JPH04294242A - Nondestructive inspection of diverter plate - Google Patents
Nondestructive inspection of diverter plateInfo
- Publication number
- JPH04294242A JPH04294242A JP3081236A JP8123691A JPH04294242A JP H04294242 A JPH04294242 A JP H04294242A JP 3081236 A JP3081236 A JP 3081236A JP 8123691 A JP8123691 A JP 8123691A JP H04294242 A JPH04294242 A JP H04294242A
- Authority
- JP
- Japan
- Prior art keywords
- diverter plate
- protective tile
- copper
- protective
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 title description 9
- 238000001816 cooling Methods 0.000 claims abstract description 25
- 230000004927 fusion Effects 0.000 claims abstract description 7
- 230000005855 radiation Effects 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims abstract description 4
- 230000001681 protective effect Effects 0.000 claims description 43
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 29
- 239000003575 carbonaceous material Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 238000009659 non-destructive testing Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000005304 joining Methods 0.000 abstract description 2
- 230000000630 rising effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 22
- 239000000498 cooling water Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005219 brazing Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001066 destructive effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009658 destructive testing Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は核融合炉内に設置される
ダイバータ板の製造時あるいは供用中における非破壊検
査方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructive inspection of a diverter plate installed in a nuclear fusion reactor during manufacture or during use.
【0002】0002
【従来の技術】ダイバータ板の構造は炭素複合材等の炭
素材料によって保護タイルを形成し、これを図4に示す
ように冷却管32に直接ろう付け接合するか、あるいは
図5に示すように銅ブロック33を介してろう付け接合
する構造が有望とされている。BACKGROUND OF THE INVENTION The structure of a divertor plate is to form a protective tile made of carbon material such as a carbon composite material and directly braze it to a cooling pipe 32 as shown in FIG. A structure in which brazing is performed via the copper block 33 is considered to be promising.
【0003】ダイバータ板は10MW/m2以上の高い
熱流束を定常的に受けて温度が上昇するが、保護タイル
の表面温度は1000℃程度以下に抑えることが要求さ
れている。このため炭素材料製保護タイルと銅製冷却管
間、あるいは炭素材料製保護タイルと銅製ブロック間の
ろう付け部の接合状態を良好に保持して接合部の熱抵抗
を十分小さくする必要がある。この接合状態を製造時お
よび/あるいは供用中に検査する方法として従来は、■
破壊検査方法■ 超音波探傷法による検査方法等
の方法が検討されてきた。[0003] Although the diverter plate is constantly subjected to a high heat flux of 10 MW/m2 or more and its temperature rises, it is required that the surface temperature of the protective tile be suppressed to about 1000°C or less. Therefore, it is necessary to maintain a good bonding state of the brazed portion between the carbon material protective tile and the copper cooling pipe, or between the carbon material protective tile and the copper block, so as to sufficiently reduce the thermal resistance of the bonded portion. Conventionally, the method of inspecting this bonding state during manufacturing and/or during service is
Destructive inspection methods ■ Inspection methods using ultrasonic flaw detection and other methods have been studied.
【0004】0004
【発明が解決しようとする課題】しかしながら上記従来
の方法は、それぞれ下記の点において不具合を有するも
のであった。[Problems to be Solved by the Invention] However, each of the above conventional methods has the following drawbacks.
【0005】まず破壊検査方法においては、■ 製品
として完成しているしてダイバータ板自体を全て破壊し
て接合状態を検査することは現実には不可能である。■
供用中に熱サイクルを受けて接合部が変化し、欠陥
が発生した場合に、それを発見し、あるいはその部位を
特定することが困難である。First, in the destructive testing method, (1) It is actually impossible to completely destroy the diverter plate itself after it has been completed as a product to inspect the joint state. ■
When a bonded part changes due to thermal cycling during service and a defect occurs, it is difficult to discover it or specify its location.
