JPH08334483A - Solidification simulation device and method therefor - Google Patents

Solidification simulation device and method therefor

Info

Publication number
JPH08334483A
JPH08334483A JP16814795A JP16814795A JPH08334483A JP H08334483 A JPH08334483 A JP H08334483A JP 16814795 A JP16814795 A JP 16814795A JP 16814795 A JP16814795 A JP 16814795A JP H08334483 A JPH08334483 A JP H08334483A
Authority
JP
Japan
Prior art keywords
temperature
solidification
container
refractory container
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16814795A
Other languages
Japanese (ja)
Inventor
Makoto Ishihara
誠 石原
Takeo Mizuguchi
丈夫 水口
Noboru Hanai
昇 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP16814795A priority Critical patent/JPH08334483A/en
Publication of JPH08334483A publication Critical patent/JPH08334483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To provide a solidification simulation device and a method therefor, by which, in addition to the macro and micro structural defects of large ingots of alloys, etc., the formation behavior and solidified states of oxides, sulfides, etc., and the solidified structures of ESR and VAR can be simulated. CONSTITUTION: This solidification simulation device comprises a refractory container 1 in which, to put a liquid metal for solidification simulation, a cooling device 3 provided at one end of the refractory container to cool the liquid metal, and a heating zone 4 surrounding the refractory container 1 at other than the cooling device, and has a function by which it can control the heating zone 4 to have a predetermined temperature gradient toward the depth of the refractory container 1, as viewed from the cooling device 3. It is preferable to control the temperature distribution within the heating zone to be in a time relationship with a preset temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属などの大型鋳塊の
凝固組織を小型試験装置によって再現させる凝固シミュ
レーション装置およびその方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solidification simulation apparatus and method for reproducing the solidification structure of a large ingot of metal or the like by a small test apparatus.

【0002】[0002]

【従来の技術】図7に鋳塊縦断面の凝固組織の模式図を
示すように、例えば高合金鋼などの大型鋳塊は、逆V偏
析(A偏析とも呼ばれる)、V偏析などのマクロ偏析欠
陥が顕著に認められる。これらの欠陥はその製品品質に
著しい悪影響を及ぼすため、その発生機構については多
くの研究がなされ、またその工業的な対策についても幾
多の提案がなされている。これらの改善策を見出す手段
としては、実際の大きさの大型鋳塊による試作の他に、
大型鋳塊の凝固組織を小型試験装置によって、再現させ
る凝固シミュレーションによる方法がある。
2. Description of the Related Art As shown in FIG. 7 which is a schematic view of a solidification structure of a vertical cross section of a ingot, a large ingot such as a high alloy steel has a macro segregation such as an inverse V segregation (also called A segregation) or a V segregation. Defects are noticeable. Since these defects have a significant adverse effect on the product quality, many studies have been made on the mechanism of their generation and many proposals have been made on their industrial measures. As a means to find these improvement measures, in addition to trial production using a large ingot of the actual size,
There is a method by solidification simulation in which the solidified structure of a large ingot is reproduced by a small test device.

【0003】凝固シミュレーション方法としては、図8
にその概念図を示すような方法が知られている(鈴木、
宮本:鉄と鋼:73(1987),1,p.53)。この装置は、大気中
で耐火断熱材10で囲まれた炉内に上端面が開放された
耐火物製容器1が置かれ、この長手方向片端面の内側に
冷却装置(空冷式チラー)3を配し、耐火物製容器1の側
面および、冷却装置3を配した反対面の外側を単一ゾー
ン制御の電気ヒーター7で加熱する方法である。溶湯6
は、耐火物製容器1が所定の温度に達した後に鋳造さ
れ、電気ヒーター7で加熱しつつ、冷却装置3により一
方向から冷却凝固させるものである。すなわち、図8に
おいては、冷却装置3は鋳型壁面からの冷却に相当し、
電気ヒータ7による加熱部分は鋼塊の内部に相当するこ
とで、側面への温度勾配をもたせており、さらに溶鋼の
上部に置く発熱性粉末は、上部の冷却を防止して側面冷
却を強める模擬のためである。本装置は、逆V偏析は押
湯部直下に出現することが多いので、その部分を14kg鋼
塊でシュミレートすることを目的としている。
FIG. 8 shows a solidification simulation method.
A method is known in which the conceptual diagram is shown in (Suzuki,
Miyamoto: Iron and Steel: 73 (1987), 1, p.53). In this apparatus, a refractory container 1 having an open upper end surface is placed in a furnace surrounded by a refractory heat insulating material 10 in the atmosphere, and a cooling device (air-cooling chiller) 3 is provided inside one longitudinal end surface. This is a method of arranging and heating the side surface of the refractory container 1 and the outside of the opposite surface on which the cooling device 3 is arranged by the electric heater 7 of single zone control. Molten metal 6
In the refractory container 1, the refractory container 1 is cast after reaching a predetermined temperature, and is heated by the electric heater 7 while being cooled and solidified from one direction by the cooling device 3. That is, in FIG. 8, the cooling device 3 corresponds to cooling from the mold wall surface,
The portion heated by the electric heater 7 corresponds to the inside of the steel ingot, so that a temperature gradient is provided to the side surface. Further, the exothermic powder placed on the upper portion of the molten steel prevents the upper portion from cooling and strengthens the side surface cooling. Because of. In this device, inverse V segregation often appears just below the riser part, so the purpose is to simulate that part with a 14 kg steel ingot.

【0004】[0004]

【発明が解決しようとする課題】鋳塊の凝固組織制御に
関しては多くの研究、提案がなされているが、これらは
いずれも特定条件下の改善指針を示すにとどまり、例え
ば実用鋼塊での逆V偏析の発生機構に対しても、その機
構や要因はかならずしも明確にされてはいない。逆V偏
析の研究用である前述の図8の装置では、加熱ヒーター
7は1ヶの電源しかなく、加熱温度を1ゾーン制御して
いるために凝固開始点となる冷却装置4と冷却装置の反
対面との間に大きな温度勾配を付与することができず、
せいぜいD/4(Dは鋼塊の直径)付近をシュミレート
するものである。したがって、図8の装置では数10トン
もある鋳塊の金型鋳型面から鋳塊中心部までの全凝固過
程を模擬することは困難である。
Many studies and proposals have been made on the control of solidification structure of ingots, but all of them only show improvement guidelines under specific conditions. With respect to the mechanism of V segregation, its mechanism and factors have not always been clarified. In the apparatus shown in FIG. 8 described above, which is for the study of inverse V segregation, the heating heater 7 has only one power source, and the heating temperature is controlled in one zone. A large temperature gradient cannot be applied to the opposite surface,
It simulates at most D / 4 (D is the diameter of the steel ingot). Therefore, it is difficult for the apparatus of FIG. 8 to simulate the entire solidification process from the mold surface of the ingot having several tens of tons to the center of the ingot.

【0005】また、図8の装置では加熱ヒーター7は、
耐火物製容器1の上面、下面には設置されておらず、そ
の部分は、他の電気ヒーターが設置された面と比較して
冷却が早くなるし、加熱と冷却の制御はできない。その
結果、凝固が冷却装置3以外(たとえば底面)から開始
されることがあり、実際の鋳塊のすべての部分の凝固状
態を必ずしも十分に模擬(シミュレーション)する装置
ではない。上述したようなシミュレーション方法は、比
較的小型の鋳塊の凝固過程を模擬することはできても、
大型鋳塊の全凝固過程を模擬するには、さらに改良が必
要であった。
Further, in the apparatus of FIG. 8, the heater 7 is
It is not installed on the upper surface and the lower surface of the refractory container 1, and that portion cools faster than the surface on which other electric heaters are installed, and heating and cooling cannot be controlled. As a result, solidification may start from a place other than the cooling device 3 (for example, the bottom surface), and it is not a device that sufficiently simulates (simulates) the solidified state of all actual ingots. Although the simulation method as described above can simulate the solidification process of a relatively small ingot,
Further improvements were needed to simulate the total solidification process of large ingots.

