JPH08334449A - 収着気化成分測定装置 - Google Patents

収着気化成分測定装置

Info

Publication number
JPH08334449A
JPH08334449A JP13972495A JP13972495A JPH08334449A JP H08334449 A JPH08334449 A JP H08334449A JP 13972495 A JP13972495 A JP 13972495A JP 13972495 A JP13972495 A JP 13972495A JP H08334449 A JPH08334449 A JP H08334449A
Authority
JP
Japan
Prior art keywords
measured
weight
balance mechanism
measuring device
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13972495A
Other languages
English (en)
Inventor
Tetsuya Abe
哲也 阿部
Seiji Hiroki
成治 廣木
Yoshio Murakami
義夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP13972495A priority Critical patent/JPH08334449A/ja
Publication of JPH08334449A publication Critical patent/JPH08334449A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 材料内に収着内蔵している全ての気化成分を
標準試薬や検量線を用いずに高精度に、かつ、簡便に定
性および定量分析する。 【構成】 被測定材料(20)の重量を検知し定量分析
するための天秤機構部(6)と、これを設置するための
恒温機構付台座(8)と、天秤機構部(6)と被測定材
料(20)とを所要距離だけ遠ざけ、機械的に懸架連結
するための連結棒(5)と、被測定材料(20)、天秤
機構部(6)および連結棒(5)を収容し、被測定材料
(20)から放出される気化成分の化合物種を定性分析
するための気化成分分析計(11)が所要位置に貫設さ
れた密閉容器(2)と、この密閉容器(2)外に設け天
秤機構部(6)を制御し重量を表示する制御電源部(1
4)とを備えている。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、収着気化成分測定装
置に関するものである。さらに詳しくは、この発明は、
真空機器製造用構造材料の評価試験等において有用な、
材料に収着内蔵されている気化成分を定性・定量分析す
ることができる収着気化成分測定装置に関するものであ
る。
【0002】
【従来の技術とその課題】従来より、材料内に収着内蔵
されている気化成分を定性・定量分析するための装置と
しては、例えば「真空技術マニュアル」ジョン F.オ
ハロン 著(野田保、斉藤弥八、奥谷 剛 訳、産業図
書、1983年)第65項〜第108項に示される四極
子型質量分析計を単独で用いたものが一般的なものとし
て知られている。この四極子型質量分析計による収着気
化成分分析装置は、測定材料を加熱昇温することにより
収着内蔵されている気化成分を気体状態にして測定材料
内から外部空間へ放出させ、次いで、この放出気化成分
を熱フィラメントにより陽イオン化し、四極子型質量分
析計の四極子電場と電気的に相互作用させることにより
その気化成分の質量数ごとに、すなわち化合物種ごとに
分離させて、各化合物種のピーク高さ値を検証すること
により放出気化成分の定性・定量分析を行うというもの
である。
【0003】この四極子型質量分析計による放出気化成
分の定性分析は比較的に容易であり、測定精度も高いと
いう特徴を有している。しかしながら、その定量分析に
ついては、分離した個々の化合物種のピーク高さ値より
各化合物種の重量を求めなければならないため、測定す
べき化合物種の含有濃度が既知の標準試薬を前もって作
成し、この標準試薬を用いて化合物種の含有濃度とピー
ク高さ値との対応関係を検量線の形で求めておかなけれ
ばならない。このため、この検量線は、測定する化合物
種の全てに対して個別的に作成しなければならたいた
め、測定する化合物が多い場合は非常に煩わしい作業に
なるという欠点がある。
【0004】さらに、測定される可能性のある全ての化
合物種に対して標準試薬を用意し、その検量線を作るこ
とは、入手できる標準試薬数が限られているという現状
のために事実上不可能であり、従って検量線を作ること
ができない化合物種については定量分析ができないとい
う欠点もある。この発明は、以上のような従来装置の欠
点を解決するために創案されたものであり、材料内に収
着内蔵している全ての気化成分を標準試薬や検量線を用
いらずに高精度で定性および定量分析することができ
る、新しい収着気化成分測定装置を提供することを目的
としている。
【0005】
【課題を解決するための手段】この発明は、上記の通り
の従来の分析装置の課題を解決するものとして、被測定
材料内に収着内蔵されている気化成分を定性・定量分析
する収着気化成分測定装置であって、被測定材料の重量
