JPH08334485A - Method for inspecting fluid passage using radiation thermometer - Google Patents

Method for inspecting fluid passage using radiation thermometer

Info

Publication number
JPH08334485A
JPH08334485A JP16712295A JP16712295A JPH08334485A JP H08334485 A JPH08334485 A JP H08334485A JP 16712295 A JP16712295 A JP 16712295A JP 16712295 A JP16712295 A JP 16712295A JP H08334485 A JPH08334485 A JP H08334485A
Authority
JP
Japan
Prior art keywords
fluid passage
radiation thermometer
hot water
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16712295A
Other languages
Japanese (ja)
Other versions
JP2739891B2 (en
Inventor
Kazuo Kusaka
和夫 日下
Masahiro Sato
政裕 佐藤
Makoto Tadano
真 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP7167122A priority Critical patent/JP2739891B2/en
Publication of JPH08334485A publication Critical patent/JPH08334485A/en
Application granted granted Critical
Publication of JP2739891B2 publication Critical patent/JP2739891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To provide a fluid passage inspection method by which a structure with a fluid passage formed therein can be easily inspected for constrictions, blockage, etc., in the fluid passage from the outside of the structure using a radiation thermometer with high accuracy. CONSTITUTION: A subject 1 for inspection, with a fluid passage 5 formed therein, is put on a turntable 2, and after the subject for inspection is made to have a uniform temperature throughout by introducing cooling water of a fixed temperature into the fluid passage from the outside, hot water of a fixed temperature is introduced. As the subject 1 for inspection is rotated with the fluid passage 5 filled with the hot water, the temperature distribution of its outer surface is measured using a radiation thermometer 22 so as to measure the temperature of the overall periphery and to determine the positions of defects in the fluid passage based on positions where local low-temperature portions exist.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物内部に形成され
ている流体通路の欠陥を検査する方法、特に、前記流体
通路の狭窄又は閉塞等の有無を、構造物の外側から放射
温度計を用いて検査する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a fluid passage formed inside a structure for defects, and more particularly to a radiation thermometer for determining whether or not the fluid passage is narrowed or blocked. It relates to the method of inspecting using.

【0002】[0002]

【従来の技術】従来、原子力設備における一次及び二次
冷却系や、熱交換器等の構造物においては、内部に多数
の複雑に入り組んだ冷却管等の流体通路が形成されてい
る。また、繰り返し使用する再生冷却型のロケットエン
ジンの燃焼器においても、燃焼器内部に冷却媒体を通す
ための流体通路が形成されている。前記のような流体通
路に狭窄や閉塞が生じると、冷却不良等による構造物の
破損につながる大事故を引き起こすことになる。従っ
て、前記構造物の破損事故を未然に防止するためには、
前記流体通路の狭窄や閉塞等の欠陥の有無を正確に検査
する必要がある。
2. Description of the Related Art Conventionally, in primary and secondary cooling systems in nuclear facilities, and structures such as heat exchangers, a large number of complicated fluid passages such as cooling pipes are formed inside. Further, even in a regenerator-type rocket engine combustor that is repeatedly used, a fluid passage for passing a cooling medium is formed inside the combustor. If the fluid passage is constricted or blocked as described above, it causes a serious accident that may damage the structure due to poor cooling or the like. Therefore, in order to prevent damage accidents of the structure,
It is necessary to accurately inspect the presence or absence of defects such as constriction or blockage of the fluid passage.

【0003】ところで、従来より、管路等の流体通路を
検査する場合には、管路の一端側から水等の流体を流し
込んで、他端側から流出させる方法が用いられている。
前記の方法によって、管路内部の閉塞や、管路途中での
亀裂等を肉眼で検査することができる。しかしながら、
熱交換器の冷却管や、前記再生冷却型のロケットエンジ
ンの燃焼器等の構造物内部に形成されている流体通路
は、細かく入り組んでいる上に複雑に分岐しているた
め、前述したような、流体通路内部に直接水等の流体を
通す検査方法では、流体通路の内部に生じている狭窄や
閉塞等の欠陥が生じている場所を発見することができな
いので、その場合には、X線や超音波等によって間接的
に検査を行う必要がある。
By the way, conventionally, when inspecting a fluid passage such as a pipeline, a method has been used in which a fluid such as water is poured from one end of the pipeline and allowed to flow out from the other end.
According to the method described above, it is possible to visually inspect the inside of the conduit for a blockage, a crack in the middle of the conduit, and the like. However,
Since the cooling pipes of the heat exchanger and the fluid passages formed inside the structure such as the regenerative cooling type rocket engine combustor are finely intricate and complicatedly branched, as described above. In an inspection method in which a fluid such as water is directly passed inside the fluid passage, it is not possible to find a location where a defect such as a constriction or blockage occurring inside the fluid passage is found. It is necessary to indirectly inspect by ultrasonic waves or ultrasonic waves.

【0004】また、直接肉眼で検査する代わりに、例え
ば、特開平6−58892号公報に開示されているよう
に、放射温度計を用いて検査を行う技術も提案されてい
る。これは、管体の内部に圧力水を充満し、その後、管
体内から圧力水を排出した後に、放射温度計によって、
管体表面における放射温度を測定するものであり、管体
に亀裂のような欠陥があると、内部の圧力水が、亀裂か
ら管体の表面に漏水する結果、管体表面全体の温度を測
定すると、前記漏水個所の放射温度は、他の部分よりも
低くなるため、肉眼では確認が困難な微小な亀裂の有無
が判別できるというものである。
Also, instead of the direct visual inspection, there has been proposed a technique of performing the inspection using a radiation thermometer, as disclosed in, for example, Japanese Patent Application Laid-Open No. 6-58892. This is because after filling the inside of the pipe with pressure water and then discharging the pressure water from the inside of the pipe, a radiation thermometer
It measures the radiant temperature on the surface of the pipe, and if the pipe has a defect such as a crack, the pressure water inside leaks to the surface of the pipe from the crack, and as a result, the temperature of the entire surface of the pipe is measured. Then, since the radiation temperature at the water leakage point becomes lower than that at other portions, it is possible to determine the presence or absence of minute cracks which are difficult to confirm with the naked eye.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記公
報等に開示されている技術では、流体通路の亀裂等を検
査することができたとしても、構造物の内部の流体通路
の狭窄や閉塞等の欠陥を検査することができない問題点
があり、従来構造物の内部の流体通路の狭窄や閉塞を、
簡単に且つ確実に発見できる検査方法は未だ知られてい
ない。
However, in the technique disclosed in the above-mentioned publications, even if the fluid passage can be inspected for cracks or the like, the fluid passage inside the structure may be narrowed or blocked. There is a problem that defects can not be inspected, and narrowing or blocking of the fluid passage inside the conventional structure,
An inspection method that can be easily and surely found is not yet known.

【0006】ところで、前記再生冷却型のロケットエン
ジンは、再使用型として将来の軌道変換用エンジンに適
用可能であり、その開発試験においては、地上での燃焼
試験を繰り返し行って、その耐久性や信頼性を確認する
必要がある。再使用型エンジンの燃焼器は、繰り返し高
温負荷を受けるため、燃焼器の内部には冷却媒体を通す
ための冷却溝が多数複雑に形成されている。このような
再生冷却型の冷却溝を有する燃焼器は、始めに内筒を製
作し、内筒の外面に、冷却媒体が流れる冷却溝を加工
し、次いで、該冷却溝にワックスを充填した状態で外筒
を形成し、最後に溶剤でワックスを除去して完成させて
いる。しかしながら、前記冷却溝は、前記のように複雑
に屈曲し、しかも断面積が小さいため、冷却溝のワック
ス除去が不完全となる場合がある。従来、燃焼器の完成
後に、X線や超音波を用いた検査方法によって、前記冷
却溝の状態を検査しているが、ワックスの残留を検出す
ることは不可能であった。
By the way, the regenerative cooling type rocket engine can be applied to a future orbit conversion engine as a reusable type, and in its development test, a combustion test on the ground is repeated to determine its durability and durability. It is necessary to confirm reliability. Since the combustor of the reusable engine is repeatedly subjected to a high temperature load, many cooling grooves for passing a cooling medium are complicatedly formed inside the combustor. A combustor having such a regenerative cooling type cooling groove has a state in which an inner cylinder is first manufactured, a cooling groove through which a cooling medium flows is processed on the outer surface of the inner cylinder, and then the cooling groove is filled with wax. The outer cylinder is formed with and finally the wax is removed with a solvent to complete the process. However, since the cooling groove is complicatedly bent and the cross-sectional area is small as described above, the wax removal of the cooling groove may be incomplete. Conventionally, the state of the cooling groove is inspected by an inspection method using X-rays or ultrasonic waves after the completion of the combustor, but it is impossible to detect the residual wax.

【0007】前記のように再使用型エンジンの燃焼器
は、繰り返し高温負荷を受けるため、冷却溝がワックス
残留やサイクル疲労により詰まったり損傷すると、重大
な事故を引き起こすことになる。そのため、冷却溝の詰
まりや損傷を事前に発見して、事故を未然に防ぐことが
必要である。
As described above, the reusable engine combustor is repeatedly subjected to a high temperature load, so that if the cooling groove is clogged or damaged due to wax residue or cycle fatigue, a serious accident will occur. Therefore, it is necessary to detect clogging or damage of the cooling groove in advance to prevent an accident.

【0008】そこで、本発明は、構造物の内部に形成さ
れている流体流路が例え複雑で且つ断面積が小さくて
も、該流体通路の狭窄や閉塞等の欠陥の有無を、構造物
の外部から簡単な装置により高精度且つ容易に検査する
ことのできる流体通路検査方法を提供することを目的と
する。
Therefore, according to the present invention, even if the fluid passage formed inside the structure is complicated and has a small cross-sectional area, the presence or absence of a defect such as constriction or blockage of the fluid passage can be checked. An object of the present invention is to provide a fluid passage inspection method capable of highly accurately and easily inspecting from the outside with a simple device.

【0009】[0009]

【課題を解決するための手段】前記目的を達成する本発
明の放射温度計による流体通路検査方法は、内部に流体
通路が形成された被検査物の前記流体通路内に、外部か
ら一定温度の温水を導入し、該流体通路が温水で満たさ
れている状態の被検査物の外面の温度分布を放射温度計
によって計測し、局所的な低温部分の存在位置に基づい
て、流体通路の欠陥位置を判定することを特徴とするも
のである。前記流体通路に温水を導入する前に、外部か
ら一定温度の冷却水を導入して被検査物全体の温度を均
一化してから温水を導入するようにするのが望ましい。
A method for inspecting a fluid passage using a radiation thermometer according to the present invention, which achieves the above-mentioned object, has a constant temperature from the outside in the fluid passage of an object to be inspected in which a fluid passage is formed. The hot water is introduced, and the temperature distribution on the outer surface of the object to be inspected in a state where the fluid passage is filled with hot water is measured by a radiation thermometer, and the defect position of the fluid passage is determined based on the local position of the low temperature portion. Is determined. Before introducing hot water into the fluid passage, it is desirable to introduce cooling water having a constant temperature from the outside to make the temperature of the entire inspection object uniform and then introduce the hot water.

【0010】また、前記被検査物の外面の温度分布計測
は、被検査物をターンテーブルに載せて回転させること
により、前記放射温度計による被検査物外面の計測位置
を移動させて容易に全周に渡って行うことができる。そ
して、本発明の放射温度計による流体通路検査方法は、
前記被検査物がロケットエンジンの燃焼器であり、ま
た、前記流体通路は、前記燃焼器の内部に形成されてい
る冷却溝である場合に、特に好適である。
The temperature distribution of the outer surface of the object to be inspected can be easily measured by placing the object to be inspected on a turntable and rotating it to move the measurement position of the outer surface of the object to be inspected by the radiation thermometer. It can be done around the lap. And, the fluid passage inspection method by the radiation thermometer of the present invention,
It is particularly suitable when the inspection object is a rocket engine combustor and the fluid passage is a cooling groove formed inside the combustor.

【0011】[0011]

【作用】被検査物の流体通路内に、外部から一定温度の
冷却水を導入することによって、被検査物全体の温度を
均一な温度に調整することができ、全域が同一の温度条
件で温水を導入することができる。そして、冷却水によ
って全体の温度が均一となった被検査物の流体通路内
に、温水を導入することによって、流体通路内の冷却水
は、温水によって置換されて、被検査物の外部に排除さ
れる。
By introducing the cooling water having a constant temperature from the outside into the fluid passage of the object to be inspected, the temperature of the entire object to be inspected can be adjusted to a uniform temperature. Can be introduced. Then, by introducing hot water into the fluid passage of the inspection object whose overall temperature is made uniform by the cooling water, the cooling water in the fluid passage is replaced by the hot water and eliminated to the outside of the inspection object. To be done.

【0012】この際、被検査物内の温水が行き渡った部
分は、温度が上昇するが、流体通路内に、狭窄や閉塞等
の欠陥部分が存在すると、その部分への温水の流通が不
良になり、温度上昇が起こらず、他の部分と比較して低
温となっている。その状態にある被検査物の外面の温度
を放射温度計によって外部から無接触で容易に計測する
ことができる。温度計測は、被検査物の外面の検査が必
要な領域内について行い、その温度分布から、局所的な
低温部分の存在位置に基づいて、流体通路の欠陥位置を
判定する。
At this time, the temperature rises in the portion of the inspection object to which the hot water has spread, but if there is a defective portion such as a constriction or blockage in the fluid passage, the flow of the hot water to that portion will be poor. The temperature does not rise and the temperature is lower than other parts. The temperature of the outer surface of the inspection object in that state can be easily measured from the outside without contact by a radiation thermometer. The temperature measurement is performed in a region where the outer surface of the object to be inspected needs to be inspected, and the defect position of the fluid passage is determined from the temperature distribution based on the local position of the low temperature portion.

【0013】被検査物外面の検査を行う領域全体につい
て温度計測を行うために、放射温度計の計測位置を移動
させる必要があるが、被検査物をターンテーブル等に載
置して放射温度計に対して回転させて、計測位置を移動
させることによって全周の温度計測を効率的に行うこと
ができる。従って、本発明の方法によれば、熱交換器
や、再生冷却型ロケットエンジンの燃焼器等の構造物の
内部に形成されている流体通路の、狭窄や閉塞等の欠陥
の有無を簡単な装置により短時間に正確に検査すること
ができる。本発明の検査方法は、特に、被検査物とし
て、ロケットエンジンの燃焼器内に設けられている複雑
微細な冷却溝の狭窄や閉塞等の欠陥を検査する方法とし
て、特に好適である。
In order to measure the temperature of the entire area of the outer surface of the object to be inspected, it is necessary to move the measurement position of the radiation thermometer. However, the object to be inspected is placed on a turntable or the like and the radiation thermometer is placed. By rotating with respect to and moving the measurement position, it is possible to efficiently measure the temperature of the entire circumference. Therefore, according to the method of the present invention, it is possible to easily determine the presence or absence of a defect such as constriction or blockage in a fluid passage formed inside a structure such as a heat exchanger or a combustor of a regenerative cooling rocket engine. Therefore, it is possible to accurately inspect in a short time. The inspection method of the present invention is particularly suitable as an inspection object for inspecting defects such as confinement and blockage of complicated fine cooling grooves provided in the combustor of a rocket engine.

【0014】[0014]

【実施例】図1は、本発明の放射温度計による流体通路
検査方法の1実施例を示す図であって、同図に示す実施
例では、被検査物は再生冷却型ロケットエンジンの燃焼
器1であり、図示しない回転駆動装置によって回転駆動
される回転テーブル2上に載置されて検査される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an embodiment of a fluid passage inspection method using a radiation thermometer according to the present invention. In the embodiment shown in FIG. 1 and is placed on a rotary table 2 which is rotationally driven by a rotary drive device (not shown) and inspected.

【0015】前記燃焼器1は、内筒3と外筒4とから構
成されており、内筒3の外周面には、冷却溝5が形成さ
れている。冷却溝5は、外筒4の内周面との間で冷却媒
体の通路を構成しており、前記通路に冷却媒体を通し
て、燃焼ガスによって内筒3の内周面が高温に晒され
る、燃焼器を冷却するように構成されている。
The combustor 1 is composed of an inner cylinder 3 and an outer cylinder 4, and a cooling groove 5 is formed on the outer peripheral surface of the inner cylinder 3. The cooling groove 5 forms a passage of a cooling medium with the inner peripheral surface of the outer cylinder 4, and the cooling medium is passed through the passage to expose the inner peripheral surface of the inner cylinder 3 to a high temperature by combustion gas. Configured to cool the vessel.

【0016】前記の燃焼器1は、その製造工程におい
て、まず内筒3が形成され、また、内筒3の外周面には
冷却溝5が形成される。そして、次の工程で、冷却溝5
にワックスが充填され、さらに次の工程で、内筒3の外
周面を包囲して、外筒4が形成される。そして、最後の
工程で、冷却溝5内のワックスが溶剤によって除去され
て燃焼器1が完成する。前記最後の工程で、冷却溝5内
のワックスの除去が完全に行われていないと、冷却媒体
の通路が狭窄や閉塞した欠陥箇所が生じることになり、
また、内筒3の外周面に冷却溝5を形成する工程で、冷
却溝5の形成状態に不良を生じた場合にも、前記と同様
な欠陥個所を生じることとなる。
In the manufacturing process of the combustor 1, the inner cylinder 3 is first formed, and the cooling groove 5 is formed on the outer peripheral surface of the inner cylinder 3. Then, in the next step, the cooling groove 5
Is filled with wax, and in the next step, the outer cylinder 4 is formed so as to surround the outer peripheral surface of the inner cylinder 3. Then, in the last step, the wax in the cooling groove 5 is removed by the solvent, and the combustor 1 is completed. If the wax in the cooling groove 5 is not completely removed in the last step, a defective portion in which the passage of the cooling medium is narrowed or blocked occurs,
In addition, in the process of forming the cooling groove 5 on the outer peripheral surface of the inner cylinder 3, even if a defect occurs in the formation state of the cooling groove 5, the same defective portion as described above will occur.

【0017】前述したような欠陥を検査するために、燃
焼器1の冷却溝5の入口には、給水管6が着脱自在に連
結される。前記給水管6の上流側には、三方電磁弁7が
連結されている。前記三方電磁弁7には、冷却水供給管
8と温水供給管9のそれぞれの一端側が接続されてい
る。前記冷却水供給管8の他端側は、冷却水供給バルブ
10を介して冷却水タンク12へ接続されており、同様
に前記温水供給管9の他端側は、温水供給バルブ11を
介して、温水タンク13へ接続されている。前記冷却水
供給バルブ10と温水供給バルブ11により冷却水と温
水の流量をそれぞれ調整することができる。
In order to inspect the defects as described above, a water supply pipe 6 is detachably connected to the inlet of the cooling groove 5 of the combustor 1. A three-way solenoid valve 7 is connected to the upstream side of the water supply pipe 6. One end sides of a cooling water supply pipe 8 and a hot water supply pipe 9 are connected to the three-way solenoid valve 7. The other end of the cooling water supply pipe 8 is connected to a cooling water tank 12 via a cooling water supply valve 10, and similarly the other end of the hot water supply pipe 9 is connected via a hot water supply valve 11. , Is connected to the hot water tank 13. The flow rates of the cooling water and the hot water can be adjusted by the cooling water supply valve 10 and the hot water supply valve 11, respectively.

【0018】冷却水タンク12及び温水タンク13内に
は、それぞれ一定温度に維持された状態で、冷却水及び
温水が貯留されている。冷却水タンク12の上部には、
冷却水タンク背圧供給管14が連結され、また、温水タ
ンク13の上部には、温水タンク背圧供給管15が連結
されている。
Cooling water and hot water are stored in the cooling water tank 12 and the hot water tank 13 while being maintained at a constant temperature. At the top of the cooling water tank 12,
The cooling water tank back pressure supply pipe 14 is connected, and the hot water tank back pressure supply pipe 15 is connected to the upper part of the hot water tank 13.