【0006】また超音波探傷法による検査方法において
は、■ 炭素材料は超音波の減衰が大きく、検出感度
が非常に悪い。■ 炭素材料(炭素複合材)は非均質
かつ多孔質材料であるため、超音波の乱反射等が生じて
検出を困難にする。■供用中に検査を行うには、放射線
場である炉内に検出器を遠隔操作によって持ち込み、ダ
イバータ板表面に接触させて計測を行うため、手順が非
常に複雑となる。Furthermore, in the ultrasonic flaw detection method, (1) Carbon materials have large attenuation of ultrasonic waves, resulting in very poor detection sensitivity. ■ Carbon materials (carbon composites) are non-homogeneous and porous materials, which causes diffuse reflection of ultrasonic waves, making detection difficult. ■To perform inspections during service, the procedure is extremely complicated, as a detector must be brought into the reactor, which is a radiation field, by remote control and measured by touching the surface of the divertor plate.
【0007】本発明はこのような不具合を解消し、簡潔
な構成と低廉な設備費とによって製造時あるいは供用中
のダイバータ板の保護タイルと冷却管あるいは冷却ブロ
ックとの接合部の接合状態を非破壊で、かつ的確に検査
する方法を提供することを目的としている。[0007] The present invention solves these problems, and by using a simple configuration and low equipment cost, the state of the joint between the protective tile of the diverter plate and the cooling pipe or cooling block can be changed during manufacturing or during service. The purpose is to provide a destructive and accurate inspection method.
【0008】[0008]
【課題を解決するための手段】上記の目的は前記特許請
求の範囲に記載されたダイバータ板の非破壊検査方法に
よって達成される。すなわち、核融合炉内に設置される
、炭素系材料製の保護タイルと該保護タイル中に銅製の
冷却管を貫入接合した構造のダイバータ板、あるいは炭
素系材料製の保護タイルと銅製の冷却ブロックとを接合
した構造のダイバータ板において、前記保護タイルを冷
却管あるいは冷却ブロックの側から加熱し、各被加熱保
護タイルの温度上昇速度を放射温度計等によって測定し
、該測定結果に基づいて接合部の接合状態を検査するダ
イバータ板の非破壊検査方法である。The above object is achieved by a method for non-destructive testing of a diverter plate as set forth in the claims. That is, a diverter plate installed in a nuclear fusion reactor that has a structure in which a protective tile made of carbon-based material and a copper cooling pipe is penetrated and bonded to the protective tile, or a protective tile made of carbon-based material and a cooling block made of copper. In the diverter plate having a structure in which the protective tiles are joined together, the protective tiles are heated from the side of the cooling pipe or the cooling block, the rate of temperature rise of each heated protected tile is measured using a radiation thermometer, etc., and the joining process is performed based on the measurement results. This is a non-destructive testing method for divertor plates that inspects the joint state of parts.
【0009】以下本発明の作用等について実施例に基づ
いて説明する。The effects of the present invention will be explained below based on examples.
【0010】0010
【実施例】ダイバータ板は図4に示す保護タイル31中
に銅製の冷却管(以下銅管と言う。)32を貫入してろ
う付け接合する場合、あるいは図5に示す保護タイル3
1と銅製のブロック(以下銅ブロックと言う。)33を
介してろう付けする場合のいずれにおいても、炉内側に
は30mm角程度の表面積と10mm程度の厚みを有す
る炭素系材料製の保護タイル31を有し、該保護タイル
31の裏面側を銅管32あるいは銅ブロック33とろう
付けし、銅管32内あるいは銅ブロック33内に冷却水
を通過せしめることによって、保護タイル31表面温度
を1000℃以下に保持させている。[Embodiment] The diverter plate is used when a copper cooling pipe (hereinafter referred to as a copper pipe) 32 is inserted into the protective tile 31 shown in FIG. 4 and joined by brazing, or when the protective tile 3
1 and a copper block (hereinafter referred to as the copper block) 33, a protective tile 31 made of carbon-based material having a surface area of about 30 mm square and a thickness of about 10 mm is installed inside the furnace. By brazing the back side of the protective tile 31 with the copper pipe 32 or copper block 33 and letting cooling water pass through the copper pipe 32 or the copper block 33, the surface temperature of the protective tile 31 can be raised to 1000°C. It is kept below.