を検知し定量分析するための天秤機構部と、この天秤機
構部を設置するための恒温機構付台座と、天秤機構部と
被測定材料とを所要距離だけ遠ざけ、かつ、機械的に懸
架連結するための連結棒と、被測定材料、天秤機構部お
よび連結棒を収容し、被測定材料から放出される気化成
分の化合物種を定性分析するための気化成分分析計が所
要位置に貫設された密閉容器と、この密閉容器外に設け
られ、天秤機構部を制御し重量を表示する制御電源部と
を備えていることを特徴とする収着気化成分測定装置を
提供する。
【0006】また、この発明は、上記装置において、連
結棒は、被測定材料と天秤機構部とを遠ざけるための配
管部内に設けることや、連結棒は、耐熱性が高く、か
つ、化学的に不活性な材質とすること、さらにまた、上
記装置において、密閉容器と測定材料を設置する試料容
器、及びこれら2つの容器を接続する配管部を同一密閉
構造とすること等をその態様の一つとしている。
【0007】
【作用】この発明では、上記の通り、対象となる被測定
材料と恒温機構付台座上に設置された天秤機構部とを連
結棒を用いることにより所要距離だけ遠ざけて連結し、
さらにこれらを同一密閉容器内に設けることにより外界
から隔離している。このため、測定領域内への外界から
の各種攪乱を遮断する。そして、この発明では、恒温機
構付台座により天秤機構部の温度を所要温度に制御維持
した状態で、加熱ヒータにより被測定材料を所要温度に
加熱することにより放出される収着内蔵されていた気化
成分の重量を測定して定量分析し、同時に放出気化成分
の化合物種を気体成分分析計で同定し、定性分析をする
ことを可能としている。
【0008】
【実施例】以下、実施例を示し、さらに詳しくこの発明
について説明する。もちろんこの発明は以下の例によっ
て限定されるものではない。添付した図面の図1は、こ
の発明の一実施例である真空環境下において被測定材料
から加熱放出された気化成分の重量及び化合物種を測定
する収着気化成分測定装置を例示した構成図である。こ
の収着気化成分測定装置では、共にステンレス鋼等の金
属材料で作成された試料容器(1)と密閉容器(2)の
2つの容器が配管部(3)により連結され気密が保持さ
れている。試料容器(1)と配管部(3)とはフランジ
結合等のための締結金具(19a)と締結金具(19
b)により連結されている。
【0009】試料容器(1)内には、加熱ヒータ(4)
が設置され、また試料容器(1)は、弁(17)を介し
て真空ポンプ(18)が接続されている。密閉容器
(2)内には、天秤機構部(6)が、一部に連結棒
(5)を通すための貫通孔(7)が設けられた恒温機構
付台座(8)上に載置されている。台座(8)内には、
恒温機構として電熱ヒータ(9)が設置され、水などの
冷媒(10)が充填されている。電熱ヒータ(9)及び
冷媒(10)により台座(8)を加熱・冷却することに
より温度を調整し、熱伝導により、台座(8)から天秤
機構部(6)へ熱を伝導させ、これにより天秤機構部
(6)の温度を所望の温度に維持するようにしている。
また、天秤機構部(6)の信号端子は、信号電線(1
2)及び密閉容器(2)に貫設された端子(13)を介
して密閉容器(2)の外に設けられた制御電源部(1
4)に接続されている。この制御電源部(14)により
天秤機構部(6)を制御するようにしている。また、密
閉容器(2)には、天秤機構部(6)を密閉容器(2)
に出し入れするための開口部(15)が設けられてお
り、開口部(15)は蓋(16)により閉塞されてい
る。さらにまた、気体成分分析計(11)が、密閉容器
(2)の所要の位置に取り付け用金具を介して貫設され
ている。
【0010】そして、被測定材料(20)は、試料容器
(1)内の加熱ヒータ(4)の上方に、ある程度の距離
で隔離した位置になるように、配管部(3)内の貫通孔
(7)を貫通する連結棒(5)によって密閉容器(2)
内に設置された天秤機構部(6)から吊り下げられてい
る。この被測定材料(20)は、連結棒(5)の長さを
調節することにより、加熱ヒータ(4)との距離が適宜
に調整される。
【0011】たとえば以上のような構造を有する収着気
化成分測定装置を用いて、被測定材料(20)に収着内
蔵されている気化成分の定性・定量分析を行うには、以
下のような手順に沿って実施する。先ず、弁(17)を
開け真空ポンプ(18)により試料容器(1)および密
閉容器(2)の内部を所要の真空状態にし、台座(8)
の温度を天秤機構部(6)の動作にとって最適な温度、
例えば25℃に制御・維持する。その後に、制御電源部
(14)により作動・制御される天秤機構部(6)によ
り真空状態における測定開始前の被測定材料(20)お
よび連結棒(5)の合算重量W0を前もって計測・記録
し、同時に気体成分分析計(11)により密閉容器
(2)内の測定開始前の残留気体成分組成(バックグラ
ンド気体成分組成)も計測・記録しておく。そして、こ
れらの測定開始前の諸計測の後、加熱ヒータ(4)を所
要温度に通電加熱することにより被測定材料(20)を
所要の温度に輻射加熱させる。この被測定材料(20)
の加熱によりこれに収着内蔵されている気化成分が密閉
容器(2)の空間内に放出される。そして、気化成分が
放出された後の被測定材料(20)および連結棒(5)
の合算重量W1を上記と同様に天秤機構部(6)により
計測・記録する。