【0019】冷却水タンク背圧供給管14と温水タンク
背圧供給管15とは、連通管18によって、共通に連結
された圧力調整弁19とガス供給バルブ20とを介し
て、適宜の加圧ガス供給源例えば、窒素ガス供給源へ連
結されている。また、冷却水タンク背圧供給管14と温
水タンク背圧供給管15との上端側には、それぞれ、冷
却水タンク背圧開放バルブ16と温水タンク背圧開放バ
ルブ17とが設けられている。前記冷却水タンク背圧開
放バルブ16と温水タンク背圧開放バルブ17は、冷却
水タンク12と温水タンク13内の圧力を必要に応じて
開放するためのものである。
The cooling water tank back pressure supply pipe 14 and the hot water tank back pressure supply pipe 15 are appropriately pressurized by a communication pipe 18 via a pressure regulating valve 19 and a gas supply valve 20 which are commonly connected. It is connected to a gas supply source, for example, a nitrogen gas supply source. Further, a cooling water tank back pressure release valve 16 and a warm water tank back pressure release valve 17 are provided on the upper ends of the cooling water tank back pressure supply pipe 14 and the hot water tank back pressure supply pipe 15, respectively. The cooling water tank back pressure release valve 16 and the hot water tank back pressure release valve 17 are for opening the pressure in the cooling water tank 12 and the hot water tank 13 as needed.

【0020】回転テーブル2上に載置されている燃焼器
1の側方には、放射温度計22が設置されており、前記
放射温度計22によって、燃焼器1の外筒4の温度が計
測されるようになっている。放射温度計22から得られ
る温度情報は、信号ケーブル23を介してリアルタイム
レコーダー21に入力されて、燃焼器1の外側の温度分
布が計測できるようになっている。
A radiation thermometer 22 is installed at the side of the combustor 1 placed on the rotary table 2, and the temperature of the outer cylinder 4 of the combustor 1 is measured by the radiation thermometer 22. It is supposed to be done. The temperature information obtained from the radiation thermometer 22 is input to the real-time recorder 21 via the signal cable 23 so that the temperature distribution outside the combustor 1 can be measured.

【0021】前述したように構成されている装置によっ
て、燃焼器1の検査を行う場合には、回転テーブル2を
静止させた状態で、その上に、被検査物である燃焼器1
を載置固定する。次に、給水管6を冷却溝5の出口に接
続する。この際、冷却水供給管8と温水供給管9の途中
にそれぞれ設けられている冷却水供給バルブ10と温水
供給バルブ11は共に閉じられている。また、冷却水タ
ンク背圧供給管14、温水タンク背圧供給管15、及
び、ガス供給バルブ20は共に閉じた状態にしておく。
When the combustor 1 is inspected by the apparatus configured as described above, the combustor 1 which is an object to be inspected is placed on the rotary table 2 while the rotary table 2 is stationary.
Place and fix. Next, the water supply pipe 6 is connected to the outlet of the cooling groove 5. At this time, both the cooling water supply valve 10 and the warm water supply valve 11 provided in the middle of the cooling water supply pipe 8 and the hot water supply pipe 9 are closed. Further, the cooling water tank back pressure supply pipe 14, the hot water tank back pressure supply pipe 15, and the gas supply valve 20 are all closed.

【0022】前記の状態で、ガス供給バルブ20を開く
と、図示していない窒素ガス供給源から、加圧された窒
素ガスがガス供給バルブ20、圧力調整弁19を通っ
て、連通管18に流入する。連通管18内に流入した窒
素ガスは、さらに、冷却水タンク背圧供給管14及び温
水タンク背圧供給管15をそれぞれ経由して冷却水タン
ク12及び温水タンク13内に流入し、冷却水タンク1
2と温水タンク13内の冷却水及び温水の水面をそれぞ
れ一定圧力に加圧する。前記窒素ガス供給源から導入さ
れる窒素ガスの圧力は、ガス供給バルブ20の下流側に
配置されている圧力調整弁19によって調整することが
できる。冷却水タンク12及び温水タンク13内を加圧
することによって、冷却溝5が微細構造であっても確実
に送水することができる。
When the gas supply valve 20 is opened in the above state, pressurized nitrogen gas from a nitrogen gas supply source (not shown) passes through the gas supply valve 20 and the pressure adjusting valve 19 and reaches the communication pipe 18. Inflow. The nitrogen gas flowing into the communication pipe 18 further flows into the cooling water tank 12 and the warm water tank 13 via the cooling water tank back pressure supply pipe 14 and the hot water tank back pressure supply pipe 15, respectively, and the cooling water tank 1
2 and the surfaces of the cooling water and the hot water in the hot water tank 13 are pressurized to a constant pressure. The pressure of the nitrogen gas introduced from the nitrogen gas supply source can be adjusted by the pressure adjusting valve 19 arranged on the downstream side of the gas supply valve 20. By pressurizing the insides of the cooling water tank 12 and the hot water tank 13, water can be reliably sent even if the cooling groove 5 has a fine structure.

【0023】三方電磁弁7を閉じた位置に切り替えてお
き、冷却水供給バルブ10と温水供給バルブ11とを開
くと、冷却水タンク12及び温水タンク13内の温水と
冷却水とがそれぞれ、窒素ガスの圧力によって送り出さ
れ、冷却水供給管8と温水供給管9とを通って三方電磁
弁7の位置まで到達する。前記の操作によって、被検査
物である燃焼器1の検査を行うための準備が完了する。
When the three-way solenoid valve 7 is switched to the closed position and the cooling water supply valve 10 and the hot water supply valve 11 are opened, the hot water and the cooling water in the cooling water tank 12 and the hot water tank 13 respectively become nitrogen. It is sent out by the pressure of the gas and reaches the position of the three-way solenoid valve 7 through the cooling water supply pipe 8 and the hot water supply pipe 9. By the above operation, the preparation for inspecting the combustor 1 as the inspection object is completed.