【0011】保護タイル31と銅管32あるいは銅ブロ
ック33との接合は、通常真空ろう付け法によって行う
が、その際希に完全な接合が行われないことがある。ま
た核融合炉の供用中は繰り返し生ずる熱サイクルによっ
て炭素材料製保護タイルと31銅製冷却部との接合部が
それぞれの熱膨張差によって剥離する可能性がある。[0011] The protective tile 31 and the copper tube 32 or the copper block 33 are usually bonded by vacuum brazing, but in rare cases, complete bonding may not be achieved. Furthermore, during the operation of a nuclear fusion reactor, there is a possibility that the joint between the protective tile made of carbon material and the cooling part 31 made of copper may peel off due to the difference in thermal expansion between them due to repeated thermal cycles.
【0012】図1は本発明に基づいて上記のダイバータ
板の保護タイルと銅製冷却部との接合部を非破壊検査す
る方法の概略系統を示す図で、1はダイバータ板、2は
温度計、3はベーキング系、4はヒータ、5は循環ポン
プ、6はクーラ、7〜10は止弁である。FIG. 1 is a diagram showing a schematic system of a method for non-destructively testing the junction between the protective tile of the diverter plate and the copper cooling part according to the present invention, in which 1 is a diverter plate, 2 is a thermometer, 3 is a baking system, 4 is a heater, 5 is a circulation pump, 6 is a cooler, and 7 to 10 are stop valves.
【0013】核融合炉の供用中は図1の止弁7及び止弁
8を開き、止弁9及び止弁10を閉止してダイバータ板
1の冷却系を構成する。すなわち循環ポンプ5から吐出
された低温の冷却水はダイバータ板1内に流入してプラ
ズマ側からの高い熱流束を受けて温度を上昇させたダイ
バータ板を冷却し、自身の温度を上昇させてクーラ6内
に入る。クーラ6内で他の媒体と熱交換され温度を低下
させた冷却水は再び循環ポンプ5によって加圧され、ダ
イバータ板1に送入される。When the fusion reactor is in service, the stop valve 7 and the stop valve 8 shown in FIG. 1 are opened, and the stop valve 9 and the stop valve 10 are closed to form a cooling system for the diverter plate 1. In other words, the low-temperature cooling water discharged from the circulation pump 5 flows into the divertor plate 1, cools the divertor plate whose temperature has increased due to the high heat flux from the plasma side, and raises its own temperature, causing the cooling water to flow into the divertor plate 1. Enter within 6. The cooling water, whose temperature has been lowered by heat exchange with another medium in the cooler 6, is again pressurized by the circulation pump 5 and sent to the diverter plate 1.
【0014】一方、核融合炉の供用中は炉内を高い真空
度に保持必要がある。そのためダイバータ板1の据え付
け時にダイバータ板1を高温ガスあるいは熱水によって
約200〜300℃程度に加熱し、表面に残留している
ガス等をパージするが、その際図1における止弁7及び
止弁8を閉止し、止弁9及び止弁10を開いてベーキン
グ系3を構成させ、該ループ内の冷却水をヒータ4によ
って昇温しながら循環することによってダイバータ板1
を加熱し、上記のガス等のパージを行うことが考えられ
ている。On the other hand, while a nuclear fusion reactor is in service, it is necessary to maintain a high degree of vacuum inside the reactor. Therefore, when installing the diverter plate 1, the diverter plate 1 is heated to about 200 to 300°C using high-temperature gas or hot water to purge the gas remaining on the surface. The baking system 3 is configured by closing the valve 8 and opening the stop valves 9 and 10, and the cooling water in the loop is circulated while being heated by the heater 4, thereby increasing the temperature of the diverter plate 1.
It has been considered to heat the gas and purge the above gas, etc.
【0015】本発明に基づいてダイバータ板1の接合部
の検査を行う場合、まずダイバータ板1の冷却系を上記
のベーキング系3に切り替える。次いで循環ポンプ5を
駆動して冷却水を系内に循環させながらヒータ4を稼働
し、循環する冷却水を昇温させる。それに伴ってダイバ
ータ板1は冷却部材側から保護タイル31側に熱が伝達
され、保護タイル31の炉内側表面の温度が上昇して来
る。When inspecting the joints of the diverter plate 1 according to the present invention, the cooling system for the diverter plate 1 is first switched to the baking system 3 described above. Next, the circulation pump 5 is driven to circulate the cooling water within the system, while the heater 4 is operated to raise the temperature of the circulating cooling water. Accordingly, heat is transferred from the cooling member side to the protective tile 31 side of the diverter plate 1, and the temperature of the furnace inner surface of the protective tile 31 increases.
