダヘッ
ド2に装着した点火プラグ19での火花放電により燃焼
室7内の混合気に点火すると、放電した電極部に火炎核
が生成され、そこから火炎が伝播して燃焼が進行する。
At the time when the piston 3 further rises to reach the top dead center (TDC) near the end of the compression action, the spark discharge from the spark plug 19 mounted on the cylinder head 2 causes the air-fuel mixture in the combustion chamber 7 to be discharged. When ignited, a flame nucleus is generated in the discharged electrode portion, and the flame propagates from there to progress combustion.

【0032】開弁時の弁の応答性を考慮して、ポペット
弁43は掃気ポート9、排気ポート8が閉じられる直前
のころに開弁され、混合気室45内から燃焼室7へ混合
気を吹き込むので、燃料の排気ポートへの吹き抜けが防
止される。また、混合気室45には自シリンダからの圧
縮空気が貯め置かれているので、ポペット弁43の開弁
時には空気アシスト効果によって良好な燃料噴霧が得ら
れ安定した良好な燃焼となる。
In consideration of the responsiveness of the valve when the valve is opened, the poppet valve 43 is opened immediately before the scavenging port 9 and the exhaust port 8 are closed, and the mixture gas from the mixture chamber 45 to the combustion chamber 7 is mixed. As a result, the fuel is prevented from blowing through to the exhaust port. Further, since the compressed air from the own cylinder is stored in the air-fuel mixture chamber 45, when the poppet valve 43 is opened, good fuel spray is obtained by the air assist effect, and stable and good combustion is achieved.

【0033】燃焼ガスの膨張によってピストン3はシリ
ンダ1内を下死点(BDC)に向って下降を始め、ピス
トン3の下降に伴って排気ポート8が開孔して燃焼ガス
が該ポートから噴き出し、続いて掃気ポート9が開孔し
て残留ガスを排気ポート8から掃出する。
The expansion of the combustion gas causes the piston 3 to descend in the cylinder 1 toward the bottom dead center (BDC), and as the piston 3 descends, the exhaust port 8 is opened and the combustion gas is ejected from the port. Then, the scavenging port 9 is opened and residual gas is scavenged from the exhaust port 8.

【0034】[0034]

【発明の効果】本発明によれば、自シリンダからの圧縮
空気を燃料微粒化の手段として利用するシリンダ内混合
気噴射方式による燃焼装置を2サイクルガソリンエンジ
ンに適用することにより、燃焼の改善と混合気の吹き抜
けの防止が達成され、未燃炭化水素の排出の大幅な低減
と燃料消費効率の大幅な向上を図ることが可能となる。
なお、第2発明によれば混合気室からの混合気の噴出を
的確に制御することが可能となり、第3発明によれば混
合気弁(ポペット弁)を簡易な構成の手段で駆動するこ
とが可能となり、電源を必要としないので、コストの低
減、エンジン構成の小形、軽量化を図ることができる。
According to the present invention, combustion is improved by applying a combustion device of an in-cylinder mixture injection system that uses compressed air from its own cylinder as a means for atomizing fuel to a two-cycle gasoline engine. The prevention of air-fuel mixture blow-through is achieved, and it becomes possible to significantly reduce the emission of unburned hydrocarbons and significantly improve the fuel consumption efficiency.
According to the second aspect of the invention, it is possible to precisely control the ejection of the air-fuel mixture from the air-fuel mixture chamber, and according to the third aspect of the invention, the air-fuel mixture valve (poppet valve) can be driven by means of a simple structure. Since it does not require a power source, the cost can be reduced and the engine structure can be made small and lightweight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る小形高速2サイクルガソ
リンエンジンの縦断面図。
FIG. 1 is a vertical sectional view of a small high-speed two-cycle gasoline engine according to an embodiment of the present invention.

【図2】図1に示したエンジンの燃焼装置の構成説明
図。
FIG. 2 is a structural explanatory view of a combustion device of the engine shown in FIG.

【図3】図1に示したエンジンの作動状況説明線図。FIG. 3 is an explanatory diagram of an operating state of the engine shown in FIG.

【図4】小形高速2サイクルガソリンエンジンの燃焼装
置の従来例の構成説明図。
FIG. 4 is a structural explanatory view of a conventional example of a combustion device for a small high-speed two-cycle gasoline engine.

【図5】図4に示したエンジンにおけるシリンダヘッド
回りの縦断面図。
5 is a longitudinal sectional view around a cylinder head in the engine shown in FIG.

【図6】図4,5に示したエンジンの掃・排気ポートの
開閉時期線図(a)と、ポペット弁及び電磁燃料弁の制
御時期線図(b)。
6 is an opening / closing timing diagram (a) of the engine sweep and exhaust ports shown in FIGS. 4 and 5, and a control timing diagram (b) of the poppet valve and the electromagnetic fuel valve.

