JPH0833437B2 - Integrated circuit test method - Google Patents

Integrated circuit test method

Info

Publication number
JPH0833437B2
JPH0833437B2 JP58109200A JP10920083A JPH0833437B2 JP H0833437 B2 JPH0833437 B2 JP H0833437B2 JP 58109200 A JP58109200 A JP 58109200A JP 10920083 A JP10920083 A JP 10920083A JP H0833437 B2 JPH0833437 B2 JP H0833437B2
Authority
JP
Japan
Prior art keywords
distribution
test
integrated circuit
test pattern
random number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58109200A
Other languages
Japanese (ja)
Other versions
JPS601579A (en
Inventor
昭光 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58109200A priority Critical patent/JPH0833437B2/en
Publication of JPS601579A publication Critical patent/JPS601579A/en
Publication of JPH0833437B2 publication Critical patent/JPH0833437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はLSI等に適用可能な集積回路の試験方法に関
する。
Description: TECHNICAL FIELD The present invention relates to an integrated circuit test method applicable to an LSI or the like.

〔従来技術とその問題点〕 従来、種々のテストパターン発生装置が考案されてい
るが乱数入力の発生装置においては、発生乱数をそのま
ま入力、又は一様な変換により、テストパターンとして
発生させる装置が主に提案されている。例えば24入力の
回路の場合乱数をAD変換しテストパターンとして発生さ
せた場合、一組24個の“1"又は“0"が、一つのテストパ
ターンとして形成される。そこでその一組中の“1"の数
(以後“重み”と略す)を横軸にとり、その“重み”に
対応する発生確率を縦軸にとり、一様乱数発生装置によ
り3000組のテストパターンを発生させた場合の分布を第
1図に示す。
[Prior Art and its Problems] Conventionally, various test pattern generators have been devised, but in a generator of random number input, a device for generating a test pattern by directly inputting generated random numbers or by uniform conversion is available. Mainly proposed. For example, in the case of a circuit with 24 inputs, when a random number is AD-converted and generated as a test pattern, a set of 24 "1" s or "0" s is formed as one test pattern. Therefore, the number of "1" s in that set (hereinafter abbreviated as "weight") is plotted on the horizontal axis, and the occurrence probability corresponding to that "weight" is plotted on the vertical axis, and 3000 sets of test patterns are generated by the uniform random number generator. The distribution when it is generated is shown in FIG.

図より、入力が一様乱数である限り、その分布は2項
分布になる事がわかる。
From the figure, it can be seen that the distribution is a binomial distribution as long as the input is a uniform random number.

又、一様な変換すなわち“1",“0"の出現確率を単に
変化させた場合は第1図の分布を横軸方向に移動させた
分布に他ならない。
Further, when the uniform conversion, that is, the appearance probabilities of "1" and "0" are simply changed, it is nothing but the distribution obtained by moving the distribution in FIG. 1 in the horizontal axis direction.

しかしながら以上の方式ではその“重み”の分布が2
項分布である為できるだけ少ないテストパターンを発生
させて試験する場合、種々の重みのパターンを発生させ
たくても、確率分布として限定させたパターンでは、発
生しにくい物が多い。例えば“0"が20個、“1"が4個の
テストパターンは2項分布で発生した場合、約0.03%の
確率、すなわち、1万パターンに3回の割合で出現する
にすぎない。さらに一様な変換を加えた場合において
も、平行移動させた逆方向の“重み”については、同様
の事が言え、入力数が増すにつれこの傾向は顕著とな
る。例えばANDゲートとORゲートにより構成される場合
は従来は全く適用できない。
However, in the above method, the distribution of the "weight" is 2
When the test pattern is generated by generating as few test patterns as possible because of the term distribution, even if it is desired to generate patterns with various weights, it is difficult to generate patterns with limited probability distribution. For example, when 20 "0" and 4 "1" test patterns occur in the binomial distribution, the probability of occurrence is about 0.03%, that is, the test patterns appear only three times in 10,000 patterns. Even when uniform conversion is applied, the same can be said for the “weight” in the reverse direction after the parallel movement, and this tendency becomes more remarkable as the number of inputs increases. For example, when it is configured with an AND gate and an OR gate, it cannot be applied in the past.

〔発明の目的〕[Object of the Invention]

本発明の目的は、AND/ORゲート系等の集積回路の試験
を短時間で済ませる事ができる集積回路試験装置を提供
することにある。
An object of the present invention is to provide an integrated circuit test apparatus that can complete testing of an integrated circuit such as an AND / OR gate system in a short time.

〔発明の概要〕[Outline of Invention]

即ち本発明は、乱数発生装置と、発生した乱数の分布
を制御する乱数分布変換装置と、この乱数分布に応じて
特定の論理値を所定の確率で出力するテストパターン発
生装置とを備え、前記論理値の出現確率が重み軸方向に
対して凹状の分布を持つテストパターンを発生させ集積
回路に入力する事を特徴とする集積回路の試験方法を提
供するものである。
That is, the present invention comprises a random number generation device, a random number distribution conversion device that controls the distribution of the generated random numbers, and a test pattern generation device that outputs a specific logical value with a predetermined probability according to this random number distribution. Provided is a test method for an integrated circuit, which is characterized in that a test pattern having a logical value appearance probability having a concave distribution in the weight axis direction is generated and input to the integrated circuit.

〔発明の効果〕〔The invention's effect〕

即ち、本発明により凹状の確率分布を持つ論理値を発
生させる事により、集積回路の試験時間が著しく短縮化
される様になる。これは平行移動した2項分布しか得ら
れなかった従来装置とは大きく相異する。
That is, according to the present invention, by generating a logical value having a concave probability distribution, the test time of the integrated circuit can be significantly shortened. This is very different from the conventional device that can obtain only the binomial distribution that is translated.

例えば、AND/ORゲート回路に対しては重みの両端に大
きな“1"出現確率を発生するようにでき、従来法に比べ
て格段の速さで試験を済ませることができる。
For example, with respect to the AND / OR gate circuit, a large "1" appearance probability can be generated at both ends of the weight, and the test can be completed at a significantly higher speed than the conventional method.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を図面を用いて詳細に説明す
る。装置の概要を説明すると、まず変換関数を用意し、
これをG1(x)と定義する。ここでは具体的に とする。
An embodiment of the present invention will be described in detail below with reference to the drawings. To explain the outline of the device, first prepare a conversion function,
This is defined as G 1 (x). Here specifically And

ここで−1から1の間で一様乱数を発生させ、(1)
式により変換し、これをPとする即ち発生させた乱数を
γとすると、 となる。これが基準値となる。
Here, a uniform random number is generated between -1 and 1, and (1)
Converting by the formula, and letting it be P, that is, the generated random number is γ 0 , Becomes This is the reference value.

さらに、変換関数として を定義し、用意する。(αは制御パラメータ;後述)そ
して続けて一様乱数によってテストパターン列を発生さ
せる。テストパター列の要素の数が24として発生させた
乱数をγ〜γ24、変換したパターン要素Q1〜Q24とす
ると、 となる。
Furthermore, as a conversion function Define and prepare. (Α is a control parameter; which will be described later) and subsequently generate a test pattern sequence using uniform random numbers. If the random numbers generated with the number of elements of the test pattern sequence being 24 are γ 1 to γ 24 and the converted pattern elements Q 1 to Q 24 , Becomes

次に(2)に依り、決定したPと(4)により、決定
したQ1〜Q24からテストパターンを発生する。その方法
は、発生するテストパターンをT1〜T24とすると、 と定義する。この手法に従って(1)〜(5)を繰り返
すことにより、次々とテストパターンを発生する。
Next, according to (2), the test pattern is generated from the determined Q 1 to Q 24 by the determined P and (4). The method is that if the generated test patterns are T 1 to T 24 , Is defined. By repeating (1) to (5) according to this method, test patterns are generated one after another.

ここで(3)式で出てきた、αについての補足説明を
行なう。αは第2図に示す通り分布形状を変化させるパ
ラメータである。第2図はそのαを変化させた例であ
る。図はα=10.0(a),α=1.0(b),α=0.1
(c)を示している。第2図を見てわかる通り、分布形
状を変化させることにより確率分布の中心(ピーク部)
と、両端部との大小関係及びその比が制御される。
Here, a supplementary explanation will be given about α, which has come out in the equation (3). α is a parameter for changing the distribution shape as shown in FIG. FIG. 2 shows an example in which α is changed. The figure shows α = 10.0 (a), α = 1.0 (b), α = 0.1
(C) is shown. As can be seen from Fig. 2, the center of the probability distribution (peak part) can be changed by changing the distribution shape.
, And the magnitude relationship between both ends and the ratio thereof are controlled.

第3図は装置例を示す。第3図では一様乱数発生装置
10から基本入力として入力せしめられた一様乱数群γ0,
γ1,…γ24と外部データ入力回路11から入力された外部
パラメータα,βが乱数分布変換装置に入力し、さらに
まず入力したγは式(1)型の変換関数装置13により
又、γ〜γ24は式(3)型の変換関数装置14により各
々変換され出力される。この出力された系列P,Q1,Q2,
…,Q24をさらにテストパターン発生装置15に入力し、式
(5)型の変換により最終のテストパターンT1〜T24
発生する。
FIG. 3 shows an example of the apparatus. In Figure 3, a uniform random number generator
The uniform random number group γ 0 , which is input as a basic input from 10
γ 1 , ... γ 24 and the external parameters α and β input from the external data input circuit 11 are input to the random number distribution conversion device, and the input γ 0 is further input by the conversion function device 13 of the formula (1) type. γ 1 to γ 24 are converted and output by the conversion function device 14 of the formula (3) type. This output sequence P, Q 1 , Q 2 ,
, Q 24 is further input to the test pattern generator 15, and the final test patterns T 1 to T 24 are generated by the conversion of the equation (5) type.

以上のフローチャートを第4図に示す。 The above flow chart is shown in FIG.

更に、テストパターンT1〜T24は被験回路16に入力さ
れる。PI1,PI2,…,PInはその入力端子である。被験回路
がAND,ORゲートである場合には次の様にすれば良い。
Furthermore, the test patterns T 1 to T 24 are input to the test circuit 16. PI 1 , PI 2 , ..., PIn are their input terminals. If the circuit under test is an AND, OR gate, do the following.

事前に2入力ANDゲートを説明すると、入力が“00",
“01",“10"の3パターンに対し出力は“0"となる。そ
して入力“11"のみ出力が“1"となる。即ち、3/4の確率
で出力“0"が現われる。又、2入力ORゲートの場合、逆
に入力“00"のみ出力が“1"となる。
Explaining the 2-input AND gate beforehand, the input is "00",
The output is "0" for the three patterns "01" and "10". And the output becomes "1" only for the input "11". That is, the output "0" appears with a probability of 3/4. In the case of a 2-input OR gate, on the contrary, only the input "00" outputs "1".

従って上記被験回路が主に、同等の比のAND系及びOR
系の論理回路から構成される場合、全入力ピンに対する
AND系及びOR系の占有率からαを決定する。例えば第2
図のα=0.1の如き“1"出現確率分布でテストパターン
を発生させれば、被験回路を効率よく試験する事がで
き、α=10.0やα=1.0の場合に比べても極めて短時間
で試験が終了する。AND系,OR系の比が異なる時にはその
間をぬうようにαを決定すればよい。
Therefore, the above test circuit is mainly used for AND system and OR of the same ratio.
When it is composed of the system logic circuit, for all input pins
Α is determined from the occupation ratio of the AND system and the OR system. For example, the second
If a test pattern is generated with a "1" appearance probability distribution such as α = 0.1 in the figure, the test circuit can be tested efficiently, and in an extremely short time compared to when α = 10.0 or α = 1.0. The test ends. When the AND system and the OR system have different ratios, α may be determined so as to cut between them.

尚、本発明は上記実施例に限定される事なく、例えば
前記変換関数も種々のものを用いる事ができる。又、乱
数も、−1から1を数値として発生するものに限らず、
論理“1"をランダムな時間間隔で発生し、その時間間隔
を乱数に対応させるようにしても良い。
The present invention is not limited to the above embodiment, and various conversion functions can be used, for example. Also, the random numbers are not limited to those that generate -1 to 1 as numerical values,
The logic "1" may be generated at random time intervals and the time intervals may correspond to random numbers.

又、2項分布を時間と共に重み軸に沿って平行移動さ
せてもよい。移動速度が等しければ出現確率は均一にな
るが重み中心では速く、両端ではゆっくり往復移動させ
れば“1"及び“0"の多いビットパターンの出現確率の高
い効率分布を得る事ができるようになる。
Further, the binomial distribution may be moved in parallel along the weight axis with time. If the movement speeds are equal, the appearance probability is uniform, but at the center of weight, it is fast, and if you move slowly back and forth at both ends, you can obtain an efficiency distribution with a high appearance probability of bit patterns with many "1" s and "0" s. Become.

【図面の簡単な説明】[Brief description of drawings]

第1図は、横軸は重み、縦軸は確率、パターン要素
(“1",“0"の総数)は24の一様乱数によって発生させ
たテストパターンの“重み”−確率分布曲線を示す図、
第2図はαのみを変化させ、発生させたテストパターン
の“重み”−確率分布曲線を示す図、第3図は本発明の
装置構成図、第4図は本発明のフローチャート図であ
る。
Fig. 1 shows the weight on the horizontal axis, the probability on the vertical axis, and the "weight" -probability distribution curve of the test pattern generated by 24 uniform random numbers for the pattern elements (the total number of "1" s and "0" s). Figure,
FIG. 2 is a diagram showing a “weight” -probability distribution curve of a test pattern generated by changing only α, FIG. 3 is an apparatus configuration diagram of the present invention, and FIG. 4 is a flowchart diagram of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】乱数発生装置と、所定の論理値の発生回数
に対する発生確率分布の包絡線形状をパラメータとする
変換関数に基づいて発生した乱数の分布を制御する乱数
分布変換装置と、この乱数分布に応じて特定の論理値を
所定の確率で出力するテストパターン発生装置とを備
え、前記パラメータを所定値に設定することにより前記
発生回数に対して凹状の包絡線を有する発生確率分布を
持つテストパターンを発生させ集積回路に入力すること
を特徴とする集積回路の試験方法。
1. A random number generation device, a random number distribution conversion device for controlling the distribution of random numbers generated based on a conversion function whose parameter is the envelope shape of an occurrence probability distribution with respect to the number of times of occurrence of a predetermined logical value, and this random number. A test pattern generator for outputting a specific logical value with a predetermined probability according to the distribution, and having an occurrence probability distribution having a concave envelope with respect to the number of occurrences by setting the parameter to a predetermined value. A test method for an integrated circuit, which comprises generating a test pattern and inputting the test pattern to the integrated circuit.
JP58109200A 1983-06-20 1983-06-20 Integrated circuit test method Expired - Lifetime JPH0833437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58109200A JPH0833437B2 (en) 1983-06-20 1983-06-20 Integrated circuit test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58109200A JPH0833437B2 (en) 1983-06-20 1983-06-20 Integrated circuit test method

Publications (2)

Publication Number Publication Date
JPS601579A JPS601579A (en) 1985-01-07
JPH0833437B2 true JPH0833437B2 (en) 1996-03-29

Family

ID=14504147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58109200A Expired - Lifetime JPH0833437B2 (en) 1983-06-20 1983-06-20 Integrated circuit test method

Country Status (1)

Country Link
JP (1) JPH0833437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421116U (en) * 1990-06-12 1992-02-21

Also Published As

Publication number Publication date
JPS601579A (en) 1985-01-07

Similar Documents

Publication Publication Date Title
JP2598866B2 (en) Circuit for generating a controllable weighted binary sequence
US5369648A (en) Built-in self-test circuit
US5457697A (en) Pseudo-exhaustive self-test technique
US5446742A (en) Techniques for developing integrated circuit test programs and their use in testing actual circuits
JPH0651028A (en) Test pattern generator
US6292915B1 (en) Method of design for testability and method of test sequence generation
US5189629A (en) Method of logic gate reduction in a logic gate array
JPH0833437B2 (en) Integrated circuit test method
JPH0833436B2 (en) Integrated circuit test method
JPH0720582U (en) Waveform shaping circuit for semiconductor test equipment
US3977290A (en) Electronic musical instrument
JPS61206309A (en) Timing generating circuit
JP3133035B2 (en) Diffusion simulation apparatus and diffusion simulation method
JPH02234275A (en) Automatic logical circuit synthesizer
EP0397532A2 (en) Simulation system
JP2972499B2 (en) Logic circuit delay simulator
JP3181350B2 (en) Logic circuit division method
SU1005306A1 (en) Voltage-to-time internal converter
JPH02122286A (en) Generation of inspection bit pattern
JPS60185458A (en) Self-diagnostic method of picture element density converter
JPH02282836A (en) Scan-in/out control system
JPH07234263A (en) Method for simplifying test
JPH04271437A (en) Test pattern generating system
JPH0675016A (en) Method and apparatus for generating test pattern for semiconductor integrated circuit
JPH0652001A (en) Parity adding circuit