【0012】この時、被測定材料(20)の気化成分以
外のものと連結棒(5)の重量は変化しないため、被測
定材料(20)から放出された気化成分の重量△Wは、
次式のように算出して測定し定量分析することできる。
【0013】
【数1】
【0014】また、同時に、密閉容器(2)の空間内に
放出された気化成分の化合物種を気化成分分析計(1
1)により同定し定性分析することができる。なお上記
の説明では、W0 、W1 の計測動作及び放出気化成分の
重量△Wの算出方法、並びに放出気化成分緒化合物種の
同定について、区切って説明したが、連続的に放出気化
成分の重量及び化合物種を測定できることは言うまでも
ない。
【0015】さらに、連結棒(5)には、収着気化成分
測定装置を動作させる環境下において、その重量が変化
すると正確な放出気化成分の重量を計測できなくなるた
め、白金、ステンレス鋼、石英などの耐熱性が高く、か
つ、化学的に不活性な材質のものを用いることが好まし
い。さらに、連結棒(5)の長さは、配管部(3)の形
状寸法及び配管部(3)に結合される試料容器(1)な
ど他の機器の形状寸法に合わせて適当な長さに調整する
ことが好ましい。
【0016】そして、この発明の収着気化成分測定装置
で計測できる放出気化成分の重量範囲は、使用する天秤
機構部(6)が計測できる重量範囲内であれば制限はな
い。また、放出気化成分の化合物種を同定し定性分析す
る気体成分分析計(11)の同定範囲は、使用する気体
成分分析計(11)が計測できる化合物種の同定範囲内
であれば特に制限はない。さらに、動作・計測可能な密
閉容器(2)内の雰囲気気体の圧力範囲は、前もって実
施するブランクテストにより、天秤機構部(6)の計測
動作に誤差を生じさせる原因となる雰囲気気体圧力によ
る浮力、対流、熱遷移等の悪影響を、補正・除去さえす
れば天秤機構部(6)の動作圧力範囲に特段の制限はな
いため、気体成分分析計(11)の動作圧力範囲のみに
依存する。
【0017】さらに、密閉容器(2)に締結される試料
容器(1)等が密閉構造であるため、密閉容器(2)と
試料容器(1)との一体化で形成される空間が外界から
隔離された密閉閉鎖空間となり、このため、必要に応じ
てこの空間内を任意の気体組成と圧力の状態にして放出
気化成分の重量及び化合物種を測定することもできる。
【0018】以上説明したようなこの発明の収着気化成
分測定装置の動作性能は、たとえば以下のものを用いて
実際に確認されている。すなわち、天秤機構部(6)に
は、新光電子株式会社製FB−20S(計測秤量20
g、計測制度±2μg)を、気体成分分析計(11)に
は、日電アネルバ株式会社製四重極型質量分析計AGA
−100(検出可能質量数:1〜100原子質量単位
(amu)、動作圧力範囲:1×10-4〜2×10-11
Torr)を、連結棒(5)には、直径0.2mmの白
金(Pt)線を用い、被測定材料(20)には、イビデ
ン株式会社製黒鉛ETP−10(嵩密度:1.75gc
-3)を、雰囲気気体としては、ヘリウム(He)及び
水素(H2 )を用いる。
【0019】そして、密閉容器(2)および試料容器
(1)内の気体圧力を、気体成分分析計(11)の動作
圧力範囲内である1×10-4〜5×10-7Torrの範
囲で、また、測定材料(20)の温度を加熱ヒータ
(4)を用いて室温から900℃未満の範囲でそれぞれ
任意に選定し変化させて、被測定材料(20)の重量及
び重量変化についての計測精度及び計測可能最大重量
(秤量)、並びに気体成分分析計(11)による化合物
種の検出性を測定した。その結果、定量分析を行う天秤
機構部(6)は原理的に連続計測が可能であり、重量計
測値については雰囲気気体圧力による浮力、対流、熱遷
移の悪影響をその都度補正・除去さえすれば、重力計測
の精度は±2μg、秤量は20gになるという結果を得
た。この計測精度及び秤量は、新光電子株式会社製FB
−20Sの天秤機構部の性能値(計測秤量20g、計測
制度±2μg)と同一である。従って、気化成分の定量
分析を高精度で行うことができることがわかる。また、
各重量計測値に対応させて気体成分分析計(11)によ
り化合物種の定性分析を行いバックグランド値を除外し
た状態で、水素(H2 、質量数2)、メタン(CH4
質量数16)、水蒸気(H2O、質量数18)、一酸化
炭素(CO、質量数28)、二酸化炭素(CO2 、質量
数44)の各化合物種を計測・検出した。この定性分析
値は、一般的に知られている黒鉛材料からの放出気化成
分値と同一である(例えば、「真空技術マニュアル」ジ
ョン F.オハロン 著(野田 保、斉藤弥八、奥谷
剛 訳、産業図書、1983年)第65項〜第108
項)。従って、気化成分の化合物種を正しく同定できる
ことが確認された。
【0020】なお、以上の実施例では、雰囲気気体とし
てヘリウム(He)及び水素(H2)を用いて測定した
が、気体圧力値は気体の種類を問わないため、浮力、対
流、熱遷移等について必要な補正を施し、かつ、雰囲気
圧力が気体成分分析計(11)の動作可能圧力の範囲内
であれば、これら以外の雰囲気気体を使用した場合にも
上記のような結果が適用できることが明らかである。
【0021】さらに、天秤機構部(6)および気体成分
分析計(11)としてそれぞれ市販されている一種類に
ついてのみ述べたが、この発明の意図と合致するもので
あればこれらに限定されることがないことは明らかであ