【0006】また、鋼の清浄度に影響を及ぼす酸化物や
快削鋼の被削性に影響を及ぼす硫化物の生成制御に関し
ては、実際の大きさの大型鋳塊で試作をして、それを切
断して調査することで経験的、試行錯誤的に行われてい
るのが現状であり、その改善コストは多大である。酸化
物、硫化物等の凝固時の生成挙動をより正確に模擬する
ためには、溶湯の溶解、鋳造、凝固を外来酸素や窒素な
どと遮断して評価することが望ましい。しかし、溶解か
ら凝固までを雰囲気を制御してシミュレートする装置
は、従来実現化されていなかった。これは、一つには最
適な凝固シミュレーターが開発されていなかったためで
ある。
Further, regarding the production control of oxides that affect the cleanliness of steel and sulfides that affect the machinability of free-cutting steel, trial production was carried out using a large ingot of the actual size. At present, it is carried out empirically and by trial and error by cutting and investigating, and the improvement cost is great. In order to more accurately simulate the formation behavior of oxides, sulfides, etc. during solidification, it is desirable to evaluate the melting, casting, and solidification of the molten metal by cutting off the external oxygen and nitrogen. However, a device for controlling the atmosphere from melting to solidification and simulating it has not been realized so far. This is partly because the optimal coagulation simulator has not been developed.

【0007】さらに最近では高品質への要求が高まり、
従来からの例えば鋳物を鋳型とした金型鋳造方法の他に
方向性積層凝固形態をとるエレクトロスラグ再溶解(E
SR)、真空アーク再溶解(VAR)といった溶解凝固法
が増加している。これら溶解凝固法においてもその凝固
組織制御が重要であるが、実際の製造に使用する炉は少
なくとも1トンクラス以上のものが多く、大きい炉では
数10トンに及ぶものがある。これらにより製造した鋳塊
を切断してマクロ組織やミクロ組織を調べるのではな
く、少量溶解で簡易にその凝固形態を模擬できる装置が
求められている。したがって、個々の材質や凝固条件に
対応する凝固組織を簡易に、かつ適切に行なえる凝固シ
ミュレーション装置およびその方法が達成できれば改善
コストを大幅に軽減できる利点がある。
More recently, the demand for high quality has increased,
In addition to the conventional mold casting method using, for example, a casting, electroslag remelting (E
The number of melting and solidification methods such as SR) and vacuum arc remelting (VAR) is increasing. Control of the solidification structure is also important in these melting and solidification methods, but most furnaces used in actual production are at least in the 1-ton class or more, and large furnaces have several tens of tons. There is a demand for an apparatus that can simulate the solidification morphology with a small amount of melting, rather than cutting the ingot produced by these methods to examine the macrostructure or microstructure. Therefore, there is an advantage that the improvement cost can be significantly reduced if a solidification simulation apparatus and method capable of easily and appropriately performing solidification structures corresponding to individual materials and solidification conditions can be achieved.

【0008】金型鋳造鋳塊の凝固形態および、エレクト
ロスラグ再溶解(ESR)、真空アーク再溶解(VA
R)の方向性積層凝固形態を正確に模擬するためには、
凝固シミュレーション装置の冷却装置側が凝固開始点と
なる鋳型の内面あるいは、ESR、VARモールドの底
面に相当する構造とする必要があり、しかもこれらの炉
での凝固形態は、鋳型側面の全周からは等方的に冷却さ
れるという特徴を再現する必要がある。本発明の目的
は、一種類のシミュレーション装置で、 1)合金などの大型鋳塊のマクロ組織欠陥、ミクロ凝固
組織を模擬できること、 2)溶湯内部における酸化物、硫化物等の生成挙動と凝
固形態を雰囲気の影響を受けずに再現できること、 3)方向性積層凝固形態をとるエレクトロスラグ再溶解
(ESR)や真空アーク再溶解(VAR)の凝固組織を
より正確に模擬できる、 という多目的の手段を兼ね備えた凝固シミュレーション
装置およびその方法を提供することである。
Solidification form of die casting ingot, electroslag remelting (ESR), vacuum arc remelting (VA)
In order to accurately simulate the directional laminated solidification morphology of R),
It is necessary that the cooling device side of the solidification simulation device has a structure corresponding to the inner surface of the mold that becomes the solidification start point or the bottom surface of the ESR or VAR mold, and the solidification morphology in these furnaces is It is necessary to reproduce the characteristic of being cooled isotropically. The purpose of the present invention is to be able to simulate 1) macrostructure defects and microsolidification structures of large ingots such as alloys with one type of simulation device, 2) formation behavior and solidification morphology of oxides, sulfides, etc. inside the molten metal. Can be reproduced without being affected by the atmosphere, and 3) the multipurpose means of being able to more accurately simulate the solidification structure of electroslag remelting (ESR) or vacuum arc remelting (VAR) which takes the directional laminated solidification morphology. It is to provide a solidification simulation device and a method therefor.

【0009】[0009]

【課題を解決するための手段】本発明は、実体鋳塊の凝
固過程を簡易に、かつ正確に模擬する手段を提供すべく
鋭意検討の結果、本発明に至ったものであり、以下の装
置およびその方法を用いることで実現できる。
DISCLOSURE OF THE INVENTION The present invention has been accomplished as a result of extensive studies to provide means for simply and accurately simulating the solidification process of a solid ingot. And using the method.

【0010】本発明の第1発明は、凝固シミュレートす
る溶湯を入れる耐火物製容器1と、前記耐火物製容器の
一方端にあって溶湯を冷却する冷却装置3と、前記耐火
物製容器1を前記冷却装置以外で包囲する加熱帯4から
なり、該加熱帯が前記冷却装置3から見て前記耐火物製
容器1の奥側に向かって所定の温度勾配を持つように制
御できる機能を有することを特徴とする凝固シミュレー
ション装置である。前記加熱帯4は、長手方向に複数に
分割された加熱ゾーンを有し、かつ耐火物容器1の所定
の位置に設置した温度検出器5によって検出した温度
と、予め設定した温度とを比較して冷却装置3から見て
耐火物製容器1の奥側に向かって所定の温度勾配を持つ
ように、温度制御できる機能を有する凝固シミュレーシ
ョン装置とするのがよい。また、前記冷却装置3は、耐
火物製容器1の溶湯注入孔2を兼ねるようにするのが望
ましい。また本発明の凝固シミュレーション装置は、回
転用シャフト9、回転用シャフト支持具13に支持さ
れ、略90度回転できる(耐火物製容器1の長手方向が
垂直ないし水平となるよう)機能を有する装置とするの
がよい。
A first aspect of the present invention is a refractory vessel 1 containing a molten metal for simulating solidification, a cooling device 3 for cooling the molten metal at one end of the refractory vessel, and the refractory vessel. 1 is composed of a heating zone 4 which is surrounded by a device other than the cooling device, and a function capable of controlling the heating zone so as to have a predetermined temperature gradient toward the inner side of the refractory container 1 when viewed from the cooling device 3. It is a solidification simulation device characterized by having. The heating zone 4 has a plurality of heating zones divided in the longitudinal direction, and compares a temperature detected by a temperature detector 5 installed at a predetermined position of the refractory container 1 with a preset temperature. It is preferable that the solidification simulation device has a function of controlling the temperature so that the refractory container 1 has a predetermined temperature gradient toward the inner side when viewed from the cooling device 3. Further, it is desirable that the cooling device 3 also serves as the molten metal injection hole 2 of the refractory container 1. Further, the coagulation simulation device of the present invention is a device having a function of being supported by the rotating shaft 9 and the rotating shaft support 13 and capable of rotating approximately 90 degrees (so that the longitudinal direction of the refractory container 1 is vertical or horizontal). It is good to say

【0011】すなわち、耐火物製容器の長手方向を水平
にすれば、通常の金属鋳型での凝固を再現できるし、上
記長手方向を垂直にすれば、冷却装置が下面となり、耐
火物製容器を包囲する如く設けられた加熱帯4により、
ESRやVARのモールド冷却(側面からの冷却であ
る)を再現できるものである。さらに、これらの凝固シ
ミュレーション装置は、溶解炉14と共に容器15内に
配置され、前記容器15は該容器内を真空排気系に接続
して真空、または真空排気した後、Arガスなどと置換
して不活性雰囲気とする手段を有するのが望ましい。本
発明のこの実施態様は、特に雰囲気の影響を受けやすい
活性金属を含有する金属溶湯の凝固や、通常の大気中で
は酸化したり窒化する危険のある酸化物や硫化物の凝固
の研究に最も効果を発揮できる。
That is, if the longitudinal direction of the refractory container is made horizontal, the solidification in the ordinary metal mold can be reproduced, and if the longitudinal direction is made vertical, the cooling device becomes the lower surface and the refractory container is opened. By the heating zone 4 provided so as to surround,
The mold cooling of ESR and VAR (which is the cooling from the side surface) can be reproduced. Further, these coagulation simulation devices are arranged in a container 15 together with the melting furnace 14, and the container 15 is connected to an evacuation system to evacuate or evacuate it and then replace it with Ar gas or the like. It is desirable to have a means of creating an inert atmosphere. This embodiment of the present invention is most suitable for the study of solidification of a molten metal containing an active metal, which is particularly sensitive to the atmosphere, and the solidification of oxides and sulfides that are likely to be oxidized or nitrided in the normal atmosphere. It can be effective.

