JPH0833515B2 - Compact high-magnification zoom lens - Google Patents

Compact high-magnification zoom lens

Info

Publication number
JPH0833515B2
JPH0833515B2 JP61306624A JP30662486A JPH0833515B2 JP H0833515 B2 JPH0833515 B2 JP H0833515B2 JP 61306624 A JP61306624 A JP 61306624A JP 30662486 A JP30662486 A JP 30662486A JP H0833515 B2 JPH0833515 B2 JP H0833515B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
wide
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61306624A
Other languages
Japanese (ja)
Other versions
JPS63159818A (en
Inventor
勝啓 高田
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP61306624A priority Critical patent/JPH0833515B2/en
Publication of JPS63159818A publication Critical patent/JPS63159818A/en
Publication of JPH0833515B2 publication Critical patent/JPH0833515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変倍率が2以上で収差が良好に補正されて
いるコンパクトな高変倍率ズームレンズに関するもので
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact high-magnification zoom lens having a magnification of 2 or more and aberrations well corrected.

〔従来の技術〕[Conventional technology]

近年、カメラの小型化に伴い全長の短い小型のズーム
レンズが要求されるようになつた。こうしたなかでも、
全自動化が進み携帯性が重視されるレンズシヤツターカ
メラにおいても同様であるが、バツクフオーカスに対す
る制約は緩いものの一層の小型化の要求が強い。
In recent years, with the miniaturization of cameras, a compact zoom lens having a short total length has been required. Among these,
The same applies to a lens shutter camera in which portability is emphasized due to the advancement of full automation. However, although the restrictions on the back focus are loose, there is a strong demand for further miniaturization.

この種のレンズ系として、簡単なレンズ構成を特徴と
している特開昭57-201213号等に開示されているレンズ
シヤツターカメラ用のズームレンズがある。
As a lens system of this type, there is a zoom lens for a lens shutter camera disclosed in Japanese Patent Laid-Open No. 57-201213, which is characterized by a simple lens structure.

これらのズームレンズは、物体側より順に正の屈折力
を有する第1レンズ群と、負の屈折力を有する第2レン
ズ群からなり、これら二つのレンズ群間の間隔を変化さ
せて変倍するいわゆる2群ズーム方式のものである。
These zoom lenses consist of a first lens group having a positive refracting power and a second lens group having a negative refracting power in order from the object side, and change the magnification by changing the interval between these two lens groups. This is a so-called two-group zoom system.

更に特開昭58-137813号公報等に開示されているよう
な前記2群ズーム方式の発展と考えられる3群ズーム方
式のズームレンズが提案されている。このような構成の
ズームレンズでは、変倍率が1.5倍程度であればレンズ
構成枚数の少ないコンパクトなズームレンズになし得る
が変倍率を2倍程度までに高くすると変倍用のレンズ群
が負担する倍率が大になり、そのためズーミングの際の
収差変動が大になり収差補正に必要なレンズ構成枚数が
増大しレンズ系全体が大型化するなど、光学性能を良好
にしかつレンズ系のコンパクト化を達成し得ない。
Further, there has been proposed a zoom lens of a three-group zoom system which is considered to be a development of the above-mentioned two-group zoom system as disclosed in JP-A-58-137813. With a zoom lens having such a structure, a compact zoom lens with a small number of lens components can be used if the magnification is about 1.5 times, but if the magnification is increased to about 2 times, the lens group for magnification will bear the burden. Larger magnification, which results in larger aberration fluctuation during zooming, increased number of lens components required for aberration correction, and increased overall size of the lens system, resulting in good optical performance and compact lens system. I can't.

このような欠点を解消するために、近年光軸からの距
離に対応して屈折率が連続的に変化する媒質のレンズつ
まり屈折率分布型レンズを用いた2群ズーム方式のズー
ムレンズが特開昭61-148414号公報等に開示されてい
る。
In order to solve such a drawback, a two-group zoom type zoom lens using a lens of a medium whose refractive index continuously changes according to the distance from the optical axis, that is, a gradient index lens has recently been disclosed. It is disclosed in Japanese Patent Publication No. 61-148414.

このレンズ系は、その構成要素の中に光軸から半径方
向に屈折率分布を有するいわゆるラジアル型屈折率分布
型レンズを用いてレンズ媒質に屈折力を分担し各レンズ
の屈折力を強く保ちながらズーミング時の収差変動を抑
えかつ像面の平坦性に寄与するペツツバール和を良好に
保とうとしたものである。
This lens system uses a so-called radial type gradient index lens having a refractive index distribution in the radial direction from the optical axis among its constituent elements to share the refractive power with the lens medium and keep the refractive power of each lens strong. This is intended to suppress the aberration fluctuation during zooming and to maintain a good Petzval sum that contributes to the flatness of the image plane.

しかしながらこのズームレンズは、変倍率が2倍程度
までのものを対象にしており、注目している収差に対す
る補正については十分な効果を得ているものの、それ以
外の収差の補正は十分とはいえず今後に課題を残してい
る。さらにレンズ系のバツクフオーカスが極端に短いと
言つた欠点は保有したままである。そのために後部レン
ズ群が大型化する問題点は解決されておらずコンパクト
化を達成し得ていない。
However, this zoom lens is intended for use at zoom ratios of up to about 2 times, and although it has achieved a sufficient effect for correction of the aberration of interest, it cannot be said that correction of other aberrations is sufficient. Without leaving issues in the future. Further, the drawback that the back focus of the lens system is extremely short remains. Therefore, the problem that the rear lens unit becomes large has not been solved, and compactness cannot be achieved.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は広角端から望遠端までの変倍率が2倍を越え
しかも収差変動が小さく像面の平坦性が極めて良好で全
変倍域にわたつて良好な光学性能を有するコンパクトな
高変倍率ズームレンズを提供することを目的とするもの
である。
The present invention has a compact zoom ratio with a zoom ratio from the wide-angle end to the telephoto end of more than 2 times, a small aberration variation, an extremely flat image plane, and excellent optical performance over the entire zoom range. It is intended to provide a lens.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のズームレンズは前記の問題点を解決するため
につまり高変倍率を達成してかつコンパクトにするため
に、四つのレンズ群からなるいわゆる4群ズーム方式に
し、これに適宜に屈折率分布型レンズを用いることによ
つて広角端から望遠端までの収差変動が少なくかつ画面
中心部から画面周辺部まで像面が平坦になるようにした
ものである。
In order to solve the above problems, that is, in order to achieve a high zoom ratio and to make the zoom lens compact, a so-called four-group zoom system including four lens groups is used, and a refractive index distribution is appropriately set. By using a mold lens, the aberration variation from the wide-angle end to the telephoto end is small, and the image surface is flat from the central part of the screen to the peripheral part of the screen.