る。また、被測定材料(20)として黒鉛を用いたが、
気化成分以外の部分の重量が変化さえしなければ、その
材質に特段の制限はないことも明らかである。
【0022】天秤機構部と気体成分分析計については、
外界からの各種攪乱により測定に悪影響が及ぼされてし
まうが、この発明のように、これらを密閉容器内(2)
に設置することにより、外界から隔離して外界からの各
種攪乱を遮断することにより測定値に無秩序な零点変動
が発生したり、或いは測定感度及び測定精度が低下した
りするのを防ぐことができるため、高精度の測定を行う
ことができる。
【0023】また、天秤機構部(6)と被測定材料(2
0)とは連結棒(5)を用いて所要距離だけ遠ざけて機
械的に連結しているだけなので、天秤機構部(6)は測
定材料(20)の熱的状態とは無関係にその重量を測定
できる。
【0024】
【発明の効果】この発明では、以上詳しく説明したよう
に、被測定材料内に収着されている気化成分量を被測定
材料の重量変化として直接計測することにより定量分析
できるので、従来法のように定量分析のための検量線を
必要とせず、また、気化成分の化合物種を各重量計測値
に対応させて気体成分分析計により同定・検出して定性
分析できるので、収着気化成分の定性・定量分析を高精
度で且つ簡便に行うことができる。
【図面の簡単な説明】
【図1】この発明の一実施例である収着気化成分測定装
置の構成図である。
【符号の説明】
1 試料容器 2 密閉容器 3 配管部 4 加熱ヒータ 5 連結棒 6 天秤機構部 7 貫通孔 8 恒温機構付台座 9 電熱ヒータ 10 冷媒 11 気体成分分析計 12 信号電線 13 端子 14 制御電源部 15 開口部 16 蓋 17 弁 18 真空ポンプ 19a、19b 締結金具 20 被測定材料
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成7年8月30日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正内容】
【書類名】 明細書
【発明の名称】 収着気化成分測定装置
【特許請求の範囲】
【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、収着気化成分測定装
置に関するものである。さらに詳しくは、この発明は、
真空機器製造用構造材料の評価試験等において有用な、
材料に収着内蔵されている気化成分を定性・定量分析す
ることができる収着気化成分測定装置に関するものであ
る。
【0002】
【従来の技術とその課題】従来より、材料内に収着内蔵
されている気化成分を定性・定量分析するための装置と
しては、例えば「真空技術マニュアル」ジョン F.オ
ハロン 著(野田保、斉藤弥八、奥谷 剛 訳、産業図
書、1983年)第65〜第108に示される四極
子型質量分析計を単独で用いたものが一般的なものとし
て知られている。この四極子型質量分析計による収着気
化成分分析装置は、測定材料を加熱昇温することにより
収着内蔵されている気化成分を気体状態にして測定材料
内から外部空間へ放出させ、次いで、この放出気化成分
を熱フィラメントにより陽イオン化し、四極子型質量分
析計の四極子電場と電気的に相互作用させることにより
その気化成分の質量数ごとに、すなわち化合物種ごとに
分離させて、各化合物種のピーク高さ値を検証すること
により放出気化成分の定性・定量分析を行うというもの
である。
【0003】この四極子型質量分析計による放出気化成
分の定性分析は比較的に容易であり、測定精度も高いと
いう特徴を有している。しかしながら、その定量分析に
ついては、分離した個々の化合物種のピーク高さ値より
各化合物種の重量を求めなければならないため、測定す
べき化合物種の含有濃度が既知の標準試薬を前もって作
成し、この標準試薬を用いて化合物種の含有濃度とピー
ク高さ値との対応関係を検量線の形で求めておかなけれ
ばならない。このため、この検量線は、測定する化合物
種の全てに対して個別的に作成しなければならたいた
め、測定する化合物が多い場合は非常に煩わしい作業に
なるという欠点がある。
【0004】さらに、測定される可能性のある全ての化
合物種に対して標準試薬を用意し、その検量線を作るこ
とは、入手できる標準試薬数が限られているという現状
のために事実上不可能であり、従って検量線を作ること
ができない化合物種については定量分析ができないとい
う欠点もある。この発明は、以上のような従来装置の欠
点を解決するために創案されたものであり、材料内に収
着内蔵している全ての気化成分を標準試薬や検量線を用
いらずに高精度で定性および定量分析することができ
る、新しい収着気化成分測定装置を提供することを目的
としている。
【0005】
【課題を解決するための手段】この発明は、上記の通り
の従来の分析装置の課題を解決するものとして、被測定
材料内に収着内蔵されている気化成分を定性・定量分析
する収着気化成分測定装置であって、被測定材料の重量
を検知し定量分析するための天秤機構部と、この天秤機
構部を設置するための恒温機構付台座と、天秤機構部と
被測定材料とを所要距離だけ遠ざけ、かつ、機械的に懸
架連結するための連結棒と、被測定材料、天秤機構部お
よび連結棒を収容し、被測定材料から放出される気化成
分の化合物種を定性分析するための気化成分分析計が所
要位置に貫設された密閉容器と、この密閉容器外に設け
られ、天秤機構部を制御し重量を表示する制御電源部と
を備えていることを特徴とする収着気化成分測定装置を
提供する。
【0006】また、この発明は、上記装置において、連
結棒は、被測定材料と天秤機構部とを遠ざけるための配
管部内に設けることや、連結棒は、耐熱性が高く、か
つ、化学的に不活性な材質とすること、さらにまた、上
記装置において、密閉容器と測定材料を設置する試料容
器、及びこれら2つの容器を接続する配管部を同一密閉
構造とすること等をその態様の一つとしている。
【0007】
【作用】この発明では、上記の通り、対象となる被測定
材料と恒温機構付台座上に設置された天秤機構部とを連
結棒を用いることにより所要距離だけ遠ざけて連結し、
さらにこれらを同一密閉容器内に設けることにより外界
から隔離している。このため、測定領域内への外界から
の各種攪乱を遮断する。そして、この発明では、恒温機
構付台座により天秤機構部の温度を所要温度に制御維持
した状態で、加熱ヒータにより被測定材料を所要温度に
加熱することにより放出される収着内蔵されていた気化
成分の重量を測定して定量分析し、同時に放出気化成分
の化合物種を気体成分分析計で同定し、定性分析をする
ことを可能としている。
【0008】
【実施例】以下、実施例を示し、さらに詳しくこの発明
について説明する。もちろんこの発明は以下の例によっ
て限定されるものではない。添付した図面の図1は、こ
の発明の一実施例である真空環境下において被測定材料
から加熱放出された気化成分の重量及び化合物種を測定
する収着気化成分測定装置を例示した構成図である。こ
の収着気化成分測定装置では、共にステンレス鋼等の金
属材料で作成された試料容器(1)と密閉容器(2)の
2つの容器が配管部(3)により連結され気密が保持さ
れている。試料容器(1)と配管部(3)とはフランジ
結合等のための締結金具(19a)と締結金具(19
b)により連結されている。
【0009】試料容器(1)内には、加熱ヒータ(4)
が設置され、また試料容器(1)は、弁(17)を介し
て真空ポンプ(18)が接続されている。密閉容器
(2)内には、天秤機構部(6)が、一部に連結棒
(5)を通すための貫通孔(7)が設けられた恒温機構
付台座(8)上に載置されている。台座(8)内には、
恒温機構として電熱ヒータ(9)が設置され、水などの
冷媒(10)が充填されている。電熱ヒータ(9)及び
冷媒(10)により台座(8)を加熱・冷却することに
より温度を調整し、熱伝導により、台座(8)から天秤
機構部(6)へ熱を伝導させ、これにより天秤機構部
(6)の温度を所望の温度に維持するようにしている。
また、天秤機構部(6)の信号端子は、信号電線(1
2)及び密閉容器(2)に貫設された端子(13)を介
して密閉容器(2)の外に設けられた制御電源部(1
4)に接続されている。この制御電源部(14)により
天秤機構部(6)を制御するようにしている。また、密
閉容器(2)には、天秤機構部(6)を密閉容器(2)
に出し入れするための開口部(15)が設けられてお
り、開口部(15)は蓋(16)により閉塞されてい
る。さらにまた、気体成分分析計(11)が、密閉容器
(2)の所要の位置に取り付け用金具を介して貫設され
ている。
【0010】そして、被測定材料(20)は、試料容器
(1)内の加熱ヒータ(4)の上方に、ある程度の距離
で隔離した位置になるように、配管部(3)内の貫通孔
(7)を貫通する連結棒(5)によって密閉容器(2)
内に設置された天秤機構部(6)から吊り下げられてい
る。この被測定材料(20)は、連結棒(5)の長さを
調節することにより、加熱ヒータ(4)との距離が適宜
に調整される。
【0011】たとえば以上のような構造を有する収着気
化成分測定装置を用いて、被測定材料(20)に収着内
蔵されている気化成分の定性・定量分析を行うには、以
下のような手順に沿って実施する。先ず、弁(17)を
開け真空ポンプ(18)により試料容器(1)および密
閉容器(2)の内部を所要の真空状態にし、台座(8)
の温度を天秤機構部(6)の動作にとって最適な温度、
例えば25℃に制御・維持する。その後に、制御電源部
(14)により作動・制御される天秤機構部(6)によ
り真空状態における測定開始前の被測定材料(20)お
よび連結棒(5)の合算重量W0を前もって計測・記録
し、同時に気体成分分析計(11)により密閉容器
(2)内の測定開始前の残留気体成分組成(バックグラ
ンド気体成分組成)も計測・記録しておく。そして、こ
れらの測定開始前の諸計測の後、加熱ヒータ(4)を所
要温度に通電加熱することにより被測定材料(20)を
所要の温度に輻射加熱させる。この被測定材料(20)
の加熱によりこれに収着内蔵されている気化成分が密閉
容器(2)の空間内に放出される。そして、気化成分が
放出された後の被測定材料(20)および連結棒(5)
の合算重量W1を上記と同様に天秤機構部(6)により
計測・記録する。
【0012】この時、被測定材料(20)の気化成分以
外のものと連結棒(5)の重量は変化しないため、被測
定材料(20)から放出された気化成分の重量△Wは、
次式のように算出して測定し定量分析することできる。
【0013】
【数1】
【0014】また、同時に、密閉容器(2)の空間内に
放出された気化成分の化合物種を気化成分分析計(1
1)により同定し定性分析することができる。なお上記
の説明では、W0 、W1 の計測動作及び放出気化成分の
重量△Wの算出方法、並びに放出気化成分化合物種の同
定について、区切って説明したが、連続的に放出気化成
分の重量及び化合物種を測定できることは言うまでもな
い。
【0015】さらに、連結棒(5)には、収着気化成分
測定装置を動作させる環境下において、その重量が変化
すると正確な放出気化成分の重量を計測できなくなるた
め、白金、ステンレス鋼、石英などの耐熱性が高く、か
つ、化学的に不活性な材質のものを用いることが好まし
い。さらに、連結棒(5)の長さは、配管部(3)の形
状寸法及び配管部(3)に結合される試料容器(1)な
ど他の機器の形状寸法に合わせて適当な長さに調整する
ことが好ましい。
【0016】そして、この発明の収着気化成分測定装置
で計測できる放出気化成分の重量範囲は、使用する天秤
機構部(6)が計測できる重量範囲内であれば制限はな
い。また、放出気化成分の化合物種を同定し定性分析す
る気体成分分析計(11)の同定範囲は、使用する気体
成分分析計(11)が計測できる化合物種の同定範囲内
であれば特に制限はない。さらに、動作・計測可能な密
閉容器(2)内の雰囲気気体の圧力範囲は、前もって実
施するブランクテストにより、天秤機構部(6)の計測
動作に誤差を生じさせる原因となる雰囲気気体圧力によ
る浮力、対流、熱遷移等の悪影響を、補正・除去さえす
れば天秤機構部(6)の動作圧力範囲に特段の制限はな
いため、気体成分分析計(11)の動作圧力範囲のみに
依存する。
【0017】さらに、密閉容器(2)に締結される試料
容器(1)等が密閉構造であるため、密閉容器(2)と
試料容器(1)との一体化で形成される空間が外界から
隔離された密閉閉鎖空間となり、このため、必要に応じ
てこの空間内を任意の気体組成と圧力の状態にして放出
気化成分の重量及び化合物種を測定することもできる。
【0018】以上説明したようなこの発明の収着気化成
分測定装置の動作性能は、たとえば以下のものを用いて
実際に確認されている。すなわち、天秤機構部(6)に
は、新光電子株式会社製FB−20S(計測秤量20
g、計測精度±2μg)を、気体成分分析計(11)に
は、日電アネルバ株式会社製四重極型質量分析計AGA
−100(検出可能質量数:1〜100原子質量単位
(amu)、動作圧力範囲:1×10-4〜2×10-11
Torr)を、連結棒(5)には、直径0.2mmの白
金(Pt)線を用い、被測定材料(20)には、イビデ
ン株式会社製黒鉛ETP−10(嵩密度:1.75gc
-3)を、雰囲気気体としては、ヘリウム(He)及び
水素(H2 )を用いる。
【0019】そして、密閉容器(2)および試料容器
(1)内の気体圧力を、気体成分分析計(11)の動作
圧力範囲内である1×10-4〜5×10-7Torrの範
囲で、また、測定材料(20)の温度を加熱ヒータ
(4)を用いて室温から900℃未満の範囲でそれぞれ
任意に選定し変化させて、被測定材料(20)の重量及
び重量変化についての計測精度及び計測可能最大重量
(秤量)、並びに気体成分分析計(11)による化合物
種の検出性を測定した。その結果、定量分析を行う天秤
機構部(6)は原理的に連続計測が可能であり、重量計
測値については雰囲気気体圧力による浮力、対流、熱遷
移の悪影響をその都度補正・除去さえすれば、重計測
の精度は±2μg、秤量は20gになるという結果を得
た。この計測精度及び秤量は、新光電子株式会社製FB
−20Sの天秤機構部の性能値(計測秤量20g、計測
精度±2μg)と同一である。従って、気化成分の定量
分析を高精度で行うことができることがわかる。また、
各重量計測値に対応させて気体成分分析計(11)によ
り化合物種の定性分析を行いバックグランド値を除外し
た状態で、水素(H2 、質量数2)、メタン(CH4
質量数16)、水蒸気(H2O、質量数18)、一酸化
炭素(CO、質量数28)、二酸化炭素(CO2 、質量
数44)の各化合物種を計測・検出した。この定性分析
値は、一般的に知られている黒鉛材料からの放出気化成
分値と同一である(例えば、「真空技術マニュアル」ジ
ョン F.オハロン 著(野田 保、斉藤弥八、奥谷
剛 訳、産業図書、1983年)第65〜第108
)。従って、気化成分の化合物種を正しく同定できる
ことが確認された。
【0020】なお、以上の実施例では、雰囲気気体とし
てヘリウム(He)及び水素(H2)を用いて測定した
が、気体圧力値は気体の種類を問わないため、浮力、対
流、熱遷移等について必要な補正を施し、かつ、雰囲気
圧力が気体成分分析計(11)の動作可能圧力の範囲内
であれば、これら以外の雰囲気気体を使用した場合にも
上記のような結果が適用できること明らかである。
【0021】さらに、天秤機構部(6)および気体成分
分析計(11)としてそれぞれ市販されている一種類に
ついてのみ述べたが、この発明の意図と合致するもので
あればこれらに限定されることがないことは明らかであ
る。また、被測定材料(20)として黒鉛を用いたが、
気化成分以外の部分の重量が変化さえしなければ、その
材質に特段の制限はないことも明らかである。
【0022】天秤機構部と気体成分分析計については、
外界からの各種攪乱により測定に悪影響が及ぼされてし
まうが、この発明のように、これらを密閉容器内(2)
に設置することにより、外界から隔離して外界からの各
種攪乱を遮断することにより測定値に無秩序な零点変動
が発生したり、或いは測定感度及び測定精度が低下した
りするのを防ぐことができるため、高精度の測定を行う
ことができる。
【0023】また、天秤機構部(6)と被測定材料(2
0)とは連結棒(5)を用いて所要距離だけ遠ざけて機
械的に連結しているだけなので、天秤機構部(6)は測
定材料(20)の熱的状態とは無関係にその重量を測定
できる。
【0024】
【発明の効果】この発明では、以上詳しく説明したよう
に、被測定材料内に収着されている気化成分量を被測定
材料の重量変化として直接計測することにより定量分析
できるので、従来法のように定量分析のための検量線を
必要とせず、また、気化成分の化合物種を各重量計測値
に対応させて気体成分分析計により同定・検出して定性
分析できるので、収着気化成分の定性・定量分析を高精
度で且つ簡便に行うことができる。
【図面の簡単な説明】
【図1】この発明の一実施例である収着気化成分測定装
置の構成図である。
【符号の説明】 1 試料容器 2 密閉容器 3 配管部 4 加熱ヒータ 5 連結棒 6 天秤機構部 7 貫通孔 8 恒温機構付台座 9 電熱ヒータ 10 冷媒 11 気体成分分析計 12 信号電線 13 端子 14 制御電源部 15 開口部 16 蓋 17 弁 18 真空ポンプ 19a、19b 締結金具 20 被測定材料

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 被測定材料内に収着内蔵されている気化
    成分を定性・定量分析する収着気化成分測定装置であっ
    て、被前記測定材料の重量を検知し定量分析するための
    天秤機構部と、この天秤機構部を設置するための恒温機
    構付台座と、天秤機構部と測定材料とを所要距離だけ遠
    ざけ、かつ、機械的に懸架連結するための連結棒と、被
    測定材料、天秤機構部および連結棒を収容し、被測定材
    料から放出される気化成分の化合物種を定性分析するた
    めの気化成分分析計が所要位置に貫設された密閉容器
    と、この密閉容器外に設けられ、天秤機構部を制御し重
    量を表示する制御電源部とを備えていることを特徴とす
    る収着気化成分測定装置。
  2. 【請求項2】 連結棒は、被測定材料と天秤機構部とを
    遠ざける配管部内に設ける請求項1の収着気化成分測定
    装置。
  3. 【請求項3】 連結棒は、耐熱性が高く、かつ、化学的
    に不活性な材質からなる請求項1の収着気化成分測定装
    置。
  4. 【請求項4】 密閉容器と測定材料を設置する試料容器
    およびこれら2つの容器を接続する配管部を同一密閉構
    造とする請求項1の収着気化成分測定装置。
JP13972495A 1995-06-06 1995-06-06 収着気化成分測定装置 Pending JPH08334449A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13972495A JPH08334449A (ja) 1995-06-06 1995-06-06 収着気化成分測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13972495A JPH08334449A (ja) 1995-06-06 1995-06-06 収着気化成分測定装置

Publications (1)

Publication Number Publication Date
JPH08334449A true JPH08334449A (ja) 1996-12-17

Family

ID=15251926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13972495A Pending JPH08334449A (ja) 1995-06-06 1995-06-06 収着気化成分測定装置

Country Status (1)

Country Link
JP (1) JPH08334449A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083865A (ja) * 2001-09-10 2003-03-19 Dia Shinku Kk ガス量測定装置
JP2008151590A (ja) * 2006-12-15 2008-07-03 Japan Atomic Energy Agency ガス分析装置
CN108590626A (zh) * 2018-04-27 2018-09-28 成都理工大学 一种油气水三相微量自动计量装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083865A (ja) * 2001-09-10 2003-03-19 Dia Shinku Kk ガス量測定装置
JP2008151590A (ja) * 2006-12-15 2008-07-03 Japan Atomic Energy Agency ガス分析装置
CN108590626A (zh) * 2018-04-27 2018-09-28 成都理工大学 一种油气水三相微量自动计量装置及方法