【0012】また、第2発明は、前記記載の装置を用い
て凝固シミュレーションを行うにあたり、耐火物製容器
1を加熱帯4により、対象とする合金の液相線温度−1
00℃以上の温度に均熱する第1工程と、均熱した前記
耐火物製容器1と冷却装置3によって囲まれる空間内
に、前記対象とする合金の溶湯6を注入する第2工程
と、耐火物製容器1の所定の位置の温度を予め設定した
温度と時間関係となるよう加熱帯内温度分布を制御して
冷却する第3工程からなる凝固シミュレーション方法で
ある。
In the second invention, when the solidification simulation is carried out by using the apparatus described above, the refractory container 1 is heated by the heating zone 4 so that the liquidus temperature of the target alloy is -1.
A first step of soaking the temperature to a temperature of 00 ° C. or higher, and a second step of injecting the molten metal 6 of the target alloy into a space surrounded by the soaked refractory container 1 and the cooling device 3. It is a solidification simulation method comprising a third step of cooling by controlling the temperature distribution in the heating zone so that the temperature at a predetermined position of the refractory container 1 has a time relationship with a preset temperature.

【0013】[0013]

【作用】本発明の第1の特徴は、加熱帯4が冷却装置以
外では、耐火物製容器を包囲する如く設けられているこ
とである。そのために、耐火物製容器1の上部、下部と
も温度制御が可能であり、従来のように側面のみの温度
制御では模擬できない鋳塊の部分のシミュレーションも
可能である。たとえば、鋳塊の長手(H)方向の中心
(H/2)部は上部、下部共に同程度の温度になってい
る時間が多く、このような場合には上部、下部をほぼ同
一の温度に設定できるのである。図8などの従来の装置
では、特に下部に加熱ゾーンがないから側面と共に、下
部への冷却もあり得るので実際の鋳塊の部位によって
は、再現できないところが生じてしまう。
The first feature of the present invention is that the heating zone 4 is provided so as to surround the refractory container other than the cooling device. Therefore, it is possible to control the temperature of both the upper portion and the lower portion of the refractory container 1, and it is also possible to simulate the portion of the ingot that cannot be simulated by the conventional temperature control of only the side surface. For example, in the center (H / 2) part of the ingot in the longitudinal (H) direction, both the upper part and the lower part have the same temperature for a long time, and in such a case, the upper part and the lower part are almost the same temperature. It can be set. In the conventional apparatus shown in FIG. 8 and the like, since there is no heating zone especially in the lower portion, there is a possibility of cooling to the lower portion as well as the side surface, and therefore there are some portions that cannot be reproduced depending on the actual ingot portion.

【0014】本発明の第2の特徴は、長手方向に複数に
分割された加熱ゾーンを有する加熱帯にある。加熱ゾー
ンが複数に分割されているのでゾーン毎の温度分布を細
かく制御できるので、実用鋳塊での位置毎の温度変化に
合わせて各ゾーンでの加熱温度設定ができる。従来の装
置では、例えば図8のように加熱は1ゾーンのみで全面
均一が主体であったため、冷却装置から見た長手方向へ
の微妙な温度調整は実質的に不可能であった。
A second feature of the present invention is a heating zone having a plurality of heating zones divided in the longitudinal direction. Since the heating zone is divided into a plurality of zones, the temperature distribution in each zone can be finely controlled, so that the heating temperature in each zone can be set according to the temperature change at each position in the practical ingot. In the conventional apparatus, for example, as shown in FIG. 8, since heating is mainly uniform in only one zone, it is substantially impossible to finely adjust the temperature in the longitudinal direction as viewed from the cooling apparatus.

【0015】本発明の第3の特徴は、冷却装置3を耐火
物製容器1の溶湯注入孔2と兼ねることができることで
ある。冷却装置3は閉じた耐火物製容器の一方端に設置
しても良いが、一方端を開放にして、開放した端面に接
して溶湯を冷却する装置3を設ければ、構造が簡単であ
り、最初の注湯時に作業が容易になる上、さらに冷却装
置3が耐火物製容器1の溶湯注入孔2を兼ねる構造とす
ることで、冷却装置側の面を除く耐火物製容器内の温度
分布のバランスを維持したままで注湯できる効果があ
る。
A third feature of the present invention is that the cooling device 3 can also serve as the molten metal injection hole 2 of the refractory container 1. The cooling device 3 may be installed at one end of the closed refractory container, but if the one end is opened and the device 3 for cooling the molten metal in contact with the open end face is provided, the structure is simple. In addition to facilitating the work at the time of the first pouring, the cooling device 3 also serves as the molten metal injection hole 2 of the refractory container 1, so that the temperature inside the refractory container excluding the surface on the cooling device side can be improved. The effect is that pouring can be performed while maintaining the distribution balance.

【0016】本発明の第4の特徴は、前述の第1、第2
の特徴とも合わせて有効なのであるが、垂直方向の凝固
であるESRやVARをシミュレートする装置にも使え
るということである。これは、耐火物製容器、冷却装置
を加熱帯と共に回転させることにより、耐火物製容器を
長手方向に垂直にすることで鋳塊の向きは達成され、耐
火物製容器を包囲している加熱帯からの加熱と組み合わ
せて加熱帯方向への冷却をESRやVARのモールド冷
却と見なし、冷却装置(下部に位置する)からの冷却を
ESRやVARの定盤からの冷却と模擬して冷却させる
ことができる。
The fourth feature of the present invention resides in the above-mentioned first and second features.
Although it is effective in combination with the characteristics of, it can also be used in a device that simulates ESR and VAR, which are vertical solidifications. This is because the direction of the ingot is achieved by rotating the refractory container and the cooling device together with the heating zone so that the refractory container is perpendicular to the longitudinal direction, and surrounds the refractory container. In combination with heating from the tropics, cooling in the heating zone direction is regarded as ESR or VAR mold cooling, and cooling from the cooling device (located at the bottom) is simulated by cooling from the ESR or VAR surface plate. be able to.

【0017】本発明の第5の特徴は、凝固シミュレーシ
ョンを真空中または不活性雰囲気中で行なえる装置を提
供していることである。雰囲気ガスと反応し易い活性金
属(Ti,Alなど)を含む溶湯や、介在物の形態制御
の研究には、不可欠な装置であるが、本発明では凝固シ
ミュレーターを溶解炉と揃えて真空容器の中に設置する
ことで実施できる。最も簡便な方法は、溶解と鋳造を同
一真空容器内で行なう真空誘導溶解設備のうち、鋳造装
置を本発明の凝固シミュレーション装置と置き換えれば
よい。
A fifth feature of the present invention is to provide an apparatus capable of performing solidification simulation in a vacuum or an inert atmosphere. Although it is an indispensable device for research on the morphology control of molten metal and inclusions containing active metals (Ti, Al, etc.) that easily react with atmospheric gas, in the present invention, the coagulation simulator is aligned with the melting furnace to form a vacuum container. It can be implemented by installing it inside. The simplest method is to replace the casting apparatus with the solidification simulation apparatus of the present invention in the vacuum induction melting equipment that performs melting and casting in the same vacuum container.