【符号の説明】[Explanation of symbols]

1…シリンダ、2…シリンダヘッド、3…ピストン、4
…コネクティングロッド、5…クランク軸、6…クラン
クケース、7…燃焼室、8…排気ポート、9…掃気ポー
ト、10…吸気ポート、11…逆止弁、12…ポンプ
室、13…空気流入路、14…逆止弁、15…逆止弁、
16…加圧空気連通路、17…高圧空気逃し弁、18…
エアクリーナ、19…点火プラグ、20…点火制御装
置、30…電磁燃料弁、31…燃料供給管、32…レギ
ュレータ、33…燃料供給ポンプ、34…燃料タンク、
40…圧力式混合気噴射弁、41…圧力作動室、42…
ダイヤフラム、43…混合気弁(ポペット弁)、44…
弁ばね、45…混合気室、50…コントローラ、51…
クランク角信号センサ。
1 ... Cylinder, 2 ... Cylinder head, 3 ... Piston, 4
... connecting rod, 5 ... crankshaft, 6 ... crankcase, 7 ... combustion chamber, 8 ... exhaust port, 9 ... scavenging port, 10 ... intake port, 11 ... check valve, 12 ... pump chamber, 13 ... air inflow path , 14 ... Check valve, 15 ... Check valve,
16 ... Pressurized air communication passage, 17 ... High pressure air relief valve, 18 ...
Air cleaner, 19 ... Spark plug, 20 ... Ignition control device, 30 ... Electromagnetic fuel valve, 31 ... Fuel supply pipe, 32 ... Regulator, 33 ... Fuel supply pump, 34 ... Fuel tank,
40 ... Pressure mixture injection valve, 41 ... Pressure working chamber, 42 ...
Diaphragm, 43 ... Mixture valve (poppet valve), 44 ...
Valve spring, 45 ... Mixture chamber, 50 ... Controller, 51 ...
Crank angle signal sensor.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02F 3/00 F02F 3/00 E F02M 69/10 F02M 69/10 (72)発明者 森 俊一 長崎市深堀町5丁目717番1号 三菱重工 業株式会社長崎研究所内 (72)発明者 中川 洋 長崎市深堀町5丁目717番1号 三菱重工 業株式会社長崎研究所内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F02F 3/00 F02F 3/00 E F02M 69/10 F02M 69/10 (72) Inventor Shunichi Mori Fukahori Town, Nagasaki City 5-717-1 Mitsubishi Heavy Industries, Ltd. Nagasaki Research Institute (72) Inventor Hiroshi Nakagawa 5-717-1, Fukahoricho, Nagasaki City Nagasaki Research Institute, Mitsubishi Heavy Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッド(2)に電磁燃料弁(3
0)から供給される燃料と自シリンダ(1)内からの圧
縮空気によって混合気を生成する混合気室(45)を備
え、該混合気室とシリンダ側の燃焼室(7)との連通部
に該連通部を開閉する混合気弁(43)を配設し、前記
混合気室で生成された混合気を前記燃焼室に直接噴射
し、点火プラグ(19)により点火し燃焼させる2サイ
クルガソリンエンジンにおいて、前記混合気弁を燃焼室
側に開弁するポペット弁として形成すると共に、シリン
ダ内に吸入されピストン(3)の往復動によって発生す
る圧縮空気の圧力が作用するダイヤフラム(42)と、
前記混合気弁と、混合気弁を閉止状態に保持する弁ばね
(44)とが組込まれた圧力式混合気噴射弁(40)を
シリンダヘッドに装着し、前記混合気弁を空気圧が作用
するダイヤフラムによって駆動することを特徴とする2
サイクルガソリンエンジンの燃焼装置。
1. An electromagnetic fuel valve (3) is attached to a cylinder head (2).
0) is provided with a fuel-air mixture chamber (45) for generating a fuel-air mixture by the fuel supplied from the cylinder (1) and compressed air from the cylinder (1), and the communication portion between the fuel-air mixture chamber and the combustion chamber (7) on the cylinder side. A two-cycle gasoline in which an air-fuel mixture valve (43) for opening and closing the communication portion is arranged in the fuel cell, and the air-fuel mixture generated in the air-fuel mixture chamber is directly injected into the combustion chamber and ignited by a spark plug (19) to burn. In the engine, the air-fuel mixture valve is formed as a poppet valve that opens to the combustion chamber side, and a diaphragm (42) on which the pressure of compressed air generated by the reciprocating motion of the piston (3) that is sucked into the cylinder acts,
A pressure type air-fuel mixture injection valve (40) incorporating the air-fuel mixture valve and a valve spring (44) for holding the air-fuel mixture valve in a closed state is mounted on a cylinder head, and air pressure acts on the air-fuel mixture valve. Driven by a diaphragm 2
Combustion device for cycle gasoline engine.
【請求項2】 前記圧力式混合気噴射弁の駆動用の圧縮
空気をダイヤフラム(42)の一方の側に導く加圧空気
連通路(16)中に、逆止弁(15)及び規定以上の圧
力が作用した場合に作動する高圧空気逃し弁(17)を
設けてなることを特徴とする請求項1記載の2サイクル
ガソリンエンジンの燃焼装置。
2. A non-return valve (15) and a pre-specified valve or more are provided in a pressurized air communication passage (16) for guiding the compressed air for driving the pressure type mixture injection valve to one side of the diaphragm (42). The combustion system for a two-cycle gasoline engine according to claim 1, further comprising a high-pressure air relief valve (17) which is activated when pressure is applied.
【請求項3】 前記ピストン(3)の下部に大径部(3
b)を設け、該ピストンの大径部と前記シリンダ(1)
の下部に形成した大径部(1b)との間に前記圧縮空気
を発生するポンプ室(12)を形成してなることを特徴
とする請求項1記載の2サイクルガソリンエンジンの燃
焼装置。
3. A large diameter portion (3) is provided at a lower portion of the piston (3).
b) is provided, and the large diameter part of the piston and the cylinder (1) are provided.
The combustion apparatus for a two-cycle gasoline engine according to claim 1, wherein a pump chamber (12) for generating the compressed air is formed between the pump chamber (12) and a large diameter portion (1b) formed in the lower part of the.
JP7167920A 1995-06-09 1995-06-09 Combustion device for two cycle gasoline engine Withdrawn JPH08338345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7167920A JPH08338345A (en) 1995-06-09 1995-06-09 Combustion device for two cycle gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7167920A JPH08338345A (en) 1995-06-09 1995-06-09 Combustion device for two cycle gasoline engine