CN108590626B (zh) * 2018-04-27 2021-06-25 成都理工大学 一种油气水三相微量自动计量装置及方法

Similar Documents

Publication Publication Date Title
US6766682B2 (en) Precise measurement system for barrier materials
US7416328B2 (en) System and method for a thermogravimetric analyzer having improved dynamic weight baseline
US5361625A (en) Method and device for the measurement of barrier properties of films against gases
Ehrlich Modern Methods in surface kinetics: flash desorption, field emission microscopy, and ultrahigh vacuum techniques
JP6180797B2 (ja) 試料中の水素含有量測定のためのシステム及び方法
US4847493A (en) Calibration of a mass spectrometer
US5659126A (en) Gas chromatograph techniques for on-line testing of transformer faults
US7398681B2 (en) Gas sensor based on dynamic thermal conductivity and molecular velocity
US7709788B2 (en) Chemical calibration method and system
JP2006275606A (ja) ガス検出方法及びガス検出装置
EP0990131B1 (en) Moisture analyzer
Verevkin et al. Development of direct and indirect methods for the determination of vaporization enthalpies of extremely low-volatile compounds
Ferretti et al. A new gas chromatograph‐isotope ratio mass spectrometry technique for high‐precision, N2O‐free analysis of δ13C and δ18O in atmospheric CO2 from small air samples
JPH08334449A (ja) 収着気化成分測定装置
Condon A new automatic organic elemental microanalyzer
Matsumoto et al. Development of mass measurement equipment using an electronic mass-comparator for gravimetric preparation of reference gas mixtures
Dreisbach et al. Adsorption equilibria of CO/H 2 with a magnetic suspension balance: Purely gravimetric measurement
Robens et al. Sources of error in sorption and density measurements
US3407041A (en) Method for the quantitative determination of nitrogen and oxygen in metal samples
US4826770A (en) Carbon dioxide monitoring of composites
Liu et al. Certification of reference materials of sodium tartrate dihydrate and potassium citric monohydrate for water content
JP2012247202A (ja) 分析方法および装置
JPH1183802A (ja) 昇温脱離ガス分析方法および装置
CA1226751A (en) Method and apparatus for determining the amount of gas adsorbed or desorbed from a solid
Aoki et al. Influence of adsorption of CO 2 on cylinder and fractionation of CO 2 and air during preparation of a standard mixture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Effective date: 20040325

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518