【0018】以下、本発明を本発明の一つの目的である
鋳型での凝固の様子を図9で、本発明の基本的装置を図
面(図1,2,3)に基づいて詳しく説明する。図1,
2,3に本発明の一例を示す装置の概念図を、また図9
には鋳物製の鋳型を利用したような金型鋳造鋳塊の凝固
過程を表わす概念図を鋳塊中心から鋳型外面までの中心
縦断面図で示す。図9中、チの矢印は凝固進行方向を示
し、トで表す実線は、凝固前面の時刻ごとの位置を示
す。またホの矢印は溶湯の熱対流を表し、ヘの二重矢印
は熱の移動方向を表す。
The present invention will be described in detail below with reference to FIG. 9 showing the state of solidification in a mold which is one of the objects of the present invention, and the basic apparatus of the present invention with reference to the drawings (FIGS. 1, 2 and 3). Figure 1
2 and 3 are conceptual views of an apparatus showing an example of the present invention, and FIG.
Fig. 1 is a central vertical cross-sectional view from the center of the ingot to the outer surface of the mold, showing a conceptual diagram showing the solidification process of a mold casting ingot that uses a casting mold. In FIG. 9, the arrow C indicates the coagulation progressing direction, and the solid line indicated by G indicates the position of the coagulation front surface at each time. The arrow E indicates the thermal convection of the molten metal, and the double arrow F indicates the moving direction of heat.

【0019】金型鋳造鋳塊、特に前述のマクロ的偏析欠
陥が発生しやすい鋳塊上半部の凝固過程は、未凝固の溶
湯はすでに凝固した凝固殻を介しての金型面側への熱移
動に伴って凝固が進行する。同時に凝固前面では残留液
相への溶質の濃化、その未凝固液相への拡散などの溶質
移動や温度、密度差に伴う未凝固液相内の対流など複雑
な現象が相互に関係しながら複合して起こり、これらの
現象の結果としてマクロ的、ミクロ的偏析が発生する。
またこの間の熱移動は相変化を伴う非定常熱伝達過程で
あり、時々刻々と各部の冷却速度、温度勾配が変化して
行く。
In the solidification process of the mold casting ingot, especially the upper half of the ingot where the above-mentioned macroscopic segregation defects are likely to occur, the unsolidified molten metal is transferred to the mold surface side through the already solidified solidified shell. Solidification proceeds with heat transfer. At the same time, on the solidification front, complex phenomena such as solute concentration in the residual liquid phase, solute movement such as diffusion into the unsolidified liquid phase, temperature, and convection in the unsolidified liquid phase due to density difference are interrelated. Macroscopic and microscopic segregation occurs as a result of these phenomena.
The heat transfer during this period is an unsteady heat transfer process involving a phase change, and the cooling rate and temperature gradient of each part change from moment to moment.

【0020】このため、金型鋳造鋳塊、特に鋳塊の断面
径が500mmφ相当以上の大型鋳塊の場合の凝固過程
を模擬するには、従来用いられていた図8に示すような
耐火物製容器を加熱するヒーターが1ゾーンだけで制御
されていたり、冷却装置面以外の全面を加熱しないで、
耐火物製容器の上下面を温度降下だけで冷却するには不
十分で、実際の金型鋳造で起こる各部の冷却速度や温度
勾配に合わせて冷却制御することができるシミュレーシ
ョン装置とするのが重要である。凝固過程において、各
部の冷却速度R(℃/min)、温度勾配G(℃/cm)、
凝固速度V(cm/min)の間には、 R=G×V の関係があり、R、G、Vの内2要素を制御できれば凝
固過程を制御できる。
Therefore, in order to simulate the solidification process in the case of a metal mold casting ingot, particularly a large ingot having a cross-sectional diameter of 500 mmφ or more, a refractory material conventionally used as shown in FIG. 8 is used. The heater that heats the container is controlled in only one zone, or the entire surface other than the cooling device surface is not heated.
It is not enough to cool the upper and lower surfaces of a refractory container by only lowering the temperature, so it is important to use a simulation device that can control cooling according to the cooling rate and temperature gradient of each part that occurs in actual die casting. Is. In the solidification process, the cooling rate R (° C / min) of each part, the temperature gradient G (° C / cm),
There is a relation of R = G × V 2 between the solidification rates V (cm / min), and the solidification process can be controlled if two elements of R, G and V can be controlled.

【0021】例えば、図1に示す冷却装置面を除く耐火
物製容器1の5面に接する溶湯温度を、実際の大型鋳型
に相当する位置の溶湯温度と一致するように耐火物製容
器1内の各所定位置の温度を制御できれば熱移動は冷却
端面への優先的熱伝達となる。また、冷却装置の冷却能
を適切に選択することで金型鋳造鋳塊の金型への熱移動
を実現できる。本発明装置によれば、冷却装置のうちの
溶湯に接触する面を、実際の溶湯が冷却する速度に合わ
せて熱伝導率の異なる材質を選択したり、その厚さを調
整することによって抜熱量を調整することができる。ま
た一方では、耐火物製容器の外側を取り囲む加熱帯内の
温度分布を時間的に適切に制御することにより比較的容
易にこの条件を実現することができる。具体的には、冷
却装置端面から耐火物製容器の奥側までの所定の位置の
温度を温度検出器によって連続して実測し、予め大型鋳
塊で模擬しようとする位置の温度変化に合せた設定温度
に一致させるよう加熱帯の各ゾーン毎にヒーターを自動
制御することで実現できる。
For example, in the refractory container 1 so that the temperature of the molten metal in contact with the five surfaces of the refractory container 1 excluding the cooling device surface shown in FIG. 1 coincides with the molten metal temperature at the position corresponding to the actual large mold. If the temperature at each of the predetermined positions can be controlled, heat transfer becomes preferential heat transfer to the cooling end surface. Further, by appropriately selecting the cooling capacity of the cooling device, it is possible to realize the heat transfer of the mold casting ingot to the mold. According to the device of the present invention, the surface of the cooling device that comes into contact with the molten metal is selected from materials having different thermal conductivities according to the actual cooling rate of the molten metal, and the amount of heat removed by adjusting the thickness thereof. Can be adjusted. On the other hand, this condition can be realized relatively easily by appropriately controlling the temperature distribution in the heating zone surrounding the outside of the refractory container in time. Specifically, the temperature at a predetermined position from the end surface of the cooling device to the back side of the refractory container was continuously measured by a temperature detector, and was adjusted in advance to the temperature change at the position to be simulated with a large ingot. It can be realized by automatically controlling the heater for each zone of the heating zone so as to match the set temperature.

【0022】これは後述する実施例でも述べるように、
例えば実態鋳塊の特定高さの鋳型近傍位置、D/4位置
および鋳塊中心位置に置ける鋳込み直後から凝固が終了
するまでの時間経過と温度変化を予めコンピュータによ
る凝固計算によって冷却条件を求めておく。次いで、こ
の温度と時間関係を本発明の凝固シミュレーション装置
内の複数ゾーンからなる加熱帯の温度を各ヒーターによ
り自動制御させるのである。
This is as described in the embodiments described later.
For example, the cooling conditions are obtained in advance by the solidification calculation by the computer with respect to the elapsed time and the temperature change immediately after the casting at the specific height position of the ingot, at the D / 4 position, and at the center position of the ingot until the solidification is completed. deep. Next, the temperature and the time relationship are automatically controlled by the heaters in the heating zone consisting of a plurality of zones in the solidification simulation apparatus of the present invention.

【0023】さらには、耐火物容器内の温度制御を適宜
に調整することにより、溶湯の温度勾配を意図的に調整
でき、溶湯の対流による組織の影響など、不均一温度分
布に伴う現象も模擬することができる。またホットトッ
プ法などの検討にも有効な手段を提供できる。炉内温度
分布の制御は、ヒーターの複数ゾーン分割制御が最も容
易な手段であるが、例えばヒーターと、冷却装置にガス
冷却パイプを用いるなど、適宜に組み合わせて冷却装置
端面から冷却装置端面の反対側までの間に50〜500
℃程度の温度差を与えかつ時間的に制御することもでき
る。また冷却装置は、耐火物製容器を構成する材質の熱
伝達能より高熱伝達能であり、かつ溶湯によって損傷さ
れない材質から適宜選択でき、目的とする冷却速度、温
度勾配に応じて鋼板、鋳鉄板のほか、黒鉛、マグネシア
レンガなどを用いることができる。
Furthermore, by appropriately adjusting the temperature control in the refractory container, the temperature gradient of the molten metal can be intentionally adjusted, and the phenomenon associated with the nonuniform temperature distribution, such as the influence of the structure due to convection of the molten metal, can be simulated. can do. Moreover, it is possible to provide an effective means for examining the hot top method. Controlling the temperature distribution in the furnace is the easiest means to control the heater in multiple zones, but for example, using a heater and a gas cooling pipe for the cooling device, combine them appropriately, such as from the cooling device end face to the cooling device end face. 50 to 500 between the sides
It is also possible to give a temperature difference of about ° C and control it temporally. Further, the cooling device has a higher heat transfer capacity than the heat transfer capacity of the material forming the refractory container, and can be appropriately selected from materials that are not damaged by the molten metal, and steel plates, cast iron plates depending on the target cooling rate and temperature gradient. Besides, graphite, magnesia brick, and the like can be used.

【0024】溶湯注入前の耐火物製容器の予熱は、容器
の材質、寸法によってその許容限は異なるが、溶湯注入
初期の耐火物製容器からの冷却、特に耐火物製容器底
面、側面,上面からの冷却は極力低減するべきであり、
対象とする合金の液相線温度−100℃以上、望ましく
はその液相線温度−50℃以上の均熱が必要である。耐
火物製容器材質は溶湯に対して十分な耐食性、強度を有
しかつ対象とする合金の液相線温度−100℃以上の長
時間の加熱に耐える材質であることが必要で、アルミナ
質または、マグネシア質などの耐火物製であることが望
ましい。熱伝導率は、0.24W/m°K以下の比較的
低熱伝導率の材質が望ましい。
The tolerance of the preheating of the refractory container before pouring the molten metal varies depending on the material and size of the container, but cooling from the refractory container at the initial stage of pouring the molten metal, especially the bottom surface, side surface and top surface of the refractory container Cooling from should be reduced as much as possible,
It is necessary to soak the liquidus temperature of the target alloy at -100 ° C or higher, preferably at the liquidus temperature of -50 ° C or higher. The material of the refractory container must have sufficient corrosion resistance and strength against the molten metal, and must withstand the long-term heating of the liquidus temperature of the target alloy −100 ° C. or more. It is desirable to be made of refractory such as magnesia. As for the thermal conductivity, a material having a relatively low thermal conductivity of 0.24 W / m ° K or less is desirable.

【0025】また、酸化物、硫化物等の生成挙動をより
正確に模擬するためには、溶湯の溶解、鋳造、凝固を外
来酸素、窒素の影響のない真空、または不活性雰囲気中
で行うことが望ましい。さらに、最近の工業的な合金の
生産は、真空溶解真空鋳造、取鍋精錬といった方法が適
用されており、低酸素化、高清浄化が計られている。ま
た、例えば、超耐熱合金のように真空溶解が不可欠な合
金もある。これら様々な合金の凝固組織改善のためにも
鋼や合金の溶解、鋳造、凝固を外来酸素、窒素の影響の
ない真空、または不活性雰囲気中で行うのがよい。
In order to more accurately simulate the formation behavior of oxides, sulfides, etc., melting, casting, and solidification of the molten metal should be performed in a vacuum free from the influence of external oxygen and nitrogen, or in an inert atmosphere. Is desirable. Further, in recent industrial production of alloys, methods such as vacuum melting vacuum casting and ladle refining are applied, and low oxygen content and high purification are measured. Also, for example, there are alloys in which vacuum melting is essential, such as super heat resistant alloys. In order to improve the solidification structure of these various alloys, it is preferable to melt, cast or solidify the steel or alloy in a vacuum free from the influence of external oxygen or nitrogen or in an inert atmosphere.

【0026】これらを模擬するには、一例を図3に示す
ように、溶解炉と凝固シミュレーション装置を同一容器
内に配置して、前記容器内を真空または不活性雰囲気に
して行なうことができる装置を用いることができる。さ
らに、金型鋳造鋳塊の凝固形態および、エレクトロスラ
グ再溶解(ESR)、真空アーク再溶解(VAR)の方
向性凝固形態を模擬することができる。この場合、本発
明の凝固シミュレーション装置では、真空中で凝固シミ
ュレーション装置の冷却装置端が、実際に行なわれる上
記溶解法の凝固開始点となるよう図1の状態から図2の
状態に略90°回転させて、冷却装置が底面となるよう
な装置とすることができる。このような姿勢では重力の
影響(溶湯の対流)も考慮することができる。
In order to simulate these, as shown in FIG. 3, for example, a melting furnace and a solidification simulation device are arranged in the same container, and the inside of the container can be vacuumed or an inert atmosphere. Can be used. Further, it is possible to simulate the solidification morphology of the mold casting ingot and the directional solidification morphology of electroslag remelting (ESR) and vacuum arc remelting (VAR). In this case, in the solidification simulation device of the present invention, the cooling device end of the solidification simulation device in vacuum is set to approximately 90 ° from the state of FIG. 1 to the state of FIG. 2 so as to be the solidification start point of the melting method that is actually performed. It can be rotated so that the cooling device is the bottom surface. In such a posture, the influence of gravity (convection of molten metal) can be taken into consideration.

【0027】[0027]

【実施例】以下に実施例をもって詳細に説明する。図
1,2,3は本発明装置の実施例を示す要部の概念図で
ある。これら装置のうち、加熱帯4は長手方向へ向かっ
て4ゾーンに分割してあり、その中に設置された耐火物
製容器1の全周をヒーター7で個別に加熱できるように
した電気加熱帯である。4ゾーンに分割した加熱帯の
内、冷却装置3に近い3ゾーンは、耐火物製容器1の外
周面を、他の1ゾーンは冷却装置3の反対側の面を加熱
する構造である。本実施例で用いたヒーターは、大気中
ではMoSi2系を、また真空または不活性ガス雰囲気
の場合には黒鉛質を用いたが、それぞれの雰囲気に耐え
る材質のものであれば特に限定する必要はない。
Embodiments will be described in detail below with reference to embodiments. 1, 2, and 3 are conceptual views of the essential parts showing an embodiment of the device of the present invention. Of these devices, the heating zone 4 is divided into four zones in the longitudinal direction, and the entire circumference of the refractory container 1 installed in the zone can be individually heated by the heater 7, which is an electric heating zone. Is. Of the heating zones divided into four zones, three zones near the cooling device 3 heat the outer peripheral surface of the refractory container 1, and the other one zone heats the surface on the opposite side of the cooling device 3. The heater used in this example was MoSi 2 based in the air, and graphite was used in a vacuum or an inert gas atmosphere. However, it is necessary to limit the heater as long as it is a material that can withstand each atmosphere. There is no.

【0028】この他、例えば高周波誘導加熱を熱源とす
ることもできるが、この場合には電磁気力が発生し、耐
火物製容器内の溶湯に外部から電磁気力を与えて溶湯を
撹拌させる作用があるため、そのシールドに配慮する必
要がある。各ゾーンのヒーター出力は、冷却装置側から
見て反対側(耐火物製容器の最奥部)が5KW、その他
の各ゾーンがそれぞれ25KWである。各ゾーンの温度
コントロールはヒーターの近傍に設置された温度検出器
5により測温し、プログラムコントローラーによりヒー
ター電流を制御する方法とした。ヒーター内の耐火物製
容器の保持方法は、その長手方向の両端部を加熱帯の断
熱耐火材で保持された冷却装置と断熱耐火材とのはめあ
いにより保持した。
In addition to this, for example, high-frequency induction heating can be used as a heat source, but in this case, an electromagnetic force is generated, and an action of stirring the molten metal in the refractory container by externally applying an electromagnetic force to the molten metal is provided. Therefore, it is necessary to consider the shield. The heater output of each zone is 5 KW on the opposite side (the innermost part of the refractory container) when viewed from the cooling device side, and 25 KW for each of the other zones. The temperature of each zone was controlled by measuring the temperature with a temperature detector 5 installed near the heater and controlling the heater current with a program controller. As a method of holding the refractory container in the heater, both ends of the refractory container in the longitudinal direction were held by fitting the cooling device and the adiabatic refractory material held by the adiabatic refractory material of the heating zone.

【0029】本発明の凝固シミュレーション装置は、凝
固開始点となる冷却装置面が、金型鋳造鋳塊の上広が形
状などの金型面の角度に対応した模擬、あるいはエレク
トロスラグ再溶解(ESR)や真空アーク再溶解(VA
R)などの底面が水平な水冷定盤による凝固状態を忠実
に模擬できるように、図2に示す耐火物製容器1の長手
方向が垂直になり、冷却装置3が底面となるような姿勢
変更を可能とする構造としている。具体的には、図1に
示すように耐火物製容器1の長手方向が水平状態にある
ものを図2に示す回転用シャフト9、回転用シャフト支
持具13により支持された冷却装置3、加熱帯4ととも
に、図2のごとく略90°回転できる構造である。回転
時の固定は、シャフト部に取り付けたロック用ボルトに
より行なった。加熱帯4は、ヒーターの外面を耐火断熱
材10で覆い、加熱帯外への熱の流失を防いだ。さらに
各ゾーン間の温度制御の干渉を防止する目的でそれぞれ
のヒーター間にも仕切用耐火断熱材11を設置した。耐
火断熱材、ヒーター、冷却装置は、回転シャフトが取り
付けられたステンレス製炉殻12に固定されている。溶
湯を得るための溶解炉は、誘導溶解炉を用いた。
In the solidification simulation device of the present invention, the surface of the cooling device, which is the solidification starting point, corresponds to the angle of the mold surface such as the shape of the upper part of the mold ingot, or electroslag remelting (ESR). ) And vacuum arc remelting (VA
(2) The refractory container 1 shown in FIG. 2 has a vertical longitudinal direction and the cooling device 3 serves as the bottom surface so that the solidified state by a water-cooled surface plate with a horizontal bottom surface such as R) can be faithfully simulated. It has a structure that enables Specifically, as shown in FIG. 1, a refractory container 1 having a horizontal longitudinal direction is shown in FIG. 2, and a cooling device 3 supported by a rotating shaft 9 and a rotating shaft support 13 is provided. It is a structure that can rotate about 90 ° together with the tropical zone 4 as shown in FIG. The fixing at the time of rotation was performed by a lock bolt attached to the shaft portion. The heating zone 4 covered the outer surface of the heater with a refractory heat insulating material 10 to prevent heat from flowing out of the heating zone. Further, a partition refractory heat insulating material 11 was installed between the respective heaters for the purpose of preventing interference of temperature control between the respective zones. The refractory heat insulating material, the heater, and the cooling device are fixed to a stainless steel furnace shell 12 to which a rotating shaft is attached. An induction melting furnace was used as the melting furnace for obtaining the molten metal.

【0030】(実施例1)図1に示すような箱型の高ア
ルミナ質の耐火物製容器を作成し、長手方向の一端面は
50mm厚さの鋼製板となるように加工された箱状の冷
却装置に毎分500Nリットルの冷却空気を通した。な
お、耐火物製容器は、長手方向が水平となるように調整
した。次いで加熱帯を昇温開始し、炉内温度1400℃
まで12時間で昇温し、その後3時間保持した。一方、
この時間に合わせて高周波誘導炉で溶解しておいたJI
S SKD11(1.5C−13Cr鋼)90Kgの溶湯
を溶湯温度1500℃で溶湯注入孔を通して鋳造した。
Example 1 A box-shaped high alumina refractory container as shown in FIG. 1 was prepared, and one end face in the longitudinal direction was machined into a steel plate having a thickness of 50 mm. Cooling air of 500 Nl / min was passed through the cooling device. The refractory container was adjusted so that the longitudinal direction was horizontal. Next, the heating zone starts to heat up, and the furnace temperature is 1400 ° C.
Up to 12 hours and then held for 3 hours. on the other hand,
JI melted in a high frequency induction furnace at this time
90 kg of molten metal S SKD11 (1.5C-13Cr steel) was cast at a molten metal temperature of 1500 ° C through a molten metal injection hole.

【0031】加熱帯各ゾーンの代表位置イ、ロ、ハ、ニ
に対して予めコンピュータによる凝固計算によって冷却
条件を設定し、各ゾーン温度を制御した場合の冷却過程
の溶湯内および耐火物製容器側面の各部の温度の時間変
化を図4に示す(溶湯内:実線、耐火物製側面測温位置
制御:▲)。結果は図に示すように、側面熱移動も無
く、溶湯冷却速度10℃/min以上、冷却装置の反対
側近傍で0.5℃/min以下と広範囲な凝固条件が模
擬できた。得られた凝固シミュレーション鋳塊の中央縦
断面をSプリント及び光学顕微鏡で調査した結果、逆V
偏析については、その生成状況を図5に示すように、ま
たミクロ組織についても図6に示すように金型鋳造鋳塊
中の組織を再現できることを確認した。
In the molten metal and refractory container in the cooling process when the cooling conditions are set in advance by the solidification calculation by the computer for the representative positions a, b, c and d of each zone of the heating zone and the temperature of each zone is controlled. Fig. 4 shows the time change of the temperature of each part of the side surface (in the molten metal: solid line, refractory side surface temperature measurement position control: ▲). As shown in the figure, there was no side heat transfer, and a wide range of solidification conditions could be simulated, such as a molten metal cooling rate of 10 ° C./min or more and 0.5 ° C./min or less near the opposite side of the cooling device. As a result of investigating the central longitudinal section of the obtained solidification simulation ingot by S-printing and an optical microscope, it was found that the reverse V
Regarding the segregation, it was confirmed that the generation state can be reproduced as shown in FIG. 5 and the microstructure can also reproduce the structure in the mold casting ingot as shown in FIG.

【0032】(実施例2)鋳込まれる溶湯が、JIS
SUM5(硫黄快削鋼)である以外は、実施例1と同様
な条件で実験を行った。実験により、得られた鋳塊の硫
化物分布、形状は、実際の金型鋳造鋳塊のそれを十分に
再現していた。 (実施例3)図3に示すように、溶解炉14および図2
に示す状態の凝固シミュレーション装置を共に容器15
内に配置し、前記容器内の圧力が1Paに達してから加熱
帯4の昇温を開始した。一方、真空中の溶解炉14で予
め溶解したインコネル718合金(ニッケル基超耐熱合
金)の溶湯を溶湯注入孔から鋳込んだ。本実施例は、真
空アーク再溶解を模擬したもので、鋳造時の要領は、底
面に冷却装置を配して強制冷却して実体鋳塊の水冷定盤
近傍の急冷状態を再現させ、さらに溶湯温度に加熱した
耐火物製容器の底部から順次上部に向けて、溶湯から凝
固するまでの時間を速くするようにゾーン加熱を調整さ
せた。実験により、得られた鋳塊の凝固組織は、真空ア
ーク再溶解(VAR)と同様の方向性凝固組織であっ
た。
(Example 2) The molten metal to be cast is JIS
An experiment was conducted under the same conditions as in Example 1 except that it was SUM5 (sulfur free-cutting steel). According to the experiment, the sulfide distribution and shape of the obtained ingot sufficiently reproduced that of the actual mold casting ingot. (Embodiment 3) As shown in FIG. 3, the melting furnace 14 and FIG.
The coagulation simulation device in the state shown in FIG.
The temperature inside the heating zone 4 was started after the pressure inside the container reached 1 Pa. On the other hand, a melt of Inconel 718 alloy (nickel-based super heat-resistant alloy) previously melted in a melting furnace 14 in vacuum was cast from a melt injection hole. This example is a simulation of vacuum arc remelting, and the procedure at the time of casting is to place a cooling device on the bottom surface and forcibly cool it to reproduce the rapidly cooled state near the water-cooled surface plate of the solid ingot. The zone heating was adjusted so that the time from the molten metal to the solidification was shortened from the bottom to the top of the refractory container heated to the temperature. According to the experiment, the solidified structure of the obtained ingot was a directional solidified structure similar to vacuum arc remelting (VAR).

【0033】[0033]

【発明の効果】本発明によれば、従来実体鋳塊を切断調
査する以外に手段のなかった鋳塊内部の各部位に相当す
る組織を、1000mmφ以上の大型鋳塊の場合であっ
ても比較的容易にかつ正確に模擬することができ、逆V
偏析などのマクロ欠陥およびミクロ組織の再現も可能で
ある。また鋳塊各部に相当する位置の連続的な測温など
も容易に行うことができる。さらに、雰囲気制御との組
合せで酸化物、硫化物等の生成挙動をより正確に模擬す
ることが可能であり、高清浄鋼や快削鋼の研究にも適す
る。
EFFECTS OF THE INVENTION According to the present invention, the structures corresponding to the respective parts inside the ingot, which had no means other than cutting and investigating the conventional ingot, were compared even in the case of a large ingot of 1000 mmφ or more. Reverse V can be simulated easily and accurately
It is also possible to reproduce macroscopic defects such as segregation and microstructure. Further, continuous temperature measurement at positions corresponding to various parts of the ingot can be easily performed. Furthermore, it is possible to more accurately simulate the formation behavior of oxides, sulfides, etc. in combination with atmosphere control, and it is also suitable for research on highly clean steel and free-cutting steel.

【0034】また、エレクトロスラグ再溶解(ES
R)、真空アーク再溶解(VAR)などの垂直方向の方
向性凝固形態も正確に模擬することが可能である。さら
に、本発明の凝固シミュレーション装置は、一つの装置
を設置すれば、その回転あるいは装置の真空容器への搬
送装置のみで、工業的に利用されている広範囲の凝固手
段が模擬できる点で多目的装置といえ、経済的にも顕著
な効果がある。以上のように、従来多大なコストを要し
ていた実体鋳塊を用いた試行実験も容易かつ比較的低コ
ストで実施でき、各材質、形状条件、溶解鋳造条件に応
じたミクロ組織、マクロ組織、酸化物、硫化物形態の最
適化などの多目的な検討を容易に行うことができ、その
工業的効果は非常に高い。
In addition, electroslag remelting (ES
R), vacuum arc remelting (VAR), and other vertical directional solidification morphologies can also be accurately simulated. Further, the coagulation simulation apparatus of the present invention is a multipurpose apparatus in that, if one apparatus is installed, a wide range of industrially used coagulation means can be simulated only by the rotation of the apparatus or the transfer apparatus to the vacuum container of the apparatus. However, it has a significant economic effect. As described above, a trial experiment using a solid ingot, which has conventionally required a great deal of cost, can be carried out easily and at a relatively low cost, and a microstructure and a macrostructure corresponding to each material, shape condition, and melt-casting condition. It is possible to easily perform multi-purpose studies such as optimization of oxide, sulfide morphology, etc., and its industrial effect is very high.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1、2の実施例に用いた装置の概念図であ
り、Aはその水平断面図を、Bはその垂直断面図であ
る。
FIG. 1 is a conceptual diagram of an apparatus used in first and second embodiments, in which A is a horizontal sectional view thereof and B is a vertical sectional view thereof.

【図2】図1に示す耐火物製容器を冷却装置、加熱帯と
ともに略90°回転させた状態を示す図であり、Aはそ
の垂直断面図を、Bは他方向からみた垂直断面図であ
る。
2 is a view showing a state in which the refractory container shown in FIG. 1 is rotated by about 90 ° together with a cooling device and a heating zone, A is a vertical sectional view thereof, and B is a vertical sectional view seen from the other direction. is there.

【図3】第3の実施例に用いた装置の概念図である。FIG. 3 is a conceptual diagram of an apparatus used in a third embodiment.

【図4】実施例1の実験例を示す図であり、実線は溶湯
内各部の温度分布の時間変化を、▲は各ゾーンの代表位
置(図1イ−ニ)の温度の時間変化を示す。図中の数字
は実線に対応した鋳込み後の時刻を表し、縦軸は温度、
横軸は凝固シミュレート鋳塊の冷却端からの距離mmで
ある。
FIG. 4 is a diagram showing an experimental example of Example 1, in which the solid line shows the time change of the temperature distribution of each part in the molten metal, and the ▲ shows the time change of the temperature at the representative position (FIG. 1A-I) of each zone. . Numbers in the figure represent the time after casting corresponding to the solid line, the vertical axis is the temperature,
The horizontal axis represents the distance mm from the cooling end of the solidification simulation ingot.

【図5】第1の実施例で得られた凝固シミュレート鋳塊
の中央断面図をサルファープリントした結果を示す図で
ある。図中央のサルファーの帯状部が逆V偏析を示す。
FIG. 5 is a diagram showing a result of sulfur-printing a central cross-sectional view of the solidification-simulating ingot obtained in the first example. The strips of sulfur in the center of the figure show inverse V segregation.

【図6】第1の実施例で得られた凝固シミュレート鋳塊
の中央縦断面図のミクロ組織写真を示す図であり、10ト
ン実体鋳塊の各断面位置のミクロ組織と対比して示した
ものである。
FIG. 6 is a view showing a microstructure photograph of a central longitudinal cross-sectional view of a solidification-simulating ingot obtained in the first example, which is shown in comparison with a microstructure at each cross-sectional position of a 10-ton solid ingot. It is a thing.

【図7】上広がり形状のキルド鋳塊の縦断面組織を示す
模式図である。
FIG. 7 is a schematic diagram showing a vertical cross-sectional structure of an upwardly spread killed ingot.

【図8】従来方法である凝固シミュレーション装置の1
つの例を示す図である。
FIG. 8: 1 of coagulation simulation device which is a conventional method
It is a figure which shows two examples.

【図9】鋳物製の鋳型を用いた時の金型内の熱および溶
湯の動きを表す模式図であり、トの実線は凝固前面の時
刻ごとの位置を、チの矢印は凝固進行方向を、ヘの2重
矢印は熱流を、ホの1重矢印は溶湯が流れる方向を表
す。
FIG. 9 is a schematic view showing the movement of heat and molten metal in the mold when a casting mold is used, the solid line of G indicates the position of the front surface of solidification at each time, and the arrow of J indicates the direction of solidification. The double arrow at F indicates the heat flow, and the single arrow at E indicates the direction in which the molten metal flows.

【符号の説明】[Explanation of symbols]

1 耐火物製容器、2 溶湯注入孔、3 冷却装置、4
加熱帯、5 温度検出器、6 溶湯、7 ヒーター、
9 回転用シャフト、10 耐火断熱材、11仕切用耐
火断熱材、12 ステンレス製炉殻、13 回転用シャ
フト支持具、14 溶解炉、15 容器、16 保温
剤、イ,ロ,ハ,ニ 容器表面温度測定点、ホ 溶湯
流、ヘ 熱流、ト 凝固前面位置、チ 凝固進行方向
1 refractory container, 2 molten metal injection hole, 3 cooling device, 4
Heating zone, 5 temperature detector, 6 molten metal, 7 heater,
9 rotation shaft, 10 refractory heat insulating material, 11 partition refractory heat insulating material, 12 stainless steel furnace shell, 13 rotation shaft support tool, 14 melting furnace, 15 container, 16 heat retaining agent, i, ro, ha, d container surface Temperature measurement point, hot metal flow, high heat flow, g solidification front position, g solidification progress direction