【0024】次に、三方電磁弁7を、給水管6が冷却水
供給管8と連通する側に切り替えることによって、給水
管6を通って燃焼器1の冷却溝5内に冷却水が導入され
る。冷却水は、燃焼器1内部の冷却溝5を通ってその下
方から外部へ排水されるが、燃焼器1の各部の温度が均
一化になるまで冷却水を所定時間流し続ける。
Next, by switching the three-way solenoid valve 7 to the side where the water supply pipe 6 communicates with the cooling water supply pipe 8, the cooling water is introduced into the cooling groove 5 of the combustor 1 through the water supply pipe 6. It The cooling water passes through the cooling groove 5 inside the combustor 1 and is discharged to the outside from below, but the cooling water is kept flowing for a predetermined time until the temperature of each part of the combustor 1 becomes uniform.

【0025】冷却溝5内を通過する冷却水によって、燃
焼器1の各部の温度が均一になったら、三方電磁弁7を
切り替え、給水管6を温水供給管9に連通する。温水タ
ンク13内の温水は、温水供給管9と給水管6とを経由
して燃焼器1の冷却溝5内へ導入される。
When the temperature of each part of the combustor 1 becomes uniform due to the cooling water passing through the cooling groove 5, the three-way solenoid valve 7 is switched to connect the water supply pipe 6 to the hot water supply pipe 9. The hot water in the hot water tank 13 is introduced into the cooling groove 5 of the combustor 1 via the hot water supply pipe 9 and the water supply pipe 6.

【0026】冷却溝5内へ導入された温水によって、冷
却溝5内部に充満していた冷却水は冷却溝5の出口から
排除され、一定時間温水を流し続けることによって燃焼
器1は温水によって均一に温められる。
By the hot water introduced into the cooling groove 5, the cooling water filled in the cooling groove 5 is removed from the outlet of the cooling groove 5, and the combustor 1 is made uniform by the hot water by continuously flowing the hot water for a certain time. Be warmed to.

【0027】その後、三方電磁弁7を切り替えて、温水
の供給を停止し、給水管6を燃焼器1の冷却溝5の入口
から外し、回転テーブル2を回転駆動しながら、放射温
度計22によって、燃焼器1の外筒4外周面の温度分布
を計測する。前記温度分布は、リアルタイムレコーダー
21に記録され、高温の部分は赤くなり、また低温の部
分は緑や青となるように視覚化されて、記録紙上に記録
される。従って、狭窄部や閉塞部があると直ぐに判別で
きる。
Thereafter, the three-way solenoid valve 7 is switched to stop the supply of hot water, the water supply pipe 6 is removed from the inlet of the cooling groove 5 of the combustor 1, and the rotary table 2 is driven to rotate while the radiation thermometer 22 is used. The temperature distribution on the outer peripheral surface of the outer cylinder 4 of the combustor 1 is measured. The temperature distribution is recorded on the real-time recorder 21, and is visualized so that the high temperature portion becomes red and the low temperature portion becomes green or blue, and is recorded on the recording paper. Therefore, it is possible to immediately determine that there is a narrowed portion or a closed portion.

【0028】前述した実施例によって、燃焼器の冷却溝
の欠陥を検査する例を説明したが、本発明の放射温度計
による流体通路検査方法は、前記の用途に限定されるも
のではなく、例えば、スクラムエンジンインテーク部や
熱交換器等の込み入った流体通路を有する構造物や、他
の冷却通路を有する構造物における、流体通路の欠陥の
検査に広く用いることができる。
Although the example of inspecting the defect of the cooling groove of the combustor has been described by the above-mentioned embodiment, the method for inspecting the fluid passage by the radiation thermometer of the present invention is not limited to the above-mentioned application, and for example, The present invention can be widely used for inspecting a defect of a fluid passage in a structure having a complicated fluid passage such as a scrum engine intake portion or a heat exchanger, or a structure having another cooling passage.

【0029】また、放射温度計によって、被検査物の外
面の温度分布を計測するために、前述した実施例におい
ては、被検査物が回転対称な形状の燃焼器であるため、
被検査物側を回転させているが、放射温度計側を被検査
物の計測する面に沿って移動させてもよく、また、放射
温度計と被検査物との両方を相対的に移動させて、被検
査物の計測面の温度分布を計測するようにしてもよい。
さらに、前記実施例においては、放射温度計によって検
出された温度分布は、リアルタイムレコーダーによって
記録しているが、CRT等の画像表示装置によって、流
体通路欠陥箇所を直接判別することもできる。
Further, in order to measure the temperature distribution on the outer surface of the object to be inspected by the radiation thermometer, in the above-mentioned embodiment, the object to be inspected is a rotationally symmetrical combustor,
Although the inspection object side is rotated, the radiation thermometer side may be moved along the surface of the inspection object to be measured, or both the radiation thermometer and the inspection object are moved relatively. Then, the temperature distribution on the measurement surface of the inspection object may be measured.
Further, in the above-mentioned embodiment, the temperature distribution detected by the radiation thermometer is recorded by the real-time recorder, but it is also possible to directly discriminate the defective portion of the fluid passage by an image display device such as a CRT.

【0030】[0030]

【発明の効果】以上に説明したように、本発明の放射温
度計による流体通路検査方法によれば、直接検査するこ
とができない、熱交換器の冷却管や、繰り返して使用す
る再生冷却型のロケットエンジンの燃焼器等の構造物内
部に形成されている複雑な流体通路の狭窄や閉塞等の欠
陥を視覚化して検査することができ、しかも簡単な装置
で短時間に簡単に且つ正確に検査することができる。
As described above, according to the fluid passage inspection method by the radiation thermometer of the present invention, the cooling pipe of the heat exchanger which cannot be directly inspected or the regenerative cooling type which is repeatedly used. It is possible to visualize and inspect defects such as constrictions and blockages of complex fluid passages that are formed inside structures such as rocket engine combustors. In addition, simple equipment can inspect quickly and accurately. can do.

【0031】また、本発明の検査方法によれば、ロケッ
トエンジンの燃焼器を製作する際に、従来のX線や超音
波を用いる検査方法によっては、検出が不可能であっ
た、燃焼器の冷却溝中に残留したワックスによる微細な
欠陥も確実に検出できるため、高い信頼性が得られる。
さらに、本発明の検査方法は、流体通路を有する構造物
に対して幅広く適用することができる。
Further, according to the inspection method of the present invention, when manufacturing a combustor of a rocket engine, it is impossible to detect the combustor by the conventional inspection method using X-rays or ultrasonic waves. High reliability can be obtained because minute defects due to the wax remaining in the cooling groove can be reliably detected.
Furthermore, the inspection method of the present invention can be widely applied to structures having a fluid passage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射温度計による流体通路検査方法の
1実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a fluid passage inspection method using a radiation thermometer according to the present invention.

【符号の説明】[Explanation of symbols]

1 燃焼器(被検査物) 2 回転テーブル 3 内筒 4 外筒 5 冷却溝 6 給水管 7 三方電磁弁 8 冷却水供給管 9 温水供給管 10 冷却水供給バ
ルブ 11 温水供給バルブ 12 冷却水タン
ク 13 温水タンク 14 冷却水タン
ク背圧供給管 15 温水タンク背圧供給管 16 冷却水タン
ク背圧開放バルブ 17 温水タンク背圧開放バルブ 18 連通管 19 圧力調整弁 20 ガス供給バ
ルブ 21 リアルタイムレコーダー 22 放射温度計 23 信号ケーブル
1 Combustor (inspection object) 2 Rotary table 3 Inner cylinder 4 Outer cylinder 5 Cooling groove 6 Water supply pipe 7 Three-way solenoid valve 8 Cooling water supply pipe 9 Hot water supply pipe 10 Cooling water supply valve 11 Hot water supply valve 12 Cooling water tank 13 Hot water tank 14 Cooling water tank back pressure supply pipe 15 Hot water tank back pressure supply pipe 16 Cooling water tank back pressure release valve 17 Hot water tank back pressure release valve 18 Communication pipe 19 Pressure adjusting valve 20 Gas supply valve 21 Real time recorder 22 Radiation thermometer 23 signal cable

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に流体通路が形成された被検査物の
前記流体通路内に、外部から一定温度の温水を導入し、
該流体通路が温水で満たされている状態の被検査物の外
面の温度分布を放射温度計によって計測し、局所的な低
温部分の存在位置に基づいて、流体通路の欠陥位置を判
定することを特徴とする放射温度計による流体通路検査
方法。
1. Hot water having a constant temperature is introduced from the outside into the fluid passage of the inspection object having a fluid passage formed therein,
It is possible to measure the temperature distribution of the outer surface of the object to be inspected in a state where the fluid passage is filled with hot water with a radiation thermometer, and determine the defective position of the fluid passage based on the local position of the low temperature portion. A method for inspecting a fluid passage by a characteristic radiation thermometer.
【請求項2】 前記流体通路に温水を導入する前に、外
部から一定温度の冷却水を導入して被検査物全体の温度
を均一化するようにした請求項1記載の放射温度計によ
る流体通路検査方法。
2. The radiation thermometer fluid according to claim 1, wherein before the hot water is introduced into the fluid passage, cooling water having a constant temperature is introduced from the outside to make the temperature of the entire inspection object uniform. Passage inspection method.
【請求項3】 前記被検査物の外面の温度分布計測は、
被検査物を回転させることにより前記放射温度計による
被検査物外面の計測位置を移動させて全周に渡って行う
請求項1又は2記載の放射温度計による流体通路検査方
法。
3. The temperature distribution measurement of the outer surface of the object to be inspected comprises:
The fluid path inspection method by a radiation thermometer according to claim 1 or 2, wherein the measurement position of the outer surface of the object to be inspected by the radiation thermometer is moved by rotating the object to be inspected, and is performed over the entire circumference.
【請求項4】 前記被検査物がロケットエンジンの燃焼
器であり、前記流体通路は、前記燃焼器の外壁内部に形
成されている冷却溝である請求項1、2又は3記載の放
射温度計による流体通路検査方法。
4. The radiation thermometer according to claim 1, 2 or 3, wherein the object to be inspected is a rocket engine combustor, and the fluid passage is a cooling groove formed inside an outer wall of the combustor. Fluid path inspection method by.
JP7167122A 1995-06-09 1995-06-09 Inspection method of cooling groove of combustor by radiation thermometer Expired - Lifetime JP2739891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7167122A JP2739891B2 (en) 1995-06-09 1995-06-09 Inspection method of cooling groove of combustor by radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7167122A JP2739891B2 (en) 1995-06-09 1995-06-09 Inspection method of cooling groove of combustor by radiation thermometer

Publications (2)

Publication Number Publication Date
JPH08334485A true JPH08334485A (en) 1996-12-17
JP2739891B2 JP2739891B2 (en) 1998-04-15

Family

ID=15843853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7167122A Expired - Lifetime JP2739891B2 (en) 1995-06-09 1995-06-09 Inspection method of cooling groove of combustor by radiation thermometer

Country Status (1)

Country Link
JP (1) JP2739891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133845A (en) * 2007-11-02 2009-06-18 Kanto Chem Co Inc Non-destructive inspection method of lining tank
JP2013535000A (en) * 2010-03-17 2013-09-09 サーマル・ウェーブ・イメージング、インク Thermographic detection of internal communication passage blockage
JP2018179955A (en) * 2017-04-06 2018-11-15 株式会社ジェイテクト Processing burn inspection device and processing burn inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120950A (en) * 1984-11-19 1986-06-09 Shimadzu Corp Inspection for inside of piping
JPS63159741A (en) * 1986-12-23 1988-07-02 Hitachi Plant Eng & Constr Co Ltd Detecting method for corrosion part of piping
JPH04279850A (en) * 1991-03-08 1992-10-05 Ishikawajima Harima Heavy Ind Co Ltd Pin hole detector for liquid container
JPH07218459A (en) * 1994-01-28 1995-08-18 Mitsubishi Heavy Ind Ltd Method for detecting inside corrosion of pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120950A (en) * 1984-11-19 1986-06-09 Shimadzu Corp Inspection for inside of piping
JPS63159741A (en) * 1986-12-23 1988-07-02 Hitachi Plant Eng & Constr Co Ltd Detecting method for corrosion part of piping
JPH04279850A (en) * 1991-03-08 1992-10-05 Ishikawajima Harima Heavy Ind Co Ltd Pin hole detector for liquid container
JPH07218459A (en) * 1994-01-28 1995-08-18 Mitsubishi Heavy Ind Ltd Method for detecting inside corrosion of pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133845A (en) * 2007-11-02 2009-06-18 Kanto Chem Co Inc Non-destructive inspection method of lining tank
JP2013535000A (en) * 2010-03-17 2013-09-09 サーマル・ウェーブ・イメージング、インク Thermographic detection of internal communication passage blockage
JP2018179955A (en) * 2017-04-06 2018-11-15 株式会社ジェイテクト Processing burn inspection device and processing burn inspection method

Also Published As

Publication number Publication date
JP2739891B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US8291748B2 (en) Heat exchanger leak testing method and apparatus
US7454956B1 (en) Heat exchanger leak detection using mass gas flow metering
US20110310923A1 (en) Method for non-destructive testing of at least partially open hollow components or system components for tightness in series production
RU2344395C2 (en) Method of detecting leaks in heat exchangers
WO1999019706A1 (en) A method of leak testing an assembled plate type heat exchanger
JPH08334485A (en) Method for inspecting fluid passage using radiation thermometer
Alzheimer Steam Generator Tube Integrity Program: Phase I Report
CA2546644C (en) Method and apparatus for measurement of terminal solid solubility temperature in alloys capable of forming hydrides
CN113409969B (en) Nuclear power plant valve internal leakage fault diagnosis method
KR101947309B1 (en) Gas cooler Modification method
JPH10213532A (en) Corrosion fatigue testing method
Lien et al. Results of Service Test Program on Transition Welds Between Austenitic and Ferritic Steels at the Philip Sporn and Twin Branch Plants
JP3077749B2 (en) Leakage tube identification method for heat exchanger
KR100558513B1 (en) Leak detection device for once-through steam generator by using of gas circulation
JPH0210918B2 (en)
Silber et al. Specimen Testing for Steam Generator Tube Leaks with Measurement of Flow Patterns
JPH04294242A (en) Nondestructive inspection of diverter plate
CA1109739A (en) Leak detection method and apparatus
CN115015377B (en) Magnetic flux leakage internal detection device and detection method before pipeline production
DE4039176C2 (en) Procedure for determining and evaluating damaged pipes in a pipe system
Chung et al. Performance of the CANFLEX fuel bundle under mechanical flow testing
KR20230093831A (en) Leak Detector and Flow Meter For Test Handler and Method for Detecting Leak and Flow Metering using thereof for Test Handler
JPS58196437A (en) Parallel piping
Hauber Infrared inspection method for actively cooled panels
JPH04208833A (en) Device for inspecting leakage of liquid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term