【0016】それと同時に炉内には放射型等の温度計2
がすべてのダイバータ板1の表面温度を測定し得るよう
にロボット等によって移動および首振り自在に掴持して
配設する。At the same time, a thermometer 2 such as a radiation type is installed inside the furnace.
The diverter plate 1 is held and disposed so as to be movable and swingable by a robot or the like so that the surface temperature of all the diverter plates 1 can be measured.
【0017】保護タイル31と冷却部材との接合が十分
に行われている場合には、保護タイル31の表面温度の
上昇はほぼ一様に行われるが、接合部の一部が剥離して
いる場合にはその部分の熱伝達が阻害され、保護タイル
31の表面温度の上昇速度が低下する。しかしその場合
でも冷却部材側からの加熱を長時間継続することによっ
て最終的にはすべての保護タイル31の表面温度はほぼ
一様になる。[0017] When the protective tile 31 and the cooling member are sufficiently bonded, the surface temperature of the protective tile 31 increases almost uniformly, but some parts of the bonded portion are peeled off. In this case, heat transfer in that area is inhibited, and the rate of increase in the surface temperature of the protective tile 31 is reduced. However, even in that case, by continuing heating from the cooling member side for a long time, the surface temperature of all the protective tiles 31 will eventually become approximately uniform.
【0018】従って本発明においては、上述の接合部材
の状態によって温度上昇速度に差を生ずる加熱初期の保
護タイル31の表面温度上昇速度を検出し、該温度上昇
速度と、検査に先立って予め測定しておいた接合状態と
温度上昇速度のデータとを対比して接合部の状態を把握
し、当該保護タイル31が十分に健全であるか、多少の
剥離が認められるがまだ十分安全な許容範囲にあるか、
あるいは速やかに取り替えを必要とするか等の判定を行
うものである。Therefore, in the present invention, the rate of increase in surface temperature of the protective tile 31 at the initial stage of heating, which causes a difference in rate of temperature increase depending on the condition of the bonding members described above, is detected, and the rate of increase in temperature is measured in advance before inspection. The state of the joint is determined by comparing the previously prepared joint state with the data on the rate of temperature rise, and whether the protective tile 31 is sufficiently sound or within an acceptable range where some peeling is observed but is still sufficiently safe. Is it in
Alternatively, it determines whether immediate replacement is required.
【0019】保護タイル31が前述のように小ブロック
に分割されている構造の場合には、条規の方法によって
不具合保護タイル31を特定することで、十分に精度良
くダイバータ板1の健全性の確認を行うことが可能であ
る。In the case of a structure in which the protective tile 31 is divided into small blocks as described above, the soundness of the diverter plate 1 can be confirmed with sufficient accuracy by identifying the defective protective tile 31 according to the method prescribed in the regulations. It is possible to do this.
【0020】尚、ダイバータ板1の加熱に際しては上記
のベーキング系による加熱以外に高温のガスや電気的加
熱等を利用しても良いし、また冷却部材側からの加熱に
よって昇温した保護タイル31表面の温度の測定に、熱
電対等の接触型測定装置を利用し得ることは勿論である
。When heating the diverter plate 1, high-temperature gas or electrical heating may be used in addition to the above-mentioned heating by the baking system, and the protective tile 31 whose temperature has been raised by heating from the cooling member side may be used. Of course, a contact measuring device such as a thermocouple can be used to measure the surface temperature.
【0021】本願発明者等は出願に先立って、ダイバー
タ板の保護タイルと冷却部材とのろう付け接合部の接合
状態によって、熱の伝達状態がどのように相違するかを
実験的に確認したので、以下にその結果を説明する。Prior to filing the application, the inventors of the present application experimentally confirmed how the state of heat transfer differs depending on the joint state of the brazed joint between the protective tile of the diverter plate and the cooling member. , the results are explained below.