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 凝固シミュレートする溶湯を入れる耐火
物製容器1と、前記耐火物製容器の一方端にあって溶湯
を冷却する冷却装置3と、前記耐火物製容器1を前記冷
却装置以外で包囲する加熱帯4からなり、該加熱帯が前
記冷却装置3から見て前記耐火物製容器1の奥側に向か
って所定の温度勾配を持つように制御できる機能を有す
ることを特徴とする凝固シミュレーション装置。
1. A refractory container 1 for containing a molten metal for simulating solidification, a cooling device 3 for cooling the molten metal at one end of the refractory container, and the refractory container 1 other than the cooling device. It is characterized in that it comprises a heating zone 4 surrounded by, and has a function of controlling so that the heating zone has a predetermined temperature gradient toward the inner side of the refractory container 1 when viewed from the cooling device 3. Coagulation simulation device.
【請求項2】 加熱帯4が長手方向に複数に分割された
加熱ゾーンを有し、かつ耐火物製容器1の所定の位置に
設置した温度検出器5によって検出した温度と、予め設
定した温度とを比較して冷却装置3から見て耐火物製容
器1の奥側に向かって所定の温度勾配を持つように温度
制御できる機能を有する請求項1に記載の凝固シミュレ
ーション装置。
2. The heating zone 4 has a plurality of heating zones divided in the longitudinal direction, and the temperature detected by a temperature detector 5 installed at a predetermined position of the refractory container 1 and a preset temperature. The solidification simulation device according to claim 1, which has a function of controlling the temperature so as to have a predetermined temperature gradient toward the inner side of the refractory container 1 when viewed from the cooling device 3 in comparison with.
【請求項3】 冷却装置3が耐火物製容器1の溶湯注入
孔2を兼ねる請求項1または請求項2に記載の凝固シミ
ュレーション装置。
3. The solidification simulation apparatus according to claim 1, wherein the cooling device 3 also serves as the molten metal injection hole 2 of the refractory container 1.
【請求項4】 耐火物製容器1と冷却装置3、および加
熱帯4からなる装置が、回転用シャフト9、回転用シャ
フト支持具13に支持され、耐火物製容器1の長手方向
が垂直ないし水平となるよう略90度回転可動としたこ
とを特徴とする請求項1ないし請求項3のいずれかに記
載の凝固シミュレーション装置。
4. A device comprising a refractory container 1, a cooling device 3, and a heating zone 4 is supported by a rotating shaft 9 and a rotating shaft support 13, and the longitudinal direction of the refractory container 1 is vertical. The coagulation simulation apparatus according to any one of claims 1 to 3, wherein the coagulation simulation apparatus is rotatable about 90 degrees so as to be horizontal.
【請求項5】 請求項1ないし請求項4のいずれかに記
載のシミュレーション装置が、溶解炉14と共に容器1
5内に配置され、前記容器15は該容器内を真空または
不活性雰囲気にする手段を有する凝固シミュレーション
装置。
5. The simulation apparatus according to any one of claims 1 to 4, wherein the container 1 is provided together with the melting furnace 14.
5 is a solidification simulation apparatus which is arranged in the container 5 and has a means for making the container 15 a vacuum or an inert atmosphere.
【請求項6】 請求項1ないし請求項5のいずれかに記
載の装置を用いて凝固シミュレーションを行うにあた
り、耐火物製容器1を加熱帯4により、対象とする合金
の液相線温度−100℃以上の温度に均熱する第1工程
と、均熱した前記耐火物製容器1と冷却装置3によって
囲まれる空間内に、前記対象とする合金の溶湯6を注入
する第2工程と、耐火物製容器1の所定の位置の温度を
予め設定した温度と時間関係となるよう加熱帯内温度分
布を制御して冷却する第3工程からなる凝固シミュレー
ション方法。
6. When performing a solidification simulation using the apparatus according to any one of claims 1 to 5, the refractory container 1 is heated by a heating zone 4 to obtain a liquidus temperature of the alloy of interest −100. A first step of soaking the temperature to a temperature of ℃ or more, a second step of injecting the molten metal 6 of the target alloy into a space surrounded by the soaked refractory container 1 and the cooling device 3, and refractory A solidification simulation method comprising a third step of cooling by controlling the temperature distribution in the heating zone such that the temperature at a predetermined position of the product container 1 has a time relationship with a preset temperature.
JP16814795A 1995-06-09 1995-06-09 Solidification simulation device and method therefor Pending JPH08334483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16814795A JPH08334483A (en) 1995-06-09 1995-06-09 Solidification simulation device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16814795A JPH08334483A (en) 1995-06-09 1995-06-09 Solidification simulation device and method therefor

Publications (1)

Publication Number Publication Date
JPH08334483A true JPH08334483A (en) 1996-12-17

Family

ID=15862701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16814795A Pending JPH08334483A (en) 1995-06-09 1995-06-09 Solidification simulation device and method therefor

Country Status (1)

Country Link
JP (1) JPH08334483A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479560B1 (en) * 2013-12-16 2015-01-07 한국해양대학교 산학협력단 Shear Stress Controllable Wax Deposition System
CN105116004A (en) * 2015-09-18 2015-12-02 江苏冰城电材股份有限公司 Mica tape colloidizing testing machine
CN108982578A (en) * 2018-07-31 2018-12-11 马鞍山尚元冶金科技有限公司 A method of simulation solidification of molten steel process
CN109036083A (en) * 2018-08-31 2018-12-18 马鞍山尚元冶金科技有限公司 A kind of device based on Cold simulating test simulation process of setting
WO2020193404A1 (en) * 2019-03-22 2020-10-01 Ovako Sweden Ab A method for manufacturing a steel ingot
CN111982900A (en) * 2020-08-05 2020-11-24 鞍钢股份有限公司 Experimental method for controlling cooling mode of wire thermal simulation sample
US12017274B2 (en) 2019-03-22 2024-06-25 Ovako Sweden Ab Method for manufacturing a steel ingot

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479560B1 (en) * 2013-12-16 2015-01-07 한국해양대학교 산학협력단 Shear Stress Controllable Wax Deposition System
CN105116004A (en) * 2015-09-18 2015-12-02 江苏冰城电材股份有限公司 Mica tape colloidizing testing machine
CN108982578A (en) * 2018-07-31 2018-12-11 马鞍山尚元冶金科技有限公司 A method of simulation solidification of molten steel process
CN109036083A (en) * 2018-08-31 2018-12-18 马鞍山尚元冶金科技有限公司 A kind of device based on Cold simulating test simulation process of setting
CN109036083B (en) * 2018-08-31 2024-02-02 马鞍山尚元冶金科技有限公司 Device based on cold state experiment simulation solidification process
WO2020193404A1 (en) * 2019-03-22 2020-10-01 Ovako Sweden Ab A method for manufacturing a steel ingot
US12017274B2 (en) 2019-03-22 2024-06-25 Ovako Sweden Ab Method for manufacturing a steel ingot
CN111982900A (en) * 2020-08-05 2020-11-24 鞍钢股份有限公司 Experimental method for controlling cooling mode of wire thermal simulation sample
CN111982900B (en) * 2020-08-05 2024-02-13 鞍钢股份有限公司 Experimental method for controlling cooling mode of wire thermal simulation sample

Similar Documents

Publication Publication Date Title
Sikka et al. Advances in processing of Ni3Al-based intermetallics and applications
KR100683365B1 (en) Semi-solid concentration processing of metallic alloys
CN104475693B (en) The Reduction casting complex method of a kind of large-scale steel ingot and device thereof
CN104785757B (en) A kind of multicore many bags of reduction water the method and device of composite casting large-scale steel ingot altogether
Liu et al. High thermal gradient directional solidification and its application in the processing of nickel-based superalloys
JPH0910919A (en) Method to manufacture casting article which directionally coagulates, and device to perform said method
US20080060783A1 (en) Apparatus for producing a molten seal in a continuous casting furnace
JPH08120357A (en) Production of copper alloy containing active metal
JPH08334483A (en) Solidification simulation device and method therefor
Kondrashov et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1
CN204022878U (en) In alloy graining process, different steps liquid is quenched sampling unit
Yang et al. A Combined Electromagnetic Levitation Melting, Counter‐Gravity Casting, and Mold Preheating Furnace for Producing TiAl Alloy
Rahimian et al. Development of tool for physical simulation of skin formation during investment casting of nickel-based superalloys
Ying et al. Influence of Electropulsing Treatment on the Initial Solidification of Molten Steel During Continuous Casting
Srinivasan et al. Tribological Studies of Shrinkage Defect and Effective Yield Upgrade of Grey Cast-Iron Castings
JP2003113430A (en) Melting and casting method for magnesium and magnesium alloy
US2958913A (en) Production of large masses of steel suitable for the production of forgings, and apparatus therefor
RU2283355C2 (en) Vacuum electric-arc lining-slag furnace
Kazup et al. High purity primary aluminium casting by Indutherm CC3000 semi-continuous casting equipment
Randiwe et al. Towards the Development of Low-Cost Vacuum Setup for Customized Implant Manufacturing
JPH1099962A (en) Manufacture of cast ingot
JPS58188552A (en) Producing device of material solidified by quenching
Ruby-Meyer et al. Ti and TiAl melting with a semi-industrial PAMCHR
Mampaey Quantification of the solidification morphology of lamellar and spheroidal graphite cast iron
JP2006015367A (en) Casting production device and casting production method