Publications (1)

Publication Number Publication Date
JPH08338345A true JPH08338345A (en) 1996-12-24

Family

ID=15858514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7167920A Withdrawn JPH08338345A (en) 1995-06-09 1995-06-09 Combustion device for two cycle gasoline engine

Country Status (1)

Country Link
JP (1) JPH08338345A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627949B2 (en) 2006-07-20 2009-12-08 Special Parts Takegawa Co., Ltd. Motorcycle engine
KR101364822B1 (en) * 2012-06-11 2014-02-19 지택현 Top and bottom four-stroke engine
JP2020515771A (en) * 2017-03-23 2020-05-28 エスエーエス トム サーミック ハイドロジェン オキシジェン モビリティーSas Thom Thermic Hydrogen Oxygen Mobility 2-stroke internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627949B2 (en) 2006-07-20 2009-12-08 Special Parts Takegawa Co., Ltd. Motorcycle engine
KR101364822B1 (en) * 2012-06-11 2014-02-19 지택현 Top and bottom four-stroke engine
JP2020515771A (en) * 2017-03-23 2020-05-28 エスエーエス トム サーミック ハイドロジェン オキシジェン モビリティーSas Thom Thermic Hydrogen Oxygen Mobility 2-stroke internal combustion engine

Similar Documents

Publication Publication Date Title
US5222993A (en) Ignition system for water-cooled gas engines
KR960010281B1 (en) Intensifier-injector for gaseous fuel for positive displacement engines
EP0371759A2 (en) Intensifier-injector for gaseous fuel for positive displacement engines
US4067302A (en) Two-stroke internal combustion engine and method of operation thereof
US20090183491A1 (en) Internal continuous combustion engine system
JP2002266645A (en) Engine, its operating method and auxiliary combustion chamber mechanism
US5899188A (en) Air fuel vapor stratifier
JP2777893B2 (en) Method and apparatus for injecting pneumatic fuel into cylinders of a reciprocating internal combustion engine
RU2219366C2 (en) Method to control internal combustion engine and designed of such engine
JP3900210B2 (en) Ignition device
JP2761412B2 (en) In-cylinder internal combustion engine
JPH08338345A (en) Combustion device for two cycle gasoline engine
US4018193A (en) Vortex chamber stratified charge engine
JP2001182538A (en) Engine
JP2002266643A (en) Engine, its operating method and auxiliary combustion chamber mechanism
US6468122B1 (en) Fuel injected engine with cross scavenging
JPH08326545A (en) Combustion device for two-cycle gasoline engine
JP3254086B2 (en) Combustion device for two-cycle gasoline engine
JPH10122000A (en) Variable compression ratio counter chamber type gas engine
WO2009044412A2 (en) An air-fuel injection system for two stroke internal combustion engines
JPS6213727A (en) Internal-combustion engine
JP2001082148A (en) Engine and operating method therefor
JPS5813069Y2 (en) Stratified combustion type crank chamber compression type 2-stroke engine
JP3004323B2 (en) In-cylinder injection two-stroke engine
SU1441080A1 (en) Double-stroke engine and method of its operation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903