【0022】(1)実験方法
本実験に供した試験片は銅(無酸素銅)と炭素系材料(
CX−2002U)のろう付け試験片で、それぞれ縦2
1mm×横23mm×厚さ10mmの寸法を有している
。下部に銅試験片、上部に炭素材試験片を位置させ、接
合界面には剥離剤(ボロンナイトライド)を部分的に塗
布し、接合率を異にした試験片をNo.1,No.2の
2体製作した。各試験片の接合率はNo.1を約45%
、No.2を約80%とした。(1) Experimental method The test piece used in this experiment was made of copper (oxygen-free copper) and carbon-based material (
CX-2002U) brazing test pieces, each vertically 2
It has dimensions of 1 mm x width 23 mm x thickness 10 mm. A copper test piece was placed at the bottom, a carbon material test piece was placed at the top, a release agent (boron nitride) was partially applied to the bonding interface, and the test pieces with different bonding rates were No. 1, No. I made 2 pieces. The bonding rate of each test piece was No. 1 to about 45%
, No. 2 was about 80%.
【0023】試験は図2に示すように約60℃に加熱し
た鋼のブロック(熱源)21上に2体の試験片22,2
3を銅が下になるように並べて置き、加熱面の反対側で
ある炭素材側から赤外線カメラ24で観察を行った。こ
れにより、銅側からろう付け接合界面25に直交する方
向に生ずる熱伝達による炭素材の表面温度の変化の様子
を観察した。使用した赤外線観察装置は、3.0〜5.
4μmの赤外線を観察することが可能で、1秒間に20
画像を取り込め、最高0.1℃の温度分解能を有するも
のを使用した。As shown in FIG. 2, the test was carried out by placing two test pieces 22, 2 on a steel block (heat source) 21 heated to about 60°C.
3 were placed side by side with the copper facing down, and observation was made with an infrared camera 24 from the carbon material side, which is the side opposite to the heating surface. As a result, changes in the surface temperature of the carbon material due to heat transfer occurring in a direction perpendicular to the brazed joint interface 25 from the copper side were observed. The infrared observation device used was 3.0 to 5.
It is possible to observe infrared rays of 4 μm, and 20
A device that can capture images and has a maximum temperature resolution of 0.1° C. was used.
【0024】(2)実験結果
■ 試験開始後約3秒後、赤外線カメラ24側の炭素
材試験片の表面温度はNo.1試験片22が約20℃、
No.2試験片23が約25℃であった。■ 図3は
、各試験片の温度変化の様子を表したもので、横軸が時
間(1目盛り10秒)、縦軸が温度(0℃〜40℃)を
示している。図から明らかなように、2つの試験片で温
度上昇率が異なり、No.1試験片22が約0.85℃
/秒(図における曲線22′)、No.2試験片23が
約1.4℃/秒(図における曲線23′)で接合率の高
い方が温度上昇が速いことが分かる。以上接合率の異な
る2個の試験片について銅側から加熱を行い、反対側に
ある炭素材側から観察を行った結果、接合率によって温
度上昇率が異なり、接合率の良好なものほど温度上昇が
速いことを確認した。(2) Experimental Results ■ Approximately 3 seconds after the start of the test, the surface temperature of the carbon material test piece on the infrared camera 24 side reached No. 1 test piece 22 at about 20°C,
No. 2 test piece 23 was at about 25°C. (2) Figure 3 shows the temperature change of each test piece, with the horizontal axis showing time (1 scale: 10 seconds) and the vertical axis showing temperature (0°C to 40°C). As is clear from the figure, the temperature rise rate was different for the two test pieces, and No. 1 test piece 22 is approximately 0.85℃
/second (curve 22' in the figure), No. 2 test piece 23 is about 1.4° C./sec (curve 23' in the figure), and it can be seen that the higher the bonding rate, the faster the temperature rise. The above two test pieces with different bonding rates were heated from the copper side and observed from the opposite carbon material side. As a result, the rate of temperature rise differs depending on the bonding rate, and the higher the bonding rate, the higher the temperature. was confirmed to be fast.