本発明のズームレンズは、物体側より順に正の屈折力
の第1レンズ群と、負の屈折力の第2レンズ群と、正の
屈折力の第3レンズ群と、負の屈折力の第4レンズ群と
にて構成し、広角端を基準にして望遠端へズーミングす
る際に第1レンズ群乃至第4レンズ群の各々を光軸上を
移動させるもので、少なくとも一つのレンズ群中に少な
くとも一つの光軸方向に屈折率分布を有する屈折率分布
型レンズを設けたものである。
The zoom lens of the present invention comprises, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a third lens group having a negative refractive power. It is composed of four lens groups, and moves each of the first lens group to the fourth lens group on the optical axis when zooming to the telephoto end with the wide-angle end as a reference. At least one gradient index lens having a gradient index distribution in the optical axis direction is provided.

このように本発明では、レンズ群中に光軸方向に屈折
率分布を有するいわゆるアキシヤル型屈折率分布型レン
ズを用いることによつてレンズ群の収差残存量を小さく
することによりズーミング時の収差変動を抑え極めて良
好な結像性能を達成することを意図している。
As described above, in the present invention, by using a so-called axial type gradient index lens having a refractive index distribution in the optical axis direction in the lens group, it is possible to reduce the residual aberration amount of the lens group and thereby the aberration fluctuation during zooming. It is intended to suppress and to achieve extremely good imaging performance.

本発明のズームレンズは、少なくとも2倍を越える変
倍率を確保し、レンズ系の全長を短くするために負の屈
折力の第4レンズ群の変倍率負担が大になることを特徴
とする4群ズーム方式にしたものである。それは変倍率
を各レンズ群に分担することによつて高変倍率化を無理
なく達成するためである。
The zoom lens of the present invention is characterized in that a zoom ratio exceeding at least 2 is secured, and the load of the zoom ratio of the fourth lens unit having negative refractive power becomes large in order to shorten the overall length of the lens system. It is a group zoom system. This is because it is possible to achieve a high zoom ratio reasonably by sharing the zoom ratio with each lens group.

レンズ系の全長を短くするためには、いわゆる望遠タ
イプの屈折力配置にすることが効果的である。本発明の
ズームレンズは、第1レンズ群から第3レンズ群までを
全体として正の屈折力とし、これと負の屈折力の第4レ
ンズ群とで広角端におけるレンズ系のバツクフオーカス
を短くしている。
In order to shorten the total length of the lens system, it is effective to adopt a so-called telephoto type refractive power arrangement. In the zoom lens according to the present invention, the first lens group to the third lens group have positive refractive power as a whole, and the fourth lens group having negative refractive power shortens the back focus of the lens system at the wide-angle end. There is.

このような構成にし更にレンズ系をコンパクトにする
ためには、各レンズ群の屈折力を強くする必要がある。
しかし諸収差のバランス特に広角端での非点収差,歪曲
収差,望遠端での球面収差,非点収差,歪曲収差等を補
正することが困難になる。
In order to make such a structure and further make the lens system compact, it is necessary to increase the refractive power of each lens group.
However, it becomes difficult to correct the balance of various aberrations, especially astigmatism and distortion at the wide-angle end, spherical aberration, astigmatism, and distortion at the telephoto end.

本発明のズームレンズは、屈折率分布型レンズを用い
て上記の諸収差を良好に補正するようにして良好な結像
性能を得るようにした。
In the zoom lens of the present invention, the above-mentioned various aberrations are satisfactorily corrected by using the gradient index lens so that a good imaging performance is obtained.

一般に知られている屈折率分布型レンズとしては、光
軸から半径方向に屈折率が変化するラジアル型と、光軸
方向に屈折率が変化するアキシヤル型とがある。レンズ
系のコンパクト化や収差補正の能力は、ラジアル型の方
が優れているが、外径の大きなレンズを得ることが難し
い。一方アキシヤル型は、その構成上ペツツバール和に
対する補正効果が低く、ほぼ非球面レンズに相当する程
度であるが、加工性の点では非球面レンズより優れてお
り、光学的な構成要素として用いる時、その実現性はよ
り高い。
Generally known gradient index lenses include a radial type in which the refractive index changes in the radial direction from the optical axis and an axial type in which the refractive index changes in the optical axis direction. The radial type is superior in the compactness of the lens system and the ability to correct aberrations, but it is difficult to obtain a lens having a large outer diameter. On the other hand, the axial type has a low correction effect on the Petzval sum due to its structure and is almost equivalent to an aspherical lens, but it is superior to the aspherical lens in terms of workability, and when used as an optical component, Its feasibility is higher.

以上の点を考慮して本発明においては、前述の構成の
ズームレンズに用いる屈折率分布型レンズとしてアキシ
ヤル型の屈折率分布型レンズを用いて諸収差を良好に補
正するようにした。
In consideration of the above points, according to the present invention, an axial type gradient index lens is used as the gradient index lens used in the zoom lens having the above-described configuration to satisfactorily correct various aberrations.

このアキシヤル型の屈折率分布型レンズは、レンズ媒
質部に屈折力を持たず、前記のようにペツツバール和の
補正効果を有しないため、屈折率分布がついていない状
態でのズームレンズの屈折力配置やズーミング時の挙動
を決定することが必要である。
This axial gradient index lens has no refractive power in the lens medium portion and does not have the Petzval sum correction effect as described above, so the refractive power arrangement of the zoom lens in the state where no refractive index distribution is attached It is necessary to determine the behavior during zooming.

まず所要の変倍率を有していてコンパクトなレンズ系
を得るためには、第4レンズ群が次の条件(1),
(2)を満足する必要がある。
First, in order to obtain a compact lens system having a required magnification, the fourth lens group has the following condition (1),
It is necessary to satisfy (2).