【0025】[0025]
【発明の効果】このように本発明によれば上記実施例に
おいて説明したように、下記に示す効果を奏する。■
ダイバータ板製造時の保護タイルの接合状態を容易に
非破壊で検査し得る。■ 供用中のダイバータ板の保
護タイルの接合状態を容易に非破壊で検査し得る。■
供用中の検査は、ベーキング系を利用してダイバータ
板を加熱し得る為、特殊な装置を新設する必要がなく、
低いコストで実施し得る。■ 供用中に同一保護タイ
ルの温度上昇速度を前回検査時の値と比較することによ
り、運転による接合状態の変化を容易に知ることが可能
になる。
■ 温度の検出を放射温度計等の遠隔装置によって行
い得るため、極めて簡単な手順で実施し得る。■ 保
護タイルの材質、構造等に依存することなく測定を行う
ことが可能である。[Effects of the Invention] According to the present invention, as described in the above embodiments, the following effects are achieved. ■
It is possible to easily and non-destructively inspect the joint state of protective tiles during the manufacture of diverter plates. ■ It is possible to easily and non-destructively inspect the bonding condition of the protective tiles of the diverter plate in service. ■
For inspections during service, the diverter plate can be heated using a baking system, so there is no need to install new special equipment.
Can be implemented at low cost. ■ By comparing the temperature rise rate of the same protective tile during service with the value from the previous inspection, it becomes possible to easily determine changes in the bonding state due to operation. ■ Temperature detection can be performed using a remote device such as a radiation thermometer, so it can be carried out in an extremely simple procedure. ■ It is possible to perform measurements without depending on the material, structure, etc. of the protective tile.
【0026】[0026]
【図1】本発明に基づくダイバータ板の非破壊検査方法
の概略系統を示す図である。FIG. 1 is a diagram showing a schematic system of a method for non-destructive testing of a diverter plate according to the present invention.
【図2】本願発明者等が行った実験の概要を示す図であ
る。FIG. 2 is a diagram showing an outline of an experiment conducted by the inventors of the present application.
【図3】実験結果を示す図である。FIG. 3 is a diagram showing experimental results.
【図4】保護タイルと銅管を直接ろう付けしたダイバー
タ板の部分斜視図である。FIG. 4 is a partial perspective view of a diverter plate in which a protective tile and a copper tube are directly brazed.
【図5】保護タイルを銅ブロックを介して接合したダイ
バータ板の部分斜視図である。FIG. 5 is a partial perspective view of a diverter plate to which protective tiles are joined via a copper block.
1 ダイバータ板 2 温度計 3 ベーキング系 4 ヒータ 5 循環ポンプ 6 クーラ 7 止弁 8 止弁 9 止弁 10 止弁 21 熱源 22 No.1試験片 22′No.1試験片の温度曲線 23 No.2試験片 23′No.2試験片の温度曲線 24 赤外線カメラ 25 ろう付け接合界面 31 保護タイル 32 銅管 33 銅ブロック 1 Diverter plate 2 Thermometer 3 Baking system 4 Heater 5 Circulation pump 6 Cooler 7 Stop valve 8 Stop valve 9 Stop valve 10 Stop valve 21 Heat source 22 No. 1 test piece 22'No. Temperature curve of 1 test piece 23 No. 2 test pieces 23'No. Temperature curve of 2 test pieces 24 Infrared camera 25 Brazed joint interface 31 Protective tiles 32 Copper tube 33 Copper block
Claims (1)
製の保護タイルと該保護タイル中に銅製の冷却管を貫入
接合した構造のダイバータ板、あるいは炭素系材料製の
保護タイルと銅製の冷却ブロックとを接合した構造のダ
イバータ板において、前記保護タイルを冷却管あるいは
冷却ブロックの側から加熱し、各被加熱保護タイルの温
度上昇速度を放射温度計等によって測定し、該測定結果
に基づいて接合部の接合状態を検査することを特徴とす
るダイバータ板の非破壊検査方法。Claim 1: A diverter plate installed in a nuclear fusion reactor, which has a structure in which a protective tile made of a carbon-based material and a cooling pipe made of copper is penetrated and bonded to the protective tile, or a protective tile made of a carbon-based material and a copper cooling pipe. In the diverter plate, which has a structure in which a cooling block is joined to the protective tile, the protective tile is heated from the cooling pipe or cooling block side, the rate of temperature rise of each heated protective tile is measured using a radiation thermometer, etc., and the measurement results are 1. A method for non-destructive testing of a diverter plate, characterized in that the joint state of a joint is inspected based on the method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08123691A JP3152955B2 (en) | 1991-03-22 | 1991-03-22 | Non-destructive inspection method for divertor plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08123691A JP3152955B2 (en) | 1991-03-22 | 1991-03-22 | Non-destructive inspection method for divertor plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04294242A true JPH04294242A (en) | 1992-10-19 |