(1)0.4<|f4/fW|<2 (2)1<β4T/β4W<3 ただしfWはワイド端における全系の焦点距離、f4は第
4レンズ群の焦点距離、β4Wは広角端における第4レン
ズ群の横倍率、β4Tは望遠端における第4レンズ群の横
倍率である。
(1) 0.4 <| f 4 / f W | <2 (2) 1 <β 4T / β 4W <3 where f W is the focal length of the entire system at the wide end, f 4 is the focal length of the fourth lens group, β 4W is the lateral magnification of the fourth lens unit at the wide-angle end, and β 4T is the lateral magnification of the fourth lens unit at the telephoto end.

この条件(1)は、第4レンズ群の屈折力を規定した
ものでレンズ系のコンパクト化に関するものである。こ
の条件の上限を越えると第4レンズ群の屈折力が弱くな
り、その結果レンズ系が大きくなり本発明の目的に反す
る。また下限を越えると第4レンズ群の屈折力が強くな
りすぎ、このレンズ群での収差発生量が著しくなるため
にズーミングによる収差変動が大になり、良好な光学性
能を得ることが困難になるので好ましくない。
The condition (1) defines the refracting power of the fourth lens group and relates to downsizing of the lens system. If the upper limit of this condition is exceeded, the refracting power of the fourth lens group will be weakened, and as a result, the lens system will be large, which is contrary to the object of the present invention. When the value goes below the lower limit, the refracting power of the fourth lens group becomes too strong, and the amount of aberration generated in this lens group becomes significant, so that aberration fluctuations due to zooming become large and it becomes difficult to obtain good optical performance. It is not preferable.

条件(2)は、広角端から望遠端へのズーミングの際
に第4レンズ群が担う変倍率を規定したものである。こ
の条件の上限を越えると第4レンズ群の変倍範囲が必要
以上に広くなり、第4レンズ群自体のズーミング移動量
が大になるため、このレンズ群以外のレンズ群の倍率分
担が減り、4群ズーム方式にしたことの意味が薄れレン
ズ系の全長が長くなると共に像面の平坦性を補償出来な
くなる。この条件(2)の下限を越えると第2レンズ
群,第3レンズ群の変倍率の負担が大になり、第2レン
ズ群,第3レンズ群の移動量を大にするかまたは屈折力
を大にしなければならない。前者の場合は、レンズ系の
全長が特に広角端において長くなり本発明の目的に反す
ることになる。また後者の場合には、収差の残存量が増
大し諸収差のバランスが悪くなり、アキシヤル型の屈折
率分布型レンズを用いても収差を良好に補正し得ない。
The condition (2) defines the zoom ratio of the fourth lens group when zooming from the wide-angle end to the telephoto end. If the upper limit of this condition is exceeded, the zooming range of the fourth lens group will become wider than necessary, and the amount of zooming movement of the fourth lens group itself will become large, so the share of magnification of the lens groups other than this lens group will decrease, The meaning of using the 4-group zoom system becomes weak, and the overall length of the lens system becomes long, and the flatness of the image plane cannot be compensated. When the value goes below the lower limit of the condition (2), the magnification of the second lens group and the third lens group becomes large, and the moving amount of the second lens group and the third lens group is increased or the refractive power is increased. It has to be big. In the former case, the total length of the lens system becomes long, especially at the wide-angle end, which is contrary to the object of the present invention. In the latter case, the residual amount of aberration increases and the balance of various aberrations deteriorates, and aberration cannot be corrected well even if an axial type gradient index lens is used.

更に第3レンズ群を次の条件(3),(4)を満足す
るように構成することが望ましい。
Further, it is desirable that the third lens group be constructed so as to satisfy the following conditions (3) and (4).

(3)|β3W|<0.75 (4)0.5<β3T/β3W<1.5 ただしβ3W,β3Tは夫々広角端,望遠端における第3
レンズ群の横倍率である。
(3) | β 3W | <0.75 (4) 0.5 <β 3T / β 3W <1.5 However, β 3W and β 3T are the third at the wide-angle end and the telephoto end, respectively.
It is the lateral magnification of the lens group.

条件(3)を越えると第3レンズ群の屈折力が弱くな
りズーミング移動量が大きくなる。
When the condition (3) is exceeded, the refracting power of the third lens unit becomes weak and the amount of zooming movement becomes large.

条件(4)の下限を越えると第3レンズ群は減倍作用
が大になり第2レンズ群の倍率負担が大になりこのレン
ズ群のズーミング移動空間が不足し又第2レンズ群で発
生する収差を補正することが困難になる。条件(4)の
上限を越えると第3レンズ群自体の変倍率が大になりズ
ーミング移動の方式を変える必要が生じ、広角端におい
て全長を短くすることが困難になる。
When the value goes below the lower limit of the condition (4), the demagnifying action of the third lens group becomes large, the magnification load of the second lens group becomes large, and the zooming movement space of this lens group becomes insufficient. It becomes difficult to correct the aberration. When the value exceeds the upper limit of the condition (4), the magnification of the third lens group itself becomes large, and it becomes necessary to change the zooming movement method, which makes it difficult to shorten the total length at the wide-angle end.

本発明のレンズ系に用いられるアキシヤル型の屈折率
分布型レンズの屈折率分布は次の式にて表わされる。
The refractive index distribution of the axial type gradient index lens used in the lens system of the present invention is represented by the following equation.

n(x)=n0+n1x+n2x2+n3x3+… ただしxはレンズの物体側の面頂を原点にとり光軸方
向の距離、n0はレンズの物体側面頂での屈折率、n1,n2,
n3,…はそれぞれxに関する1次頂,2次頂,3次頂,…の
係数である。
n (x) = n 0 + n 1 x + n 2 x 2 + n 3 x 3 + ... where x is the distance in the optical axis direction with the apex on the object side of the lens as the origin, and n 0 is the refractive index at the apex on the object side of the lens. , N 1 , n 2 ,
n 3 , ... are coefficients of the first order, second order, third order, ...

本発明で用いる屈折率分布型レンズは、次の条件を満
足するものであることが望ましい。
The gradient index lens used in the present invention preferably satisfies the following conditions.

(5)ΔnA<0.15 (6)|n1・fW|<3.0 ただしΔnAは光軸上での物体側面頂から像側面頂の間
での最大屈折率差である。
(5) Δn A <0.15 (6) | n 1 · f W | <3.0 where Δn A is the maximum refractive index difference between the object-side apex and the image-side apex on the optical axis.

現在、屈折率分布型レンズの製法は、イオン交換法,
分子スタツフイング法等の種々の方法が提案されてい
る。しかし最大屈折率差はさほど大きくできない。
Currently, the manufacturing method of gradient index lenses is the ion exchange method,
Various methods such as the molecular stuffing method have been proposed. However, the maximum refractive index difference cannot be so large.

条件(5)は、以上の点を考慮して規定したものであ
つて、この条件を越えると製造上極めて困難である。
The condition (5) is defined in consideration of the above points, and if it exceeds this condition, it is extremely difficult in manufacturing.

条件(6)は、屈折率の勾配の程度を規定したもの
で、この条件を越えると条件(5)を満足するためには
n2,n3,…といつた高次頂の係数を大きくとらねばならず
高次収差の発生が大となつてしまう。
The condition (6) defines the degree of the gradient of the refractive index. If the condition (6) is exceeded, the condition (5) is satisfied.
The coefficients of high-order apexes such as n 2 , n 3 , ... must be taken to be large, and high-order aberrations will be generated significantly.

〔実施例〕〔Example〕

次に以上説明した本発明のズームレンズの各実施例を
示す。
Next, each embodiment of the zoom lens of the present invention described above will be described.

実施例1 f=39.00〜103.46、F/4.65〜5.80 r1=∞ d1=2.397 n01=1.85026 ν01=32.28 r2=29.204 d2=4.804 n02=1.72000 ν02=46.03 r3=201.839 d3=0.049 r4=26.784 d4=3.003 n03=1.53172 ν03=48.90 r5=678.471 d5=D1(可変) r6=−36.191 d6=1.599 n04=1.78650 ν04=50.00 r7=23.392 d7=2.737 n05=1.80518 ν05=25.43 r8=97.276 d8=D2(可変) r9=∞(絞り) d9=1.505 r10=89.145 d10=2.402 n06屈折率分布型レンズ r11=−37.448 d11=0.081 r12=15.678 d12=3.857 n07=1.57309 ν07=42.57 r13=−445.852 d13=0.940 r14=−61.134 d14=1.667 n08=1.84666 ν08=23.88 r15=18.466 d15=2.340 r16=37.897 d16=3.931 n09=1.57501 ν09=41.49 r17=−35.137 d17=D3(可変) r18=−33.144 d18=2.973 n010=1.76182 ν010=26.52 r19=−19.278 d19=3.253 r20=−15.960 d20=2.397 n011=1.78650 ν011=50.00 r21=1417.734 f 39.00 61.20 103.46 D1 1.501 7.720 11.342 D2 11.230 6.852 1.800 D3 12.920 7.098 2.232 実施例2 f=39.52〜100.80、F/4.66〜6.38 r1=348.884 d1=1.500 n01=1.84666 ν01=23.88 r2=42.212 d2=0.880 r3=59.856 d3=3.454 n02屈折率分布型レンズ r4=−12021.350 d4=0.200 r5=27.466 d5=4.500 n03=1.50378 ν03=66.81 r6=−168.595 d6=D1(可変) r7=−49.262 d7=1.300 n04=1.77250 ν04=49.66 r8=15.287 d8=2.506 n05=1.80518 ν05=25.43 r9=50.384 d9=1.900 r10=−233.766 d10=1.300 n06=1.77250 ν06=49.66 r11=512.917 d11=D2(可変) r12=∞(絞り) d12=1.913 r13=25.371 d13=2.634 n07=1.61700 ν07=62.79 r14=−51.148 d14=0.100 r15=24.624 d15=2.800 n08=1.59551 ν08=39.21 r16=−163.875 d16=1.159 r17=−28.916 d17=1.618 n09=1.80518 ν09=25.43 r18=22.563 d18=2.362 r19=68.569 d19=2.831 n010=1.60562 ν010=43.72 r20=−21.454 d20=D3(可変) r21=−35.663 d21=3.650 n011=1.78472 ν011=25.68 r22=−20.124 d22=2.800 r23=−17.065 d23=1.601 n012=1.78650 ν012=50.00 r24=3049.052 f 39.52 63.11 100.8 D1 2.023 6.696 11.156 D2 11.928 7.255 2.796 D3 16.536 8.935 2.500 実施例3 f=39.52〜100.80、F/4.66〜6.38 r1=348.884 d1=1.500 n01=1.84666 ν01=23.88 r2=41.075 d2=0.880 r3=61.331 d3=3.454 n02=1.72000 ν02=41.98 r4=549.867 d4=0.200 r5=25.404 d5=4.500 n03=1.51454 ν03=54.69 r6=−786.113 d6=D1(可変) r7=−39.868 d7=1.300 n04=1.75700 ν04=47.87 r8=15.287 d8=2.506 n05=1.80518 ν05=25.43 r9=55.979 d9=D2(可変) r10=∞(絞り) d10=1.913 r11=35.831 d11=2.634 n06屈折率分布型レンズ r12=−44.612 d12=0.100 r13=24.931 d13=2.800 n07=1.59270 ν07=35.29 r14=−108.150 d14=1.159 r15=−26.351 d15=1.618 n08=1.80518 ν08=25.43 r16=32.157 d16=2.362 r17=239.410 d17=2.831 n09=1.62041 ν09=60.27 r18=−21.614 d18=D3(可変) r19=−38.559 d19=3.650 n010=1.78472 ν010=25.68 r20=−21.025 d20=2.800 r21=−17.065 d21=1.601 n011=1.78590 ν011=44.18 r22=470.539 f 39.52 63.11 100.80 D1 2.023 6.683 11.177 D2 11.928 7.269 2.774 D3 15.494 8.206 2.500 実施例4 f=39.52〜100.80、F/4.66〜6.38 r1=348.884 d1=1.500 n01=1.84666 ν01=23.88 r2=102.416 d2=0.880 r3=32.984 d3=4.015 n02=1.61800 ν02=63.38 r4=−692.292 d4=D1(可変) r5=−42.344 d5=1.300 n03=1.80440 ν03=39.58 r6=15.287 d6=2.506 n04=1.80518 ν04=25.43 r7=83.662 d7=D2(可変) r8=∞(絞り) d8=1.913 r9=33.225 d9=2.634 n05=1.62012 ν05=49.66 r10=−71.746 d10=0.100 r11=24.813 d11=2.800 n06=1.62374 ν06=47.10 r12=−46.320 d12=1.159 r13=−25.590 d13=1.618 n07=1.80518 ν07=25.43 r14=24.380 d14=2.362 r15=73.296 d15=2.831 n08=1.62004 ν08=36.25 r16=−21.044 d16=D3(可変) r17=−30.707 d17=3.632 n09屈折率分布型レンズ r18=−18.946 d18=2.578 r19=−17.065 d19=1.601 n010=1.78650 ν010=50.00 r20=234.664 f 39.52 63.11 100.80 D1 2.018 6.678 11.165 D2 11.927 7.267 2.781 D3 15.273 8.107 2.500 ただしr1,r2,…はレンズ各面の曲率半径、d1,d2,…は
各レンズの肉厚およびレンズ間隔、n01,n02,…は各レン
ズの屈折率、ν01,ν02,…は各レンズのアツベ数であ
る。又屈折率分布係数はd−線,g−線に対するものを示
してある。
Example 1 f = 39.00~103.46, F / 4.65~5.80 r 1 = ∞ d 1 = 2.397 n 01 = 1.85026 ν 01 = 32.28 r 2 = 29.204 d 2 = 4.804 n 02 = 1.72000 ν 02 = 46.03 r 3 = 201.839 d 3 = 0.049 r 4 = 26.784 d 4 = 3.003 n 03 = 1.53172 ν 03 = 48.90 r 5 = 678.471 d 5 = D 1 ( variable) r 6 = -36.191 d 6 = 1.599 n 04 = 1.78650 ν 04 = 50.00 r 7 = 23.392 d 7 = 2.737 n 05 = 1.80518 ν 05 = 25.43 r 8 = 97.276 d 8 = D 2 (variable) r 9 = ∞ (aperture) d 9 = 1.505 r 10 = 89.145 d 10 = 2.402 n 06 Refractive index Distributed lens r 11 = -37.448 d 11 = 0.081 r 12 = 15.678 d 12 = 3.857 n 07 = 1.57309 ν 07 = 42.57 r 13 = -445.852 d 13 = 0.940 r 14 = -61.134 d 14 = 1.667 n 08 = 1.84666 ν 08 = 23.88 r 15 = 18.466 d 15 = 2.340 r 16 = 37.897 d 16 = 3.931 n 09 = 1.57501 ν 09 = 41.49 r 17 = -35.137 d 17 = D 3 (variable) r 18 = -33.144 d 18 = 2.973 n 010 = 1.76182 ν 010 = 26.52 r 19 = -19.278 d 19 = 3.253 r 20 = -15.960 d 20 = 2.397 n 011 = 1.78650 ν 011 = 50.00 r 21 = 1417.734 f 39.00 61.20 103.46 D 1 1.501 7.720 11.342 D 2 11.230 6.852 1.800 D 3 12.920 7.098 2.232 Example 2 f = 39.52~100.80, F / 4.66~6.38 r 1 = 348.884 d 1 = 1.500 n 01 = 1.84666 ν 01 = 23.88 r 2 = 42.212 d 2 = 0.880 r 3 = 59.856 d 3 = 3.454 n 02 refractive index Distributed lens r 4 = −12021.350 d 4 = 0.200 r 5 = 27.466 d 5 = 4.500 n 03 = 1.50378 ν 03 = 66.81 r 6 = -168.595 d 6 = D 1 (variable) r 7 = -49.262 d 7 = 1.300 n 04 = 1.77250 ν 04 = 49.66 r 8 = 15.287 d 8 = 2.506 n 05 = 1.80518 ν 05 = 25.43 r 9 = 50.384 d 9 = 1.900 r 10 = −233.766 d 10 = 1.300 n 06 = 1.77250 ν 06 = 49.66 r 11 = 512.917 d 11 = D 2 (variable) r 12 = ∞ (aperture) d 12 = 1.913 r 13 = 25.371 d 13 = 2.634 n 07 = 1.61700 ν 07 = 62.79 r 14 = -51.148 d 14 = 0.100 r 15 = 24.624 d 15 = 2.800 n 08 = 1.59551 ν 08 = 39.21 r 16 = −163.875 d 16 = 1.159 r 17 = −28.916 d 17 = 1.618 n 09 = 1.80518 ν 09 = 25.43 r 18 = 22.563 d 18 = 2.362 r 19 = 68.569 d 19 = 2.831 n 010 = 1.60562 ν 010 = 43.72 r 20 = -21.454 d 20 = D 3 (variable) r 21 = -35.663 d 21 = 3.650 n 011 = 1.78472 ν 011 = 25.68 r 22 = -20.124 d 22 = 2.800 r 23 = -17.065 d 23 = 1.601 n 012 = 1.78650 ν 012 = 50.00 r 24 = 3049.052 f 39.52 63.11 100.8 D 1 2.023 6.696 11.156 D 2 11.928 7.255 2.796 D 3 16.536 8.935 2.500 Example 3 f = 39.52~100.80, F / 4.66~6.38 r 1 = 348.884 d 1 = 1.500 n 01 = 1.84666 ν 01 = 23.88 r 2 = 41.075 d 2 = 0.880 r 3 = 61.331 d 3 = 3.454 n 02 = 1.72000 ν 02 = 41.98 r 4 = 549.867 d 4 = 0.200 r 5 = 25.404 d 5 = 4.500 n 03 = 1.51454 ν 03 = 54.69 r 6 = -786.113 d 6 = D 1 (variable) r 7 = -39.868 d 7 = 1.300 n 04 = 1.75700 ν 04 = 47.87 r 8 = 15.287 d 8 = 2.506 n 05 = 1.80518 ν 05 = 25.43 r 9 = 55.979 d 9 = D 2 (variable) r 10 = ∞ (diaphragm) d 10 = 1.913 r 11 = 35.831 d 11 = 2.634 n 06 Gradient distribution type lens r 12 = −44.612 d 12 = 0.100 r 13 = 24.931 d 13 = 2.800 n 07 = 1.59270 ν 07 = 35.29 r 14 = −108.150 d 14 = 1.159 r 15 = − 26.351 d 15 = 1.618 n 08 = 1.80518 ν 08 = 25.43 r 16 = 32.157 d 16 = 2.362 r 17 = 239.410 d 17 = 2.831 n 09 = 1.62041 ν 09 = 60.27 r 18 = -21.614 d 18 = D 3 (variable) r 19 = -38.559 d 19 = 3.650 n 010 = 1.78472 ν 010 = 25.68 r 20 = -21.025 d 20 = 2.800 r 21 = -17.065 d 21 = 1.601 n 011 = 1.78590 ν 011 = 44.18 r 22 = 470.539 f 39.52 63.11 100.80 D 1 2.023 6.683 11.177 D 2 11.928 7.269 2.774 D 3 15.494 8.206 2.500 Example 4 f = 39.52~100.80, F / 4.66~6.38 r 1 = 348.884 d 1 = 1.500 n 01 = 1.84666 ν 01 = 23.88 r 2 = 102.416 d 2 = 0.880 r 3 = 32.984 d 3 = 4.015 n 02 = 1.61800 ν 02 = 63.38 r 4 = -692.292 d 4 = D 1 (variable) r 5 = -42.344 d 5 = 1.300 n 03 = 1.80440 ν 03 = 39.58 r 6 = 15.287 d 6 = 2.506 n 04 = 1.80518 ν 04 = 25.43 r 7 = 83.662 d 7 = D 2 ( variable) r 8 = ∞ (stop) d 8 = 1.913 r 9 = 33.225 d 9 = 2.634 n 05 = 1.62012 ν 05 = 49.66 r 10 = -71.746 d 10 = 0.100 r 11 = 24.813 d 11 = 2.800 n 06 = 1.62374 ν 06 = 47.10 r 12 = -46.320 d 12 = 1.159 r 13 = -25.590 d 13 = 1.618 n 07 = 1.80518 ν 07 = 25.43 r 14 = 24.380 d 14 = 2.362 r 15 = 73.296 d 15 = 2.831 n 08 = 1.62004 ν 08 = 36.25 r 16 = -21.044 d 16 = D 3 (variable) r 17 = -30.707 d 17 = 3.632 n 09 Gradient distribution type lens r 18 = -18.946 d 18 = 2.578 r 19 = -17.065 d 19 = 1.601 n 010 = 1.78650 ν 010 = 50.00 r 20 = 234.664 f 39.52 63.11 100.80 D 1 2.018 6.678 11.165 D 2 11.927 7.267 2.781 D 3 15.273 8.107 2.500 Where r 1 , r 2 , ... are the radii of curvature of each lens surface, d 1 , d 2 , ... are the wall thicknesses and lens intervals of each lens, n 01 , n 02 , ... are the refractive indices of each lens, ν 01 , ν 02 , ... Is the Abbe number of each lens. The refractive index distribution coefficients are shown for the d-line and the g-line.

上記実施例は夫々第1図乃至第4図に示すようなレン
ズ構成である。即ち第1レンズ群Iは、少なくとも1枚
の負レンズと少なくとも1枚の正レンズを含んでおり、
第2レンズ群IIは、負レンズと正レンズの接合レンズを
少なくとも含んでおり、第3レンズ群IIIは2枚の正レ
ンズと負レンズと正レンズとよりなり、第4レンズ群IV
は正のメニスカスレンズと負レンズとよりなつている。
Each of the above embodiments has a lens configuration as shown in FIGS. That is, the first lens group I includes at least one negative lens and at least one positive lens,
The second lens group II includes at least a cemented lens of a negative lens and a positive lens, the third lens group III includes two positive lenses, a negative lens and a positive lens, and a fourth lens group IV.
Is composed of a positive meniscus lens and a negative lens.

実施例1は、第1図に示すレンズ構成で第3レンズ群
IIIの最も物体側の第1レンズがアキシヤル型の屈折率
分布型レンズである。この実施例は、上記の屈折率分布
型レンズを物体側面頂から光軸方向に屈折率が増大する
ような分布をつけることにより、像側屈折面において面
頂から光線高が高くなるにしたがい屈折率を低くし屈折
の程度を制御することによつて、特に球面収差とコマ収
差を補正し、レンズ媒質を伝播する際に負の歪曲収差を
発生させ望遠端での歪曲収差の補正に寄与せしめてい
る。この実施例の収差状況は第5図に示す通りである。
Example 1 is the third lens group having the lens configuration shown in FIG.
The first lens closest to the object in III is an axial type gradient index lens. In this embodiment, the above-mentioned gradient index lens is provided with a distribution in which the refractive index increases from the apex of the object side surface in the optical axis direction, so that the light ray height increases from the apex of the image side refracting surface to the refractive index. By lowering the index and controlling the degree of refraction, spherical aberration and coma are corrected in particular, and negative distortion is generated when propagating through the lens medium to contribute to correction of distortion at the telephoto end. ing. The aberration situation in this embodiment is as shown in FIG.

実施例2は第2図に示す通りのレンズ構成である。こ
の実施例では第1レンズ群Iの第2レンズ群がアキシヤ
ル型の屈折率分布型レンズである。この屈折率分布型レ
ンズは屈折率分布を物体側から光軸方向に屈折率が減少
するようにつけることによつて、このレンズの物体側の
屈折面に入射する光線の屈折を制御することによつて広
角端における非点収差,望遠端における球面収差,非点
収差を補正している。この実施例の収差状況は第6図に
示す通りである。
Example 2 has a lens configuration as shown in FIG. In this embodiment, the second lens group of the first lens group I is an axial type gradient index lens. This gradient index lens is designed to control the refraction of light rays incident on the refractive surface on the object side of the lens by adding a refractive index distribution from the object side so that the refractive index decreases in the optical axis direction. Therefore, astigmatism at the wide-angle end, spherical aberration at the telephoto end, and astigmatism are corrected. The aberration situation of this example is as shown in FIG.

実施例3は第3図に示す通りで、第3レンズ群IIIの
第1レンズをアキシヤル型の屈折率分布型レンズにした
ものである。この実施例は、実施例1と同様に屈折率分
布型レンズの屈折率分布を物体側から像側に向つて屈折
率が増大するようにつけているが、実施例1とは異なり
第3レンズ群IIIに屈折率分布型レンズを含まない状態
において発生する球面収差を抑えレンズ系全体で球面収
差を補正過剰にしておき、これを屈折率分布型レンズの
物体側の屈折面の曲率を強くすることによつて、入射す
る光線に対し負の球面収差を発生するようにして補正し
た。また屈折率分布型レンズの屈折率勾配を大きくする
ことによつて正の非点収差を発生させ、つまり後に示す
3次の収差係数の式の の項を正で大きな値にして全系における非点収差が良好
に補正されるようにした。この実施例の収差状況は第7
図に示す通りである。
The third embodiment is as shown in FIG. 3, and the first lens of the third lens group III is an axial type gradient index lens. In this embodiment, like the first embodiment, the refractive index distribution of the gradient index lens is so arranged that the refractive index increases from the object side toward the image side, but unlike the first embodiment, the third lens group Suppress the spherical aberration that occurs when III does not include the gradient index lens, and overcorrect the spherical aberration in the entire lens system to increase the curvature of the object-side refractive surface of the gradient index lens. Thus, the correction was made so that a negative spherical aberration was generated with respect to the incident light beam. Further, positive astigmatism is generated by increasing the refractive index gradient of the gradient index lens, that is, the third-order aberration coefficient equation shown below The term of is set to a positive and large value so that astigmatism in the entire system can be corrected well. The aberration situation in this example is the seventh.
As shown in the figure.

実施例4は第4図に示す通りで、第4レンズ群IVの第
1レンズがアキシヤル型の屈折率分布型レンズである。
Example 4 is as shown in FIG. 4, and the first lens of the fourth lens group IV is an axial type gradient index lens.

第4レンズ群IVは、広角端においてはこのレンズ群を
軸上像点を結像する光束と軸外像点を結像する光線とが
異なつた高さを通り、両者が離れたところを通るために
軸上収差に影響を与えることなしに軸外収差を補正する
のに効果的である。しかし広角端と望遠端とでこのレン
ズ群を通る光線の通り方が大きく異なるので広角端のみ
に注目して収差補正を行なつたのでは第4レンズ群での
収差変動が大きくなる。したがつてこの点を注意して収
差補正を行なう必要がある。
At the wide-angle end, the fourth lens group IV passes through the lens group passing through different heights of the light flux that forms an on-axis image point and the light ray that forms an off-axis image point, and passes through a distance between them. Therefore, it is effective to correct the off-axis aberration without affecting the on-axis aberration. However, since the way of passing a ray passing through this lens group is greatly different between the wide-angle end and the telephoto end, if aberration correction is performed by focusing only on the wide-angle end, aberration variation in the fourth lens group becomes large. Therefore, it is necessary to pay attention to this point and perform aberration correction.

この実施例4では、前記のように第4レンズ群の第1
レンズをアキシヤル型の屈折率分布型レンズとし、適度
に屈折率分布をつけることによつて諸収差が良好に補正
されるようにした。この屈折率分布型レンズの屈折率分
布は、物体側から光軸方向に屈折率が増大するようにつ
け、物体側の面の面頂から像側の面の面頂の間の最大の
屈折率差を0.018程度にすることによつて過度の収差変
動を抑えている。この効果によつて広角端での軸外収差
と望遠端での球面収差,非点収差をバランス良く補正し
ている。この実施例の収差状況は第8図に示す通りであ
る。
In Embodiment 4, as described above, the first lens unit of the fourth lens unit
The lens is an axial type gradient index lens, and various aberrations are satisfactorily corrected by providing an appropriate gradient index distribution. The refractive index distribution of this gradient index lens is set so that the refractive index increases from the object side in the optical axis direction, and the maximum refractive index difference between the apex of the object-side surface and the image-side surface. By setting the value to about 0.018, excessive aberration fluctuation is suppressed. By this effect, off-axis aberrations at the wide-angle end, spherical aberrations at the telephoto end, and astigmatism are corrected in good balance. The aberration situation of this example is as shown in FIG.

尚、本発明のレンズ系は、その構成要素中に屈折率分
布型レンズを用いているので、3次の収差係数は次の形
で表わされる。
Since the lens system of the present invention uses a gradient index lens in its constituent elements, the third-order aberration coefficient is expressed in the following form.

ただしσS (i)はレンズ面頂の屈折率を持つ均質な光学
材料を用いた時にi面で発生する収差量、σHS (i)は屈
折率分布型レンズを用いることによつてi面における屈
折率変化で屈折量が変わることによる収差補正頂、σHT
(i)は屈折率分布型レンズを用いることによつてi面か
ら(i+1)面に光線が伝播する際光線が曲線を描くこ
とによつて発生する収差量である。
Where σ S (i) is the amount of aberration that occurs in the i-plane when a homogeneous optical material having the refractive index at the apex of the lens is used, and σ HS (i) is obtained by using a gradient index lens. Aberration correction by changing the amount of refraction due to the change in refractive index at σ HT
(i) is the amount of aberration caused by the light beam drawing a curve when the light beam propagates from the i-th surface to the (i + 1) -plane by using the gradient index lens.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したようにまた実施例から明らかなよ
うに、本発明のズームレンズは、4群ズーム方式を採用
しその構成を適切なものとすると共にアキシヤル型の屈
折率分布型レンズを用いることによつて、2倍を越える
変倍率を有しながらも収差変動が少なくしかもレンズシ
ヤツターカメラ等に組み込むことを可能にするコンパク
トなものになし得た。
As described above in detail and as apparent from the embodiments, the zoom lens of the present invention adopts a four-group zoom system, has an appropriate configuration, and uses an axial type gradient index lens. As a result, it is possible to obtain a compact one that has a zoom ratio of more than 2 times, has little aberration variation, and can be incorporated in a lens shutter camera or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は、夫々本発明のズームレンズの実施
例1乃至実施例4の断面図、第5図乃至第8図は夫々本
発明の実施例1乃至実施例4の収差曲線図である。
1 to 4 are sectional views of Examples 1 to 4 of the zoom lens of the present invention, and FIGS. 5 to 8 are aberration curve diagrams of Examples 1 to 4 of the present invention, respectively. Is.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力の第1レンズ
群と、負の屈折力の第2レンズ群と、正の屈折力の第3
レンズ群と、負の屈折力の第4レンズ群とよりなり、ワ
イド端からテレ端への変倍の際に前記4つのレンズ群が
各々光軸上で物体側に移動し、少なくとも1つのレンズ
群中に少なくとも1つの光軸方向に屈折率分布を有する
屈折率分布型レンズを設け、以下の条件を満足するコン
パクトな高変倍率ズームレンズ。 (1)0.75<f4/fW<2 但し、fWはワイド端における全系の焦点距離、f4は第4
レンズ群の焦点距離である。
1. A first lens group having a positive refracting power, a second lens group having a negative refracting power, and a third lens group having a positive refracting power in order from the object side.
A lens unit and a fourth lens unit having a negative refractive power, and each of the four lens units moves toward the object side along the optical axis during zooming from the wide end to the tele end, and at least one lens A compact high-magnification zoom lens in which at least one gradient index lens having a gradient index distribution in the optical axis direction is provided in the group, and which satisfies the following conditions. (1) 0.75 <f 4 / f W <2 where f W is the focal length of the entire system at the wide end and f 4 is the fourth
It is the focal length of the lens group.
【請求項2】以下の条件を満足する特許請求の範囲
(1)のコンパクトな高変倍率ズームレンズ。 (2)1<β4T/β4W<3 但し、β4Wは広角端における第4レンズ群の横倍率、β
4Tは望遠端における第4レンズ群の横倍率である。
2. A compact high-magnification zoom lens according to claim 1, which satisfies the following condition. (2) 1 <β 4T / β 4W <3 where β 4W is the lateral magnification of the fourth lens group at the wide-angle end, β
4T is the lateral magnification of the fourth lens group at the telephoto end.
【請求項3】以下の条件を満足する特許請求の範囲
(2)のコンパクトな高変倍率ズームレンズ。 (3)|β3W|<0.75 (4)0.5<β3T/β3W<1.5 但し、β3W,β3Tは夫々広角端,望遠端における第3レ
ンズ群の横倍率である。
3. A compact high variable power zoom lens according to claim 2, which satisfies the following condition. (3) | β 3W | <0.75 (4) 0.5 <β 3T / β 3W <1.5 where β 3W and β 3T are lateral magnifications of the third lens group at the wide-angle end and the telephoto end, respectively.
【請求項4】以下の条件を満足する特許請求の範囲
(1)、(2)又は(3)のコンパクトな高変倍率ズー
ムレンズ。 (5)ΔnA<0.15 (6)|n1・fW|<3.0 但し、ΔnAは非軸上での物体側面頂から像側面頂の間で
の最大屈折率差である。
4. A compact high-magnification zoom lens according to claim 1, which satisfies the following conditions. (5) Δn A <0.15 (6) | n 1 · f W | <3.0 where Δn A is the maximum refractive index difference between the apex of the object side surface and the apex of the image side surface on the off-axis.
JP61306624A 1986-12-24 1986-12-24 Compact high-magnification zoom lens Expired - Lifetime JPH0833515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306624A JPH0833515B2 (en) 1986-12-24 1986-12-24 Compact high-magnification zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306624A JPH0833515B2 (en) 1986-12-24 1986-12-24 Compact high-magnification zoom lens

Publications (2)

Publication Number Publication Date
JPS63159818A JPS63159818A (en) 1988-07-02
JPH0833515B2 true JPH0833515B2 (en) 1996-03-29

Family

ID=17959329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306624A Expired - Lifetime JPH0833515B2 (en) 1986-12-24 1986-12-24 Compact high-magnification zoom lens

Country Status (1)

Country Link
JP (1) JPH0833515B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773131B2 (en) * 1988-03-31 1998-07-09 ミノルタ株式会社 Compact high-magnification zoom lens system
JP2811668B2 (en) * 1988-01-08 1998-10-15 ミノルタ株式会社 Zoom lens
JP2811669B2 (en) * 1988-01-11 1998-10-15 ミノルタ株式会社 Zoom lens
US4978204A (en) * 1988-09-08 1990-12-18 Asahi Kogaku Kogyo Kabushik Kaisha High zoom-ratio zoom lens system for use in a compact camera
DE3943741C2 (en) * 1988-09-08 1996-02-22 Asahi Optical Co Ltd Zoom objective lens with wide range focal length
JP2639983B2 (en) * 1988-10-11 1997-08-13 オリンパス光学工業株式会社 Refractive index distribution type lens
US5033832A (en) * 1989-04-28 1991-07-23 Asahi Kogaku Kogyo K.K. High zoom-ratio lens system for covering wide angle for compact camera
US5117309A (en) * 1989-06-15 1992-05-26 Olympus Optical Co., Ltd. Vari-focal lens system having graded refractive index lens
JP3136151B2 (en) * 1990-02-28 2001-02-19 オリンパス光学工業株式会社 Zoom lens
JPH0467114A (en) * 1990-07-09 1992-03-03 Olympus Optical Co Ltd Variable power lens
JP2915987B2 (en) * 1990-10-30 1999-07-05 旭光学工業株式会社 High-power zoom lens for compact cameras covering a wide angle
JP3149227B2 (en) * 1991-09-13 2001-03-26 旭光学工業株式会社 Zoom lens
JPH0588085A (en) * 1991-09-24 1993-04-09 Asahi Optical Co Ltd Zoom lens
JPH05107478A (en) * 1991-10-11 1993-04-30 Asahi Optical Co Ltd Zoom lens
JP3133435B2 (en) * 1991-10-22 2001-02-05 旭光学工業株式会社 Zoom lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156315A (en) * 1984-08-28 1986-03-22 Minolta Camera Co Ltd Supercontact zoom lens system
JPS61126515A (en) * 1984-11-26 1986-06-14 Canon Inc Lens with variable focal length

Also Published As

Publication number Publication date
JPS63159818A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
JP2619632B2 (en) Compact high-magnification zoom lens
JP3395169B2 (en) Zoom lens with anti-vibration function
US6320698B1 (en) Zoom lens with vibration reduction function
JP3155884B2 (en) Zoom lens
JP3200925B2 (en) Zoom lens with wide angle of view
JPH09325274A (en) Zoom lens
JP4356040B2 (en) Long zoom lens with anti-vibration function
JPH05157965A (en) Wide-angle lens
JPH06337354A (en) Zoom lens
JPH05188294A (en) Inverse telephoto type large-aperture wide-angle lens
JP3204703B2 (en) Zoom lens
JP3849129B2 (en) Zoom lens
JPH0868941A (en) High-magnification zoom lens
JP3264949B2 (en) Zoom lens with short overall length
JPH0833515B2 (en) Compact high-magnification zoom lens
US6002527A (en) Compact high-zoom-ratio zoom lens
JPH07199070A (en) Zoom lens
JPH10111457A (en) Zoom lens
JP3536128B2 (en) Zoom lens with anti-vibration function
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JPH07287168A (en) Zoom lens with high power variation rate
JP3184581B2 (en) Zoom lens
US5808810A (en) Compact rear focusing zoom lens system
JPH05107477A (en) Telescoping zoom lens constructed with five groups of lenses
JPH095626A (en) Variable power optical system