JP3152955B2 JP3152955B2 (en) | 2001-04-03 |
Family
ID=13740806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08123691A Expired - Fee Related JP3152955B2 (en) | 1991-03-22 | 1991-03-22 | Non-destructive inspection method for divertor plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3152955B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012037519A (en) * | 2010-08-05 | 2012-02-23 | General Electric Co <Ge> | Heat measurement system for detecting malfunction in power generation system |
CN104637550A (en) * | 2015-03-06 | 2015-05-20 | 中国科学院合肥物质科学研究院 | Visual observation mechanism working in nuclear fusion chamber and control method thereof |
CN116516317A (en) * | 2023-04-12 | 2023-08-01 | 江苏微导纳米科技股份有限公司 | Carrier boat, treatment equipment and method for controlling pressure drop in carrier boat |
-
1991
- 1991-03-22 JP JP08123691A patent/JP3152955B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012037519A (en) * | 2010-08-05 | 2012-02-23 | General Electric Co <Ge> | Heat measurement system for detecting malfunction in power generation system |
CN104637550A (en) * | 2015-03-06 | 2015-05-20 | 中国科学院合肥物质科学研究院 | Visual observation mechanism working in nuclear fusion chamber and control method thereof |
CN116516317A (en) * | 2023-04-12 | 2023-08-01 | 江苏微导纳米科技股份有限公司 | Carrier boat, treatment equipment and method for controlling pressure drop in carrier boat |
CN116516317B (en) * | 2023-04-12 | 2023-12-15 | 江苏微导纳米科技股份有限公司 | Carrier boat, treatment equipment and method for controlling pressure drop in carrier boat |
Also Published As
Publication number | Publication date |
---|---|
JP3152955B2 (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shen et al. | Infrared thermography for high-temperature pressure pipe | |
Schlichting et al. | Defect sizing by local excitation thermography | |
CN113567501A (en) | Nondestructive testing method and device for weld penetration uniformity and cracks of tube plate plug | |
JPH04294242A (en) | Nondestructive inspection of diverter plate | |
JP2008014959A (en) | Method for inspecting coating member for interface defects | |
CN114965111A (en) | Method and device for testing thermal fatigue of pipe plate welding plug | |
US5084229A (en) | Critical heat flux test apparatus | |
Boscary et al. | Summary of the production of the divertor target elements of Wendelstein 7-X | |
Kim et al. | Investigation of optimal thermal injection conditions and the capability of IR thermography for detecting wall-thinning defects in small-diameter piping components | |
Liu et al. | Whole-Pin Furnace system: An experimental facility for studying irradiated fuel pin behavior under potential reactor accident conditions | |
Schlichting et al. | Imaging cracks by laser excited thermography | |
Traxler et al. | Pulsed thermography inspection of the target elements for the W7-X divertor | |
JP2008261697A (en) | Evaluation method of contact part between solids | |
Grinzato et al. | NDE of porosity in CFRP by multiple thermographic techniques | |
RU2235303C1 (en) | Method of checking turbomachine blade cooling channels | |
Qi et al. | Application of infrared thermography in NDT of plasma-facing components for tokamaks | |
JPS6217184B2 (en) | ||
Zlámal et al. | Thermal fatigue testing devices for fusion-related projects | |
Dias | Investigation of interfaces with analytical tools | |
JPH08334485A (en) | Method for inspecting fluid passage using radiation thermometer | |
Zhaowei et al. | Influence of interfacial delamination on temperature distribution of QFN packages | |
Chaudhuri et al. | Inspection of brazed joints between cooling tube and heat sink of PFC for SST-1 tokamak by IR thermography technique | |
RU2093926C1 (en) | Hot junction quality control technique for thermoelectric converter | |
Mitteau et al. | Power operation with reduced heat transmitting tiles at tore supra | |
An et al. | Application of an IR Thermography for Leak Detection of Reactor Coolant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |