JPH08334174A - Noncontact mechanical seal - Google Patents

Noncontact mechanical seal

Info

Publication number
JPH08334174A
JPH08334174A JP7140948A JP14094895A JPH08334174A JP H08334174 A JPH08334174 A JP H08334174A JP 7140948 A JP7140948 A JP 7140948A JP 14094895 A JP14094895 A JP 14094895A JP H08334174 A JPH08334174 A JP H08334174A
Authority
JP
Japan
Prior art keywords
ring
seal
holding
stationary
annular groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7140948A
Other languages
Japanese (ja)
Other versions
JP2843973B2 (en
Inventor
Toshihiko Fuse
敏彦 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP7140948A priority Critical patent/JP2843973B2/en
Publication of JPH08334174A publication Critical patent/JPH08334174A/en
Application granted granted Critical
Publication of JP2843973B2 publication Critical patent/JP2843973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Abstract

PURPOSE: To exhibit and maintain sealing function by an seal ring and secondary sealing function by a holding annulus side O-ring for a long period in a good condition regardless of a seal condition. CONSTITUTION: In a noncontact mechanical seal formed in such constitution that a rotary seal ring and a stationary seal annulus 4 are relatively rotated in a noncontact condition, a space between the front surface 5d of the push- pressing part of a holding annulus 5 and the back surface 4d of the stationary seal annulus 4 are held in a secondary sealed noncontact condition by a holding annulus side O-ring held to an annular groove 11 formed on the front surface 5d of the push-pressing part 5b. An annular O-ring holding part 5c which is protruded on the front surface 5d of the push-pressing part 5b, which is inserted in the annular recessed part 4c of the static enclosed annulus 4 having few diameter direction clearance in a loosely fitted condition while being formed in continuity to the inner diameter side wall surface of the annular groove 11. The inner diameter d of the annular groove 11 is set to D+0.5mm<=d<=D +0.4mm in relation to the diameter D of the held part of the holding annulus 5 which is held to a seal case 1 through a case side O-ring.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばタービン,ブロ
ワ,遠心圧縮機等の主として気体(窒素,アルゴン,水
素,天然ガス,空気等)を扱う回転機器において好適に
使用される非接触形メカニカルシールに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact type mechanical device suitable for use in a rotating machine such as a turbine, a blower, a centrifugal compressor, which mainly handles gases (nitrogen, argon, hydrogen, natural gas, air, etc.). It is about seals.

【0002】[0002]

【従来の技術】従来のこの種の非接触形メカニカルシー
ルとしては、図7及び図8に示す如く、回転軸2に固定
された回転密封環3と、回転軸2に遊嵌されており、シ
ールケース1にケース側Oリング7を介して二次シール
された状態で軸線方向移動自在に挿通保持された筒状の
被保持部5aとその前端部に形成された環状の押圧部5
bとからなる断面L字形の保持環5と、シールケース1
と保持環5の押圧部5bとの間に介装されたスプリング
6と、回転密封環3と保持環5との間に配して回転軸2
に遊嵌されており、スプリング6により保持環5を介し
て回転密封環3へと押圧附勢された静止密封環4と、押
圧部5bの前面に形成した断面矩形状又は蟻溝形状の環
状溝11に保持されており、該押圧部5bの前面5dと
静止密封環4の背面4dとの間を二次シールされた非接
触状態に保持する保持環側Oリング10と、を具備し
て、回転密封環3と静止密封環4との対向端面である密
封端面3a,4aにおいて、その相対回転作用及び一方
の密封端面3aに形成した動圧発生溝3bの作用によ
り、密封端面3a,4aを非接触状態に保持させつつ、
密封端面3a,4aの外周側領域である被密封流体領域
Hと内周側領域である非密封流体領域Lとをシールさせ
るように構成されたもの(以下「従来シール」という)
がよく知られている。
2. Description of the Related Art As a conventional non-contact type mechanical seal of this type, as shown in FIGS. 7 and 8, a rotary seal ring 3 fixed to a rotary shaft 2 and a rotary shaft 2 are loosely fitted. A cylindrical held portion 5a that is inserted and held in the seal case 1 while being secondarily sealed via a case-side O-ring 7 so as to be movable in the axial direction, and an annular pressing portion 5 formed at the front end portion thereof.
a retaining ring 5 having an L-shaped cross section and a seal case 1
A spring 6 interposed between the rotary seal ring 3 and the holding ring 5, and a spring 6 interposed between the rotary ring 2 and the pressing portion 5b of the holding ring 5.
A stationary seal ring 4 which is loosely fitted to the rotary seal ring 3 via a retaining ring 5 by a spring 6 and a ring having a rectangular cross section or a dovetail groove formed on the front surface of the pressing portion 5b. A retaining ring side O-ring 10 which is retained in the groove 11 and retains a secondary seal between the front surface 5d of the pressing portion 5b and the rear surface 4d of the stationary seal ring 4 in a non-contact state. At the sealing end faces 3a, 4a, which are the end faces of the rotary seal ring 3 and the stationary seal ring 4 facing each other, the relative rotation action and the action of the dynamic pressure generating groove 3b formed in the one seal end face 3a cause the seal end faces 3a, 4a. While keeping the non-contact state,
A structure configured to seal a sealed fluid region H which is an outer peripheral side region of the sealed end faces 3a and 4a and a non-sealed fluid region L which is an inner peripheral side region (hereinafter referred to as "conventional seal").
Is well known.

【0003】ところで、回転密封環3、静止密封環4及
び保持環5は、その機能の違いから、夫々、熱膨張係
数,ヤング率の異なる異質材で構成されている。例え
ば、回転密封環3はWC,SiC等の超硬質材で、静止
密封環4は回転密封環3の構成材に比して軟質のカーボ
ン等で、保持環5はSUS304,Ti等の金属材で構
成されている。一方、回転密封環3、静止密封環4及び
保持環5には運転に伴う発熱や機器のシステム圧によっ
て熱歪みや圧力歪み(以下「歪み」というときは、これ
らの歪みをいうものとする)が生じるが、これらの歪み
量や歪み状態は同一ではなく、構成材質の違いから相異
する。特に、構成材質上、保持環5の歪み量は回転密封
環3及び静止密封環4のそれに比して極めて大きい。
By the way, the rotary seal ring 3, the stationary seal ring 4 and the holding ring 5 are made of different materials having different thermal expansion coefficients and Young's moduli because of their different functions. For example, the rotary seal ring 3 is made of a super-hard material such as WC or SiC, the stationary seal ring 4 is made of softer carbon than the constituent material of the rotary seal ring 3, and the holding ring 5 is made of a metal material such as SUS304 or Ti. It is composed of. On the other hand, the rotary seal ring 3, the stationary seal ring 4, and the holding ring 5 are subject to heat distortion and pressure distortion due to heat generated during operation and system pressure of the device (hereinafter, “distortion” means these distortions). However, these strain amounts and strain states are not the same, and differ from each other due to the difference in constituent materials. In particular, the amount of strain of the retaining ring 5 is extremely larger than those of the rotary seal ring 3 and the stationary seal ring 4 due to the constituent materials.

【0004】したがって、静止密封環4と保持環5とが
嵌合等により一体化されている伝統的な非接触形メカニ
カルシールでは、両環4,5の接触部分においてそれら
の歪みが相互に干渉することになり、その結果、静止密
封環4については、保持環5の歪みの影響を強く受け
て、それ自身の歪みとは全く異なる歪み状態を呈するこ
となる。このため、静止側密封端面4aの平滑度や回転
側密封端面3aに対する同心度,平行度が損なわれて、
密封端面3a,4a間に発生する動圧が不均一となった
り、極端な場合には、動圧発生不良や密封端面3a,4
aの局部的接触といった不測の事態を生じて、長期に亘
って良好なシール機能を発揮し得ないといった問題が生
じる。特に、かかる問題は高圧,高速条件下において顕
著に生じ、かかるシール条件下での使用をより困難とす
る。
Therefore, in the traditional non-contact type mechanical seal in which the stationary seal ring 4 and the retaining ring 5 are integrated by fitting or the like, their distortions interfere with each other at the contact portions of both rings 4, 5. As a result, the stationary seal ring 4 is strongly affected by the strain of the retaining ring 5, and exhibits a completely different strain state from the strain of itself. Therefore, the smoothness of the stationary side sealing end surface 4a and the concentricity and parallelism with respect to the rotating side sealing end surface 3a are impaired,
The dynamic pressure generated between the sealing end faces 3a, 4a becomes non-uniform, or in extreme cases, the dynamic pressure generation failure or the sealing end faces 3a, 4a occurs.
An unexpected situation such as local contact of a occurs, which causes a problem that a good sealing function cannot be exhibited for a long period of time. In particular, such a problem remarkably occurs under high pressure and high speed conditions, which makes it more difficult to use under such sealing conditions.

【0005】そこで、従来シールでは、図7及び図8に
示す如く、保持環側Oリング10の一部を環状溝11か
ら突出させることによって、静止密封環4の背面4dと
保持環5の前面5dとの間に微小なクリアランス12が
形成されるように構成し、静止密封環4が保持環5の歪
みによる悪影響を受けることがないように図っている。
すなわち、静止密封環4と保持環5とが保持環側Oリン
グ10を介して間接的に接触しているのみであるから、
圧力変動,温度変化等により両環4,5に異なる歪みが
生じた場合にも、それらの歪みは保持環側Oリング10
の弾性変形により吸収されて相互に干渉せず、静止密封
環4が保持環5の歪みによる悪影響を受けることがな
い。なお、保持環側Oリング10は、一般に、非圧縮性
且つ高摩擦性を有するゴム等で構成されている。
Therefore, in the conventional seal, as shown in FIGS. 7 and 8, by making a part of the retaining ring side O-ring 10 protrude from the annular groove 11, the rear face 4d of the stationary seal ring 4 and the front face of the retaining ring 5 are made. A small clearance 12 is formed between the stationary seal ring 4 and the stationary ring 5d so as not to be adversely affected by the distortion of the retaining ring 5.
That is, since the stationary seal ring 4 and the retaining ring 5 are only in indirect contact with each other via the retaining ring side O-ring 10,
Even when different strains occur in both rings 4 and 5 due to pressure fluctuations, temperature changes, etc., those strains are retained in the O-ring 10 on the retaining ring side.
The static sealing rings 4 are not absorbed by the elastic deformation and do not interfere with each other, and the stationary sealing ring 4 is not adversely affected by the distortion of the holding ring 5. The holding ring side O-ring 10 is generally made of rubber or the like having incompressibility and high friction.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来シールで
は、伝統的な非接触形メカニカルシールのように静止密
封環4と保持環5とが一体化されていないために、両環
4,5が相対的に偏心した状態で組み込まれる虞れがあ
る。ところで、静止密封環4と保持環5との間に介装さ
れた保持環側Oリング10は上記した如く高摩擦材で構
成されていて、両環4,5と保持環側Oリング10との
接触箇所においては滑りが生じ難いことから、一旦、両
環4,5が相対的に偏心した位置関係で組み込まれる
と、その位置関係の変動は保持環側Oリング10の弾性
変形により許容されるにすぎない。一方、保持環側Oリ
ング10が静止密封環4と保持環5とに滑りを生じない
状態で接触していること及び保持環側Oリング10が上
記した如く非圧縮性材で構成されていることから、保持
環側Oリング10の弾性変形限度量は極めて小さい。し
たがって、組み込み時における両環4,5の相対偏心量
が大きい場合には、これを保持環側Oリング10の弾性
変形により吸収することができず、つまり両環4,5が
適正な位置関係に修正されることがなく、静止密封環4
の密封端面4aが回転密封環3の密封端面3aに対して
大きく傾いた状態で運転されることになり、密封環3,
4による良好なシール機能を発揮し得ないといった問題
が生じる。極端な場合には、両密封端面4a,5aが局
部的に接触して異常発熱し、静止密封環4と保持環5と
の歪み干渉を保持環側Oリング10により防止するよう
にした意義が消失するばかりか、回転密封環3に比して
軟質である静止密封環4が破損する虞れがある。
However, in the conventional seal, since the stationary seal ring 4 and the retaining ring 5 are not integrated like the traditional non-contact type mechanical seal, both rings 4, 5 are not integrated. There is a risk of being installed in a relatively eccentric state. By the way, the holding ring side O-ring 10 interposed between the stationary seal ring 4 and the holding ring 5 is made of a high friction material as described above, and the two rings 4, 5 and the holding ring side O-ring 10 are connected to each other. Since slippage is unlikely to occur at the contact point, once the both rings 4 and 5 are incorporated in a relatively eccentric positional relationship, fluctuations in the positional relationship are allowed by elastic deformation of the retaining ring side O-ring 10. Nothing more than On the other hand, the holding ring side O-ring 10 is in contact with the stationary seal ring 4 and the holding ring 5 in a non-slip state, and the holding ring side O-ring 10 is made of an incompressible material as described above. Therefore, the elastic deformation limit amount of the holding ring side O-ring 10 is extremely small. Therefore, when the relative eccentricity of both rings 4 and 5 at the time of installation is large, this cannot be absorbed by the elastic deformation of the holding ring side O-ring 10, that is, both rings 4 and 5 have a proper positional relationship. The stationary seal ring 4
The seal end surface 4a of the rotary seal ring 3 is operated with a large inclination with respect to the seal end surface 3a of the rotary seal ring 3,
There arises a problem that the good sealing function of No. 4 cannot be exhibited. In an extreme case, the two sealing end surfaces 4a and 5a locally contact with each other to cause abnormal heat generation, and the retaining ring side O-ring 10 prevents distortion interference between the stationary sealing ring 4 and the retaining ring 5. In addition to disappearing, the stationary seal ring 4, which is softer than the rotary seal ring 3, may be damaged.

【0007】また、上記した如く、静止密封環4に対し
て保持環5の歪みが大きいことから、流体温度等のシー
ル条件によっては、静止密封環5と保持環側Oリング1
0との接触箇所が内径方向に大きく相対変位する場合が
ある。かかる場合、従来シールでは、保持環側Oリング
10の内径方向への変位を阻止する手段が何ら設けられ
ていないため、機器の振動等とも相俟って、保持環側O
リング10が環状溝11から内径方向に飛び出したり、
極端な場合には、環状溝11から脱落する虞れがある。
また、流体の性状や温度等のシール条件によっては、保
持環側Oリング10が流体との接触により劣化して、そ
の弾性が低下し、保持環側Oリング10が両環4,5の
相対変位に追従変形できない虞れがある。さらに、機器
の振動や圧力変動等によって、保持環側Oリング10の
保持環5による静止密封環4への押圧力つまり両環4,
5による保持環側Oリング10の挟圧力が低下する虞れ
がある。したがって、これらのことから、保持環側Oリ
ング10による二次シール機能を長期に亘って良好に発
揮,維持させることができないといった問題がある。
Further, as described above, since the holding ring 5 has a larger strain than the stationary sealing ring 4, the stationary sealing ring 5 and the holding ring side O-ring 1 may depend on the sealing conditions such as the fluid temperature.
The contact point with 0 may be largely displaced in the inner diameter direction. In such a case, the conventional seal does not have any means for preventing the retaining ring side O-ring 10 from displacing in the inner diameter direction.
The ring 10 pops out from the annular groove 11 in the inner diameter direction,
In an extreme case, the ring groove 11 may fall off.
Also, depending on the sealing conditions such as the property of the fluid and the temperature, the holding ring side O-ring 10 deteriorates due to contact with the fluid, and its elasticity decreases, so that the holding ring side O-ring 10 is placed between the two rings 4 and 5. There is a risk that it may not be able to deform following the displacement. Further, due to the vibration of the equipment, pressure fluctuation, etc., the pressing force of the holding ring 5 of the holding ring side O-ring 10 against the stationary seal ring 4, that is, both rings 4,
There is a possibility that the clamping pressure of the O-ring 10 on the retaining ring side due to 5 may decrease. Therefore, from the above, there is a problem that the secondary sealing function of the retaining ring side O-ring 10 cannot be satisfactorily exhibited and maintained for a long period of time.

【0008】本発明は、かかる点に鑑みてなされたもの
で、シール条件に拘わらず、密封環によるシール機能及
び保持環側Oリングによる二次シール機能を長期に亘っ
て良好に発揮,維持させうる非接触形メカニカルシール
を提供することを目的とするものである。
The present invention has been made in view of the above points, and makes it possible to satisfactorily exhibit and maintain the sealing function of the sealing ring and the secondary sealing function of the holding ring side O-ring for a long period of time regardless of the sealing conditions. It is an object of the present invention to provide a non-contact type mechanical seal.

【0009】[0009]

【課題を解決するための手段】本発明は、回転軸に固定
された回転密封環と、シールケースにケース側Oリング
を介して二次シールされた状態で軸線方向移動可能に保
持された筒状の被保持部とその前端部に形成された環状
の押圧部とを有する保持環と、保持環を介して回転密封
環へと押圧附勢された静止密封環と、前記押圧部の前面
に形成した環状溝に保持されており、該押圧部の前面と
静止密封環の背面との間を二次シールされた非接触状態
に保持する保持環側Oリングと、を具備して、回転密封
環と静止密封環との対向端面である密封端面を非接触状
態で相対回転させることにより、密封端面の外周側領域
である被密封流体領域と内周側領域である非密封流体領
域とをシールさせるように構成された非接触形メカニカ
ルシールにおいて、上記の目的を達成すべく、特に、前
記押圧部の前面に、前記環状溝の内径側壁面に連なって
静止密封環の内周部に形成した環状凹部に若干の径方向
隙間を有して遊嵌状に突入する環状のOリング保持部を
突設すると共に、前記環状溝を、その内径dが前記被保
持部の外径Dに対してD+0.5mm≦d≦D+4.0
mmとなるように構成しておくことを提案するものであ
る。
According to the present invention, there is provided a rotary seal ring fixed to a rotary shaft, and a cylinder which is movably held in an axial direction in a state of being secondarily sealed in a seal case through a case side O-ring. Holding ring having a ring-shaped to-be-held portion and an annular pressing portion formed at the front end thereof, a stationary sealing ring which is biased to the rotary sealing ring via the holding ring, and a front surface of the pressing portion. And a retaining ring side O-ring which is retained in the formed annular groove and retains a secondary seal between the front face of the pressing portion and the rear face of the stationary seal ring in a non-contact state, thereby providing a rotary seal. By sealingly rotating the sealing end faces, which are the opposing end faces of the ring and the stationary seal ring, in a non-contact state, the sealed fluid region, which is the outer peripheral region of the sealed end face, and the non-sealing fluid region, which is the inner peripheral region, are sealed. In a non-contact mechanical seal configured to In order to achieve the above object, in particular, on the front surface of the pressing portion, an annular recess formed in the inner peripheral portion of the stationary sealing ring, which is continuous with the inner diameter side wall surface of the annular groove, is provided with a slight radial clearance. A ring-shaped O-ring holding portion that protrudes in a fitting shape is provided to project, and the inner diameter d of the annular groove is D + 0.5 mm ≦ d ≦ D + 4.0 with respect to the outer diameter D of the held portion.
It is proposed that the structure be set to be mm.

【0010】[0010]

【作用】Oリング保持部は、静止密封環の内周部に形成
した環状凹部に若干の径方向隙間を有して遊嵌状に突入
されていて、静止密封環と保持環との径方向位置関係が
大きく変動しないようになっているから、仮令、静止密
封環と保持環とが相対的に偏心した位置関係で組み込ま
れたとしても、両環の相対偏心量は極く僅かである。し
たがって、かかる両環の相対偏心は保持環側Oリングの
弾性変形により充分に吸収され得て、静止密封環の密封
端面が回転密封環の密封端面に対して大きく傾むた状態
で運転されることがなく、密封環によるシール機能が低
下したり、両密封端面が局部的に接触したりすることが
ない。
The O-ring holding portion is loosely fitted into the annular recess formed in the inner peripheral portion of the stationary sealing ring with a slight radial gap, and the O-ring holding portion extends radially between the stationary sealing ring and the holding ring. Since the positional relationship does not fluctuate greatly, even if the temporary seal and the stationary ring are incorporated in a relatively eccentric positional relationship, the relative eccentricity of both rings is extremely small. Therefore, the relative eccentricity of the two rings can be sufficiently absorbed by the elastic deformation of the holding ring side O-ring, and the stationary seal ring is operated in a state in which the sealing end face of the stationary seal ring is largely inclined with respect to the sealing end face of the rotary seal ring. Therefore, the sealing function of the sealing ring is not deteriorated, and both sealing end faces do not locally contact with each other.

【0011】また、静止密封環と保持環との相対変位や
振動等による保持環側Oリングの内径方向への変位,変
形は、Oリング保持部によって一定範囲内に規制され
る。したがって、Oリング保持部が環状溝の内径側壁面
に連なっていることから、保持環側Oリングは環状溝か
ら内径方向に飛び出したり、脱落したりすることがな
い。
Further, the displacement and deformation of the holding ring side O-ring in the inner diameter direction due to relative displacement between the stationary seal ring and the holding ring, vibration, etc. are restricted within a certain range by the O-ring holding portion. Therefore, since the O-ring holding portion is continuous with the inner diameter side wall surface of the annular groove, the O-ring on the holding ring side does not protrude or fall out from the annular groove in the inner diameter direction.

【0012】ところで、保持環には被密封流体領域の流
体圧が等分布をなして作用し、その結果、保持環の前面
には、これを静止密封環から引き離そうとする押圧力が
作用し、保持環の背面には、これを静止密封環へと押し
付けようとする押圧力が作用する。そして、前面に作用
する押圧力は、保持環の外径と保持環側Oリングによる
二次シール箇所(つまり保持環側Oリングと静止密封環
ないし保持環とが接触する環状領域)の直径(以下「第
1シール径」という)とで特定される受圧面積によって
決定され、背面に作用する押圧力は、保持環の外径とケ
ース側Oリングによる二次シール箇所(つまりケース側
Oリングと保持環の被保持部とが接触する環状領域)の
直径(以下「第2シール径」という)とで特定される受
圧面積によって決定されるから、両押圧力の大小関係は
第1シール径と第2シール径の大小関係に反比例するこ
とになる。一方、第2シール径は常に一定であり、被保
持部の外径Dに一致することになるが、第1シール径は
静止密封環と保持環との相対変位等による保持環側Oリ
ングの変形,変位によって変動する。しかし、かかる変
形,変位は、上記した如く、Oリング保持部により環状
溝内の範囲に規制されることから、第1シール径は環状
溝の内径dよりも小さくなることはない。換言すれば、
第1シール径が環状溝の内径dに一致するときに、保持
環の前面における流体圧の受圧面積が最大となり、前面
に作用する押圧力が最大となるのである。したがって、
上記した如く、環状溝の内径dを被保持部の外径Dより
も所定量大きく設計しておくと、第1シール径の変動に
拘わらず、常に、保持環の前面に作用する押圧力が背面
に作用する押圧力よりも小さくなり、保持環が静止密封
環へと押し付けられることになる。その結果、保持環側
Oリングが常に静止密封環と保持環との間に挟圧された
状態に維持されることになり、上記したOリング保持部
による作用とも相俟って、保持環側Oリングによる二次
シール機能が良好に発揮,維持されることになる。な
お、環状溝の内径dをD+0.5mm≦d≦D+4.0
mmの範囲で設定しておく理由は、次の通りである。す
なわち、d<D+0.5mmであると、保持環の前面に
作用する押圧力と背面に作用する押圧力との差がさほど
顕著とならず、シール条件によっては、保持環の静止密
封環への押し付け力つまり保持環側Oリングの挟圧力が
不十分となり、良好な二次シールを機能を発揮できない
場合が生じる。一方、静止密封環の背面には、流体圧が
等分布をなして作用することによる押圧力(静止密封環
を回転密封環へと押し付ける力)が作用するが、この押
圧力の大きさは第1シール径つまり環状溝の内径dによ
って決定されることから、d>D+4.0mmとする
と、静止密封環の背面に作用する押圧力が、両密封環間
に発生する動圧により静止密封環を回転密封環から離間
させるようとする押圧力に比して必要以上に小さくな
り、両押圧力のバランスが崩れて、その押圧力差による
モーメントにより静止密封環の捩じり歪みが大きくなっ
て、両密封端面の局部的接触が生じる虞れがある。さら
に、保持環の前面に作用する押圧力と背面に作用する押
圧力との差つまり保持環の静止密封環への押し付け力
が、シール条件によっては過大となり、保持環側Oリン
グが必要以上に挟圧されて、二次シール機能はもとよ
り、静止密封環と保持環との相対変位に伴う追従性が悪
くなる虞れがある。したがって、保持環側Oリングの挟
圧力を適正に保持し、静止密封環に作用する押圧力をバ
ランスさせるためには、環状溝の内径dをD+0.5m
m≦d≦D+4.0mmの範囲でシール条件等に応じて
適当に定めておくことが必要となる。
By the way, the fluid pressure of the sealed fluid region acts on the retaining ring in a uniform distribution, and as a result, a pressing force for separating it from the stationary sealing ring acts on the front surface of the retaining ring, A pressing force acts on the back surface of the retaining ring to press it against the stationary sealing ring. The pressing force acting on the front surface is the outer diameter of the retaining ring and the diameter of the secondary sealing portion of the retaining ring side O-ring (that is, the annular region where the retaining ring side O-ring and the stationary sealing ring or the retaining ring contact). (Hereinafter referred to as “first seal diameter”), the pressing force acting on the back surface is determined by the outer diameter of the retaining ring and the case-side O-ring secondary seal location (that is, case-side O-ring). It is determined by the pressure receiving area specified by the diameter (hereinafter referred to as the "second seal diameter") of the annular region in contact with the held portion of the retaining ring, so the magnitude relationship between the two pressing forces is the first seal diameter. It is inversely proportional to the size relationship of the second seal diameter. On the other hand, the second seal diameter is always constant and coincides with the outer diameter D of the held portion, but the first seal diameter is the O-ring of the retaining ring side due to the relative displacement between the stationary sealing ring and the retaining ring. It changes due to deformation and displacement. However, since such deformation and displacement are restricted within the annular groove by the O-ring holding portion as described above, the first seal diameter does not become smaller than the inner diameter d of the annular groove. In other words,
When the first seal diameter matches the inner diameter d of the annular groove, the fluid pressure receiving area on the front surface of the retaining ring is maximized, and the pressing force acting on the front surface is maximized. Therefore,
As described above, when the inner diameter d of the annular groove is designed to be larger than the outer diameter D of the held portion by a predetermined amount, the pressing force acting on the front surface of the holding ring is always maintained regardless of the fluctuation of the first seal diameter. It becomes smaller than the pressing force acting on the back surface, and the retaining ring is pressed against the stationary sealing ring. As a result, the O-ring on the retaining ring side is always maintained in a state of being pinched between the stationary seal ring and the retaining ring, and in combination with the action of the O-ring retaining section described above, the retaining ring side O-ring is retained. The secondary sealing function of the O-ring will be satisfactorily exhibited and maintained. The inner diameter d of the annular groove is D + 0.5 mm ≦ d ≦ D + 4.0
The reason for setting in the range of mm is as follows. That is, when d <D + 0.5 mm, the difference between the pressing force acting on the front surface of the retaining ring and the pressing force acting on the rear surface is not so remarkable, and depending on the sealing conditions, the retaining ring may not move to the stationary sealing ring. In some cases, the pressing force, that is, the holding ring side O-ring holding pressure becomes insufficient, and a good secondary seal cannot be exerted. On the other hand, on the back surface of the stationary seal ring, a pressing force (force that presses the stationary seal ring against the rotary seal ring) acts due to the fluid pressure acting in an even distribution, and the magnitude of this pressing force is Since it is determined by one seal diameter, that is, the inner diameter d of the annular groove, when d> D + 4.0 mm, the pressing force acting on the back surface of the stationary seal ring causes the static seal ring to move due to the dynamic pressure generated between both seal rings. It becomes smaller than necessary compared to the pressing force to separate it from the rotary seal ring, the balance of both pressing forces is lost, and the torsional strain of the stationary seal ring becomes large due to the moment due to the difference in the pressing force. There is a risk of local contact between the two sealing end faces. Further, the difference between the pressing force acting on the front surface of the retaining ring and the pressing force acting on the rear surface thereof, that is, the pressing force of the retaining ring against the stationary sealing ring becomes excessive depending on the sealing conditions, and the retaining ring side O-ring becomes unnecessarily large. There is a possibility that the followability due to the relative displacement between the stationary seal ring and the retaining ring is deteriorated as well as the secondary sealing function due to being pinched. Therefore, in order to properly hold the clamping pressure of the O-ring on the retaining ring side and balance the pressing force acting on the stationary seal ring, the inner diameter d of the annular groove is D + 0.5 m.
It is necessary to set it appropriately within the range of m ≦ d ≦ D + 4.0 mm according to the sealing condition and the like.

【0013】[0013]

【実施例】以下、本発明の構成を図1〜図4に示す実施
例に基づいて具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be specifically described below based on the embodiments shown in FIGS.

【0014】この実施例の非接触形メカニカルシール
は、図1に示す如く、シールケース1と、シールケース
1を洞貫するタービン軸等の回転軸2に固定された円環
状の回転密封環3と、回転密封環3に軸線方向において
直対向する円環状の静止密封環4と、静止密封環4の背
面側においてシールケース1に保持された保持環5と、
シールケース1と保持環5との間に介装された複数のコ
イル状のスプリング6(一のみ図示)と、を具備する。
As shown in FIG. 1, the non-contact type mechanical seal of this embodiment has a ring-shaped rotary seal ring 3 fixed to a seal case 1 and a rotary shaft 2 such as a turbine shaft penetrating the seal case 1. An annular stationary seal ring 4 that directly faces the rotary seal ring 3 in the axial direction, and a holding ring 5 held by the seal case 1 on the back side of the stationary seal ring 4.
A plurality of coil-shaped springs 6 (only one is shown) interposed between the seal case 1 and the holding ring 5.

【0015】シールケース1は、図1に示す如く、円筒
状のガイド部1a及び円環状のリテーナ部1bとを有す
る。回転軸2は、ガイド部1a及びリテーナ部1bを同
心状に貫通する。
As shown in FIG. 1, the seal case 1 has a cylindrical guide portion 1a and an annular retainer portion 1b. The rotating shaft 2 concentrically penetrates the guide portion 1a and the retainer portion 1b.

【0016】回転密封環3はWC,SiC等の超硬質材
で構成されたもので、図1及び図2に示す如く、静止密
封環4に軸線方向において対向する端面3aには、被密
封流体領域Hに臨む外周部へと開口するスパイラル状等
の適宜形状をなす動圧発生溝3bが形成されている。こ
の動圧発生溝3bの作用により、両密封環3,4の相対
回転に伴い動圧を発生せしめて、両密封環3,4の対向
端面たる密封端面3a,4a間を、流体膜を介在形成さ
せた非接触状態に保持する。而して、この流体膜の形成
部分において、密封端面3a,4aの外周側領域である
被密封流体領域(例えば、タービン等の機内である高圧
ガス領域)Hとその内周側領域である非密封流体領域
(例えば、タービン等の機外である大気領域)Lとの間
をシールするようになっている。
The rotary seal ring 3 is made of a super-hard material such as WC or SiC. As shown in FIGS. 1 and 2, the end face 3a axially opposed to the stationary seal ring 4 has a sealed fluid. A dynamic pressure generating groove 3b having an appropriate shape such as a spiral shape that opens to the outer peripheral portion facing the area H is formed. By the action of the dynamic pressure generating groove 3b, a dynamic pressure is generated with the relative rotation of the both sealing rings 3 and 4, and a fluid film is interposed between the sealing end faces 3a and 4a which are the opposite end faces of the both sealing rings 3 and 4. Hold the formed non-contact state. Thus, in the portion where the fluid film is formed, a sealed fluid region (for example, a high-pressure gas region in a machine such as a turbine) H which is an outer peripheral region of the sealed end faces 3a and 4a and a non-inner peripheral region thereof. A seal is provided between a sealed fluid region (for example, an atmospheric region outside the machine such as a turbine) L.

【0017】静止密封環4は回転密封環3の構成材より
比較的軟質のカーボン等で構成されたもので、図1及び
図2に示す如く、シールケース1のガイド部1aに極く
微小な隙間を有する状態で軸線方向移動自在に内嵌保持
されている。すなわち、静止密封環4の背面側における
外周部分及び内周部分には密封端面4aの外径及び内径
より大径とした環状凸部4b及び環状凹部4cが形成さ
れていて、環状凸部4bを、例えばJIS−B0401
にいうすき間ばめ程度の寸法公差をもってガイド部1a
に嵌合させることによって、環状凸部4bの外周面とガ
イド部1aの内周面との間に、静止密封環4の径方向変
位を可及的に阻止するも、その軸線方向移動並びに流体
の通過を許容する、極く微小な隙間が形成されるように
構成されている。なお、この隙間は静止密封環4の径や
シール条件等に応じて適宜に設定されるが、一般には、
環状凸部4bの外径寸法とガイド部1aの内径寸法との
差を10〜100μm程度としておくことが好ましい。
The stationary seal ring 4 is made of carbon, which is relatively softer than the constituent material of the rotary seal ring 3, and as shown in FIGS. 1 and 2, the guide portion 1a of the seal case 1 is extremely minute. It is internally fitted and held so as to be movable in the axial direction with a gap. That is, an annular convex portion 4b and an annular concave portion 4c having a diameter larger than the outer diameter and the inner diameter of the sealing end surface 4a are formed on the outer peripheral portion and the inner peripheral portion on the back side of the stationary sealing ring 4, and the annular convex portion 4b is formed. , For example JIS-B0401
Guide part 1a with a dimensional tolerance of about clearance fit
The radial displacement of the stationary seal ring 4 between the outer peripheral surface of the annular convex portion 4b and the inner peripheral surface of the guide portion 1a is prevented as much as possible by fitting it into Is formed so that a very small gap is formed to allow the passage of the. This gap is set appropriately according to the diameter of the stationary seal ring 4, the sealing conditions, etc., but in general,
It is preferable that the difference between the outer diameter of the annular convex portion 4b and the inner diameter of the guide portion 1a is set to about 10 to 100 μm.

【0018】保持環5はSUS304,Ti等の金属材
で構成されたもので、図1及び図2に示す如く、円筒状
の被保持部5aとその前端に形成された円環状の押圧部
5bとを備えた断面L字形状に成形されている。この保
持環5は、図2に示す如く、被保持部5aをシールケー
ス1のリテーナ部1bの内周部にゴム製のケース側Oリ
ング7を介して嵌挿保持させることによって、シールケ
ース1に、これとの間を二次シールさせた状態で、軸線
方向移動可能に保持されている。
The holding ring 5 is made of a metal material such as SUS304 and Ti. As shown in FIGS. 1 and 2, the holding ring 5 has a cylindrical holding portion 5a and an annular pressing portion 5b formed at the front end thereof. And has an L-shaped cross section. As shown in FIG. 2, the holding ring 5 is configured such that the held portion 5a is inserted and held in the inner peripheral portion of the retainer portion 1b of the seal case 1 via the rubber case-side O-ring 7 so that the seal case 1 is held. In addition, it is held so as to be movable in the axial direction in a state where a secondary seal is made between the two.

【0019】なお、静止密封環4は、図2に示す如く、
これに保持環5の押圧部5bに植設せる適当数の回り止
めピン(一のみ図示)8を突入係合させておくことによ
り、保持環5に対して相対回転不能とされている。ま
た、保持環5は、図2に示す如く、これに植設せる適当
数の回り止めピン(一のみ図示)9をシールケース1の
リテーナ部1bに突入係合させておくことにより、シー
ルケース1に対して相対回転不能とされている。これら
の回り止めピン8,9は共通のものとしてもよい。例え
ば、一方の回り止めピン8を廃して、他方の回り止めピ
ン9を保持環5に貫通状に支持させて、その両端部をリ
テーナ部1b及び静止密封環4に突入係合させておくよ
うにしてもよい。
The stationary seal ring 4 is, as shown in FIG.
A proper number of detent pins (only one is shown) 8 to be planted in the pressing portion 5b of the retaining ring 5 are inserted into and engaged with the retaining ring 5 so that the retaining ring 5 cannot rotate relative to the retaining ring 5. Further, as shown in FIG. 2, the retaining ring 5 has a proper number of detent pins 9 (only one is shown) 9 to be planted in the retaining ring 5, which are inserted into the retainer portion 1b of the sealing case 1 in a protruding manner so that the retaining case 5 is sealed. It is impossible to rotate relative to 1. These detent pins 8 and 9 may be common. For example, one detent pin 8 is abolished, the other detent pin 9 is supported by the retaining ring 5 in a penetrating manner, and both ends thereof are urged and engaged with the retainer portion 1b and the stationary sealing ring 4. You may

【0020】各スプリング6は、図1及び図2に示す如
く、シールケース1のリテーナ部1bと保持環5の押圧
部5bとの間に介装されており、保持環5を軸線方向に
おいて回転密封環3に向かう方向に押圧附勢する。
As shown in FIGS. 1 and 2, each spring 6 is interposed between the retainer portion 1b of the seal case 1 and the pressing portion 5b of the retaining ring 5 to rotate the retaining ring 5 in the axial direction. It is pressed and urged in the direction toward the sealing ring 3.

【0021】而して、静止密封環4と保持環5との間
は、図1〜図3に示す如く、両環4,5の軸線方向にお
ける対向端面4d,5d間に保持環側Oリング10を介
在させることによって、二次シールされた非接触状態に
保持されている。すなわち、保持環5の前面つまり押圧
部5bの前面5dに同心の環状溝11を形成し、この環
状溝11にゴム製の保持環側Oリング10を若干突出さ
せた状態で嵌合保持させることによって、静止密封環4
を、スプリング6による附勢作用と相俟って、保持環5
との間に適当なクリアランス12を有したシール状態
で、回転密封環3へと押圧させるべく附勢保持せしめて
いる。なお、保持環側Oリング10は、環状溝11の外
径側壁面14に非接触の状態で保持されている。
Thus, between the stationary seal ring 4 and the retaining ring 5, as shown in FIGS. 1 to 3, the retaining ring side O-ring is located between the opposing end faces 4d and 5d of the two rings 4 and 5 in the axial direction. By interposing 10, the secondary seal is maintained in a non-contact state. That is, a concentric annular groove 11 is formed on the front surface of the retaining ring 5, that is, the front surface 5d of the pressing portion 5b, and the retaining ring side O-ring 10 made of rubber is fitted and retained in the annular groove 11 in a slightly protruding state. By the stationary seal ring 4
Together with the biasing action of the spring 6,
In a sealed state with an appropriate clearance 12 between them, the rotary seal ring 3 is urged and held to be pressed. The holding ring side O-ring 10 is held in a non-contact state with the outer diameter side wall surface 14 of the annular groove 11.

【0022】また、押圧部5bの前面5dには、図2及
び図3に示す如く、環状溝11の内径側壁面13に連な
って静止密封環4の環状凹部4cに若干の径方向隙間S
を有して遊嵌状に突入する円環状のOリング保持部5c
が突設されていて、保持環側Oリング10が環状溝11
の内径dつまりOリング保持部5cの外径以上に内径方
向に変形,変位するのを阻止すべく図っている。なお、
この径方向隙間隙間Sは、両部4c,5cが両環4,5
の歪みによっては干渉しない範囲で可及的に小さく設定
しておくことが好ましく、一般には、両部4c,5cが
同心状態にあるときにおいてS=0.3〜0.5mmと
なるように設定しておくことが好ましい。
Further, on the front surface 5d of the pressing portion 5b, as shown in FIGS. 2 and 3, a slight radial gap S is formed in the annular recess 4c of the stationary seal ring 4, which is continuous with the inner diameter side wall surface 13 of the annular groove 11.
O-ring holding part 5c that has a protrusion and is inserted in a loose fit
And the holding ring side O-ring 10 has an annular groove 11
The inner diameter d, that is, the outer diameter of the O-ring holding portion 5c, is prevented from being deformed or displaced in the inner diameter direction. In addition,
In this radial gap, the gap S is such that both parts 4c, 5c are both rings 4, 5
It is preferable to set it as small as possible within the range where interference does not occur depending on the distortion of No. 3, and generally, it is set so that S = 0.3 to 0.5 mm when both parts 4c and 5c are concentric. Preferably.

【0023】また、環状溝11の内径dは、従来シール
を含む公知の非接触形メカニカルシールにおける同様
に、静止密封環4の前面及び背面に作用する圧力関係が
両密封端面3a,4aを非接触状態に保持するような関
係となることを条件として設定されるが、本発明に係る
非接触形メカニカルシールでは、更に、保持環5の被保
持部5aの外径Dに対してD+0.5mm≦d≦D+
4.0mmとなるように設定されている。
Further, the inner diameter d of the annular groove 11 is the same as in a known non-contact type mechanical seal including a conventional seal, and the pressure relationship acting on the front surface and the back surface of the stationary sealing ring 4 does not cause the two sealing end surfaces 3a and 4a to be non-contact. Although it is set on condition that the relationship of holding in contact is established, in the non-contact mechanical seal according to the present invention, D + 0.5 mm is further added to the outer diameter D of the held portion 5a of the holding ring 5. ≤d≤D +
It is set to be 4.0 mm.

【0024】すなわち、静止密封環4の前面及び背面に
は、図4(A)に示す如き圧力分布をなす動圧及び静圧
による押圧力F1 ,F2 が作用するが、押圧力F1 は、
静止密封環4の密封端面4aに作用するものであって、
密封端面3a,4a間に発生する動圧によるものであ
り、押圧力F2 は、静止密封環4の背面における被密封
流体領域Hに臨む環状領域、つまり密封端面4aの外周
面に対応する箇所から保持環側Oリング10による二次
シール箇所に至る環状領域に等分布をなして作用する被
密封流体領域Hの流体圧力によるものである。なお、静
止密封環4の外径は密封端面4aの外径より大きくなっ
ているため、その外周側の環状凸部4bの前面及び背面
にも押圧力F´1 ,F´2 が作用するが、これらの押圧
力F´1 ,F´2 は方向反対にして大きさ同一のもので
あって相殺されることから、静止密封環4には押圧力F
1 ,F2 のみが作用するものとする。そして、押圧力F
2 は、密封端面4aの外径と保持環側Oリング10によ
る二次シール箇所の直径である第1シール径d0 とによ
って特定される受圧面積によって決定されるものであ
る。また、保持環側Oリング10による二次シール箇所
は、保持環側Oリング10の変形,変位により変動する
が、その内径方向への変動は上記した如くOリング保持
部5cの作用により規制されることから、第1シール径
0 は環状溝11の内径dより小さくなることはなく、
0 ≧dの範囲で変動することになる。したがって、押
圧力F2 は、第1シール径d0 を変動範囲の下限値とし
たとき、つまりd0 =dとしたときに最大となり、かか
る最大となったときの押圧力F2 が動圧による押圧力F
1 より小さくなっておれば、両密封端面3a,4a間は
常に非接触状態に保持されることになる。すなわち、両
密封端面3a,4a間が非接触状態に保持されること
は、非接触形メカニカルシールにおいて必須の条件であ
るから、第1シール径d0 の下限値に相当する環状溝1
1の内径dは、当該非接触形メカニカルシールにおける
一般的設計事項として、当然に、F1 >F2 となるよう
に設計されるのであり、本発明に係る非接触形メカニカ
ルシールにおいても、そのように設計される。一方、こ
のような条件(F1 >F2 )を満足する範囲内におい
て、環状溝11の内径dをケース側Oリング7による二
次シール箇所の直径である第2シール径つまり被保持部
5aの外径Dに比して一定範囲で大きくしておくことは
充分に可能である。そこで、本発明に係る非接触形メカ
ニカルシールにあっては、環状溝11の内径dを上記し
た如く0.5〜4.0mmの範囲内で被保持部5aの外
径Dより大きくなるように設定してあるのである。
That is, the pressing forces F 1 and F 2 due to the dynamic pressure and the static pressure having the pressure distribution as shown in FIG. 4A act on the front surface and the back surface of the stationary seal ring 4, but the pressing force F 1 Is
Acting on the sealing end surface 4a of the stationary sealing ring 4,
This is due to the dynamic pressure generated between the sealed end faces 3a and 4a, and the pressing force F 2 is the annular region facing the sealed fluid region H on the back surface of the stationary seal ring 4, that is, the portion corresponding to the outer peripheral surface of the sealed end face 4a. This is due to the fluid pressure in the sealed fluid region H that acts in a uniform distribution in the annular region from the holding ring side O-ring 10 to the secondary sealing position. The outer diameter of the stationary seal ring 4 because it has become larger than the outer diameter of the sealing end faces 4a, even pressure to the front and rear of the outer peripheral side of the annular projection 4b F'1, F'2 is acts Since these pressing forces F ′ 1 and F ′ 2 are opposite in direction and have the same size, they cancel each other, so that the pressing force F ′ is applied to the stationary seal ring 4.
Only 1 , F 2 shall act. And the pressing force F
2 is determined by the pressure receiving area specified by the outer diameter of the sealed end surface 4a and the first seal diameter d 0 which is the diameter of the secondary sealing point by the holding ring side O-ring 10. Further, the secondary sealing location of the retaining ring side O-ring 10 varies due to the deformation and displacement of the retaining ring side O-ring 10, but its variation in the inner diameter direction is restricted by the action of the O-ring retaining portion 5c as described above. Therefore, the first seal diameter d 0 does not become smaller than the inner diameter d of the annular groove 11,
It will vary within the range of d 0 ≧ d. Therefore, the pressing force F 2 becomes maximum when the first seal diameter d 0 is set to the lower limit value of the fluctuation range, that is, when d 0 = d, and the pressing force F 2 at the maximum is the dynamic pressure. Pressing force due to
If it is smaller than 1 , the two sealed end faces 3a and 4a are always held in a non-contact state. That is, it is an indispensable condition in the non-contact type mechanical seal that the both sealing end faces 3a and 4a are held in the non-contact state, so that the annular groove 1 corresponding to the lower limit value of the first seal diameter d 0 is formed.
The inner diameter d of 1 is, as a general design matter in the non-contact mechanical seal, naturally designed so that F 1 > F 2, and even in the non-contact mechanical seal according to the present invention, Designed to be. On the other hand, within the range satisfying such a condition (F 1 > F 2 ), the inner diameter d of the annular groove 11 is set to the second seal diameter which is the diameter of the secondary seal portion by the case side O-ring 7, that is, the held portion 5a. It is sufficiently possible to make the diameter larger than the outer diameter D in a certain range. Therefore, in the non-contact mechanical seal according to the present invention, the inner diameter d of the annular groove 11 is set to be larger than the outer diameter D of the held portion 5a within the range of 0.5 to 4.0 mm as described above. It is set.

【0025】さらに、この実施例では、環状溝11を、
その内径側壁面13における溝奥側部分13bが溝口側
部分13aより大径となるようにして、内径側壁面13
においては保持環側Oリング10が溝口側部分13aに
非接触の状態で支持されるように構成してある。すなわ
ち、図3に示す如く、環状溝11の内径側壁面13を溝
口方向に漸次縮径する傾斜面として、保持環側Oリング
10の溝内部分10aを、溝口側部分13aから離間し
た状態で、溝奥側部分13bに支持させるように構成し
てある。なお、Oリング保持部5cは溝口側部分13a
の端部(最小径部)に連なっており、かかる溝口側部分
13aの端部の径をもって上記した環状溝11の内径d
を特定している。
Further, in this embodiment, the annular groove 11 is
The inner diameter side wall surface 13 is formed so that the groove back side portion 13b has a larger diameter than the groove mouth side portion 13a.
In the above, the holding ring side O-ring 10 is configured to be supported by the groove mouth side portion 13a in a non-contact state. That is, as shown in FIG. 3, the inner diameter side wall surface 13 of the annular groove 11 is used as an inclined surface that gradually reduces in diameter in the groove mouth direction, and the inner groove portion 10a of the retaining ring side O-ring 10 is separated from the groove mouth side portion 13a. The groove back side portion 13b is supported. The O-ring holding portion 5c is formed on the groove opening side portion 13a.
Inner diameter d of the annular groove 11 described above with the diameter of the end of the groove mouth side portion 13a.
Has been identified.

【0026】以上のように構成された非接触形メカニカ
ルシールにあっては、Oリング保持部5cが、静止密封
環4の内周部に形成した環状凹部4cに若干の径方向隙
間Sを有して遊嵌状に突入されていて、静止密封環4と
保持環5との径方向位置関係が大きく変動しないように
なっているから、仮令、両環4,5が相対的に偏心した
位置関係で組み込まれたとしても、両環4,5の相対偏
心量は極く僅かである。したがって、かかる両環4,5
の相対偏心は保持環側Oリング10の弾性変形により充
分に吸収され得て、静止密封環4の密封端面4aが回転
密封環3の密封端面3aに対して大きく傾いた状態で運
転されることがなく、密封環3,4によるシール機能が
低下したり、両密封端面3a,4aが局部的に接触した
りすることがない。
In the non-contact type mechanical seal constructed as described above, the O-ring holding portion 5c has a slight radial gap S in the annular recess 4c formed in the inner peripheral portion of the stationary seal ring 4. Since it is inserted loosely and the positional relationship between the stationary seal ring 4 and the retaining ring 5 in the radial direction does not fluctuate significantly, the provisional command, the positions where both rings 4 and 5 are relatively eccentric Even if they are incorporated by the relationship, the relative eccentricity of both rings 4 and 5 is extremely small. Therefore, both rings 4,5
Relative eccentricity can be sufficiently absorbed by elastic deformation of the O-ring 10 on the retaining ring side, and the operation is performed with the sealing end surface 4a of the stationary sealing ring 4 largely inclined with respect to the sealing end surface 3a of the rotary sealing ring 3. Therefore, the sealing function of the sealing rings 3 and 4 does not deteriorate, and neither of the sealing end faces 3a and 4a locally contacts.

【0027】また、静止密封環4と保持環5との相対変
位や振動等による保持環側Oリング10の内径方向への
変位,変形は、Oリング保持部5cによって一定範囲内
に規制される。したがって、Oリング保持部5cが環状
溝11の内径側壁面13に連なっていることから、保持
環側Oリング10は環状溝11から内径方向に飛び出し
たり、脱落したりすることがない。
Further, the displacement and deformation of the holding ring side O-ring 10 in the inner diameter direction due to the relative displacement between the stationary seal ring 4 and the holding ring 5, vibration, etc. are restricted within a certain range by the O-ring holding portion 5c. . Therefore, since the O-ring holding portion 5c is continuous with the inner diameter side wall surface 13 of the annular groove 11, the O-ring 10 on the holding ring side does not protrude or fall out of the annular groove 11 in the inner diameter direction.

【0028】また、保持環5の前面及び背面には、被密
封流体領域Hの流体圧力Pによる押圧力F3 ,F4 が作
用するが、図4(B)に示す如く、押圧力F3 は、保持
環5の前面における被密封流体領域Hに臨む環状領域、
つまり押圧部5bの外周箇所から保持環側Oリング10
による二次シール箇所に至る環状領域に等分布をなして
作用する流体圧力Pによるものであり、押圧力F4 は、
保持環5の背面における被密封流体領域Hに臨む環状領
域、つまり押圧部5bの外周箇所からケース側Oリング
7による二次シール箇所に至る環状領域に等分布をなし
て作用する流体圧力Pによるものである。そして、押圧
力F3 は、第1シール径d0 と押圧部5bの外径D1
で特定される受圧面積によって与えられ、F3 =Pπ
((D1 2 −(d0 2 )/4となる。また、押圧力
4 は、被押圧部5aの外径である第2シール径Dと押
圧部5bの外径D1 とで特定される受圧面積によって与
えられ、F4 =Pπ((D1 2 −(D)2 )/4とな
る。一方、第1シール径d0は保持環側Oリング10の
変形,変位によって変動するが、上記した如く環状溝1
1の内径dよりも小さくなることはない。このようにd
0 ≧dであり、上記した如くd>Dであるから、第1シ
ール径d0 が変動した場合にも、常に、F3 <F4 とな
り、これらの押圧力差(F4 −F3 )により保持環5は
静止密封環4へと押し付けられることになる。したがっ
て、上記した如く静止密封環4の前面及び背面に作用す
る押圧力F1 ,F2 が当然のこととしてF1 >F2 の関
係にあることとも相俟って、静止密封環4と保持環5と
は常に押し合う状態に保持される。その結果、保持環側
Oリング10は、常に、両環4,5間に挟圧される状態
に保持されることから、保持環側Oリング10の劣化や
機器の振動等が生じた場合にも、両環4,5間を良好に
二次シールする。そして、D+0.5mm≦d≦D+
4.0mmとしておくことにより、静止密封環4への押
し付け力(F4 −F3)が、シール条件(保持環側Oリ
ング10の性状変化や圧力変動等)に拘わらず、保持環
側Oリング10を適正に挟圧しうるに必要且つ充分な大
きさに維持させておくことができ、保持環側Oリング1
0による両環4,5間の二次機能及び両環4,5の相対
変位に対する追従機能が良好に発揮されることになる。
また、静止密封環4の前面及び背面に作用する押圧力F
1 ,F2 が、F1 >F2 の条件を満足しつつ、バランス
され、その押圧力差(F1 −F2 )によるモーメントに
より静止密封環4の捩じり歪みが大きくなって両密封端
面3a,4aの局部的接触が生じるような虞れもない。
The front and back surfaces of the retaining ring 5 are covered with
Pressing force F due to fluid pressure P in sealing fluid region H3, FFourMade by
However, as shown in FIG. 4 (B), the pressing force F3Holds
An annular region facing the sealed fluid region H on the front surface of the ring 5,
That is, from the outer peripheral portion of the pressing portion 5b to the holding ring side O-ring 10
Due to the uniform distribution in the annular area leading to the secondary sealing point due to
Due to the acting fluid pressure P, the pressing force FFourIs
An annular region facing the sealed fluid region H on the back surface of the retaining ring 5.
Area, that is, the outer circumference of the pressing portion 5b to the case side O-ring
No uniform distribution in the annular area up to the secondary sealing point according to 7.
This is due to the fluid pressure P acting as a function. And press
Force F3Is the first seal diameter d0And the outer diameter D of the pressing portion 5b1When
Given by the pressure receiving area specified by3= Pπ
((D1) 2-(D0)2) / 4. Also, the pressing force
FFourIs the second seal diameter D, which is the outer diameter of the pressed portion 5a, and
Outer diameter D of pressure part 5b1Depending on the pressure receiving area specified by
Yes, FFour= Pπ ((D1)2-(D)2) / 4
It On the other hand, the first seal diameter d0Of the O-ring 10 on the retaining ring side
Although it fluctuates due to deformation and displacement, as mentioned above, the annular groove 1
It does not become smaller than the inner diameter d of 1. Like this
0Since ≧ d and d> D as described above, the first series
Diameter d0Even when fluctuates, always F3<FFourTona
The difference between these pressing forces (FFour-F3), The retaining ring 5
It will be pressed against the stationary seal ring 4. Accordingly
And acts on the front and back surfaces of the stationary seal ring 4 as described above.
Pressing force F1, F2Is of course F1> F2Seki
Taking into account that the stationary seal ring 4 and the retaining ring 5,
Are always held together. As a result, the retaining ring side
The O-ring 10 is always clamped between the rings 4 and 5.
Is retained in the O-ring 10 on the retaining ring side,
Even if vibration of the equipment occurs, make sure that the space between both rings 4 and 5 is good.
Secondary seal. And D + 0.5 mm ≦ d ≦ D +
By setting it to 4.0 mm, the static seal ring 4 is pushed.
Discipline (FFour-F3) Is the sealing condition (O ring on the retaining ring side)
Irrespective of changes in the properties of the ring 10, pressure fluctuations, etc.)
Large enough to be able to clamp the side O-ring 10 properly.
O-ring 1 on the retaining ring side
Secondary function between both rings 4 and 5 by 0 and relative between both rings 4 and 5
The function of following the displacement is exhibited well.
Further, the pressing force F acting on the front surface and the back surface of the stationary seal ring 4 is
1, F2But F1> F2Balance while satisfying the conditions of
The pressure difference (F1-F2) To the moment
The torsional strain of the stationary seal ring 4 becomes larger and the both seal ends
There is no risk of local contact between the surfaces 3a and 4a.

【0029】これらのことから、保持環側Oリング10
による二次シール機能及び密封環3,4によるシール機
能が良好に発揮されて、両環4,5の組み込み形態やシ
ール条件に拘わらず、長期に亘って被密封流体領域Hと
非密封流体領域Lとのシールを良好に行うことができ
る。
From the above, the retaining ring side O-ring 10
The secondary sealing function by the sealant and the sealing function by the sealing rings 3, 4 are excellently exhibited, and the sealed fluid region H and the non-sealed fluid region can be maintained for a long period of time regardless of the assembling form of both rings 4, 5 and the sealing conditions. Good sealing with L can be performed.

【0030】ところで、従来シールでは、図8に示す如
く、環状溝11が、内径壁面13が軸線に平行な平面で
ある断面矩形状のもの(同図(A))又は内径壁面13
が溝奥側に漸次大径となる蟻溝形状のもの(同図(B)
参照)であったため、静止密封環4及び保持環5の歪み
を保持環側Oリング10の弾性変形によって吸収できな
い場合があり、これらの歪みの相互干渉を完全に排除す
ることができないでいた。
By the way, in the conventional seal, as shown in FIG. 8, the annular groove 11 has a rectangular cross section in which the inner diameter wall surface 13 is a plane parallel to the axis (FIG. (A)) or the inner diameter wall surface 13.
With a dovetail groove in which the diameter gradually increases toward the inner side of the groove ((B) in the same figure)
Therefore, the strains of the stationary sealing ring 4 and the retaining ring 5 may not be absorbed by the elastic deformation of the retaining ring side O-ring 10, and mutual interference of these strains cannot be completely eliminated.

【0031】すなわち、静止密封環4の背面4dにおけ
る保持環側Oリング10の接触箇所(以下「第1接触箇
所」という)C1 と保持環5における保持環側Oリング
10の接触箇所つまり環状溝11の底壁面15における
保持環側Oリング10の接触箇所(以下「第2接触箇
所」という)C2 とは、両環4,5に歪みが生じた場
合、それらの歪み量が上記した如く大きく異なることか
ら、径方向に相対変位することになる。一方、保持環側
Oリング10は、それがゴム等の高摩擦係数材で構成さ
れていること及び静止密封環4の背面4dと環状溝11
の底壁面15との間に挟圧されていることから、両接触
箇所C1 ,C2 においては滑りが生じ難く、接触箇所C
1 ,C2 の相対変位に伴って変形されることになる。し
たがって、図8に鎖線で示す如く、第1接触箇所C1
第2接触箇所C2 に対して内径方向に相対変位した場
合、第1接触箇所C1 の変位に伴ってこれに接触してい
る保持環側Oリング部分が内径方向へと弾性変形しよう
とするが、環状溝11内の保持環側Oリング部分(以下
「溝内部分」という)10aの内径方向への変形は環状
溝11の内径側壁面13により阻止されていることか
ら、かかる保持環側Oリング10の変形は、それがゴム
等の非圧縮性材で構成されていることとも相俟って、環
状溝11から僅かに突出している保持環側Oリング部分
(以下「溝外部分」という)10bが弾性変形できる範
囲において許容されるにすぎない。しかし、この溝外部
分10bは極く小さなものであるから、保持環側Oリン
グ10が第1接触箇所C1 の変位に追従して変形できる
範囲(以下「追従変形限度」という)は極く僅かであ
る。したがって、両環4,5の歪みによる接触箇所
1 ,C2 の相対変位量が保持環側Oリング10の追従
変形限度を越える場合があり、かかる場合には、両環
4,5の歪みが溝外部分10bの変形によっては吸収さ
れず、相互に干渉する虞れがある。なお、保持環側Oリ
ング10の環状溝11からの突出量を大きくして、追従
変形限度を大きくしておくことも考えられるが、このよ
うにすることは、振動や圧力変動等により保持環側Oリ
ング10が環状溝11から飛び出して脱落する虞れがあ
り、両環4,5間の二次シール機能上からも到底採用で
きない。
That is, the contact point of the holding ring side O-ring 10 (hereinafter referred to as "first contact point") C 1 on the back surface 4d of the stationary seal ring 4 and the contact point of the holding ring side O-ring 10 on the holding ring 5, that is, the ring shape. When the retaining ring side O-ring 10 is in contact with the bottom wall surface 15 of the groove 11 (hereinafter, referred to as “second contact point”) C 2 , when both rings 4 and 5 are distorted, the strain amounts are as described above. As described above, there is a large difference, which results in relative displacement in the radial direction. On the other hand, the holding ring side O-ring 10 is made of a material having a high friction coefficient such as rubber, and the rear surface 4d of the stationary seal ring 4 and the annular groove 11 are made.
Since it is pinched between the bottom wall surface 15 and the bottom wall surface 15, it is difficult for the contact points C 1 and C 2 to slip, and the contact point C
It will be deformed with the relative displacement of 1 and C 2 . Therefore, as shown by the chain line in FIG. 8, when the first contact point C 1 is displaced relative to the second contact point C 2 in the inner diameter direction, the first contact point C 1 comes into contact with the displacement along with the displacement of the first contact point C 1. The retaining ring side O-ring portion is elastically deformed in the inner diameter direction, but the retaining ring side O-ring portion (hereinafter referred to as “inner groove portion”) 10a in the annular groove 11 is deformed in the inner diameter direction. Since the retaining ring side O-ring 10 is prevented from being deformed by the inner diameter side wall surface 13, the deformation of the retaining ring side O-ring 10 is slightly reduced from the annular groove 11 in combination with the deformation of the retaining ring side O-ring 10. The holding ring side O-ring portion (hereinafter, referred to as “outer groove portion”) 10b protruding inward is only allowed within a range in which it can be elastically deformed. However, since the outer groove portion 10b is extremely small, the range in which the retaining ring side O-ring 10 can be deformed following the displacement of the first contact portion C 1 (hereinafter referred to as "following deformation limit") is extremely small. Few. Therefore, the relative displacement amount of the contact points C 1 and C 2 due to the strain of both rings 4 and 5 may exceed the follow-up deformation limit of the retaining ring side O-ring 10. In such a case, the strain of both rings 4 and 5 may be increased. May not be absorbed by the deformation of the outer groove portion 10b and may interfere with each other. It should be noted that it is conceivable to increase the amount of protrusion of the retaining ring side O-ring 10 from the annular groove 11 to increase the follow-up deformation limit, but this is done by vibration or pressure fluctuation. There is a risk that the side O-ring 10 will jump out of the annular groove 11 and fall off, and it cannot be used at all due to the secondary sealing function between both rings 4 and 5.

【0032】しかし、このような問題は、環状溝11の
形状、特に内径側壁面13の形状を上記実施例の如く工
夫しておくことにより、保持環5にOリング保持部5c
を形成しておくことと相俟って、確実に解消することが
できる。
However, such a problem is caused by devising the shape of the annular groove 11, particularly the shape of the inner diameter side wall surface 13 as in the above-described embodiment, so that the O-ring holding portion 5c is attached to the holding ring 5.
In combination with the formation of the above, it can be reliably solved.

【0033】すなわち、保持環側保持環側Oリング10
が、環状溝11の内径側壁面13においては、溝口側部
分13aに非接触の状態で支持されているから、溝外部
分10bのみならず、溝内部分10aにおける溝口側部
分13aに対応する部分(以下「見掛け上の溝外部分」
という)10´bも内径方向への変形が可能である。す
なわち、静止密封環4の背面4dにおける保持環側保持
環側Oリング10の接触箇所である第1接触箇所C
1 が、保持環5における保持環側保持環側Oリング10
の接触箇所つまり環状溝11の底壁面15における保持
環側保持環側Oリング10の接触箇所である第2接触箇
所C2 に対して、内径方向に大きく相対変位したときに
おいては、溝外部分10b及びこれに連なる見掛け上の
溝外部分10´bが第1接触箇所C1 の変位に追従して
変形することになり、保持環側保持環側Oリング10の
追従変形限度が図8(A)(B)に示す環状溝形態をと
る場合に比して大幅に大きくなる。換言すれば、保持環
側保持環側Oリング10の内径側壁面13による支持形
態上、環状溝11の内径側壁面13が実質的に溝奥部分
13bのみによって構成されることになり、内径側壁面
13によっては実質的に変形を規制されない変形自在部
分が、環状溝11から突出する溝外部分10bとこれに
連なる溝内部分10aの一部である見掛け上の溝外部分
10´bとで構成されることになる。したがって、変形
自在部分10b,10´bが従来シールにおけるよりも
大きくなり、保持環側保持環側Oリング10の内径方向
への変形が容易となる。このため、両環4,5の歪みに
より、第1接触箇所C1 が第2接触箇所C2 に対して内
径方向に大きく相対変位して、溝外部分10bの変形に
よってはかかる相対変位を吸収し得ない場合にも、図3
に鎖線図示する如く、変形自在部分10b,10´bが
第1接触箇所C1 の変位に追従して容易に弾性変形する
ことができ、その結果、両環4,5の歪みが変形自在部
分10´a,10bの変形により吸収されて相互に干渉
することがなく、静止密封環4が保持環5の歪みにより
悪影響を受けることがない。
That is, the retaining ring side retaining ring side O-ring 10
However, since the inner diameter side wall surface 13 of the annular groove 11 is supported in a non-contact state with the groove mouth side portion 13a, the portion corresponding to the groove mouth side portion 13a in the groove inner portion 10a as well as the groove outer portion 10b. (Hereafter, “apparent outside groove”)
Also, 10'b can be deformed in the inner diameter direction. That is, the first contact point C which is the contact point of the retaining ring side retaining ring side O-ring 10 on the back surface 4d of the stationary seal ring 4.
1 is a holding ring side holding ring side O-ring 10 in the holding ring 5.
Of the outer circumferential surface of the annular groove 11, that is, the outer peripheral portion of the groove when a large relative displacement is made in the inner diameter direction with respect to the second contact point C 2 which is the contact point of the retaining ring side O-ring 10 on the bottom wall surface 15 of the annular groove 11. 10b and the apparent outer groove portion 10'b connected thereto are deformed following the displacement of the first contact point C 1 , and the following deformation limit of the retaining ring side retaining ring side O ring 10 is shown in FIG. It is significantly larger than in the case of the annular groove configuration shown in A) and (B). In other words, the inner diameter side wall surface 13 of the annular groove 11 is substantially constituted only by the groove inner portion 13b because of the support form of the inner diameter side wall surface 13 of the retaining ring side holding ring side O-ring 10, and thus the inner diameter side The deformable portions whose deformation is not substantially restricted by the wall surface 13 are the outer groove portion 10b protruding from the annular groove 11 and the apparent outer groove portion 10'b which is a part of the inner groove portion 10a connected to the outer groove portion 10b. Will be configured. Therefore, the deformable portions 10b and 10'b are larger than in the conventional seal, and the retaining ring side retaining ring side O-ring 10 is easily deformed in the inner diameter direction. Therefore, the first contact point C 1 is largely displaced in the inner diameter direction relative to the second contact point C 2 due to the distortion of both rings 4 and 5, and the relative displacement is absorbed depending on the deformation of the groove outer portion 10b. If you can't
As shown by the chain line, the deformable portions 10b and 10'b can easily elastically deform following the displacement of the first contact portion C 1 , and as a result, the strain of both rings 4 and 5 can be deformed. The stationary seal ring 4 is not adversely affected by the distortion of the retaining ring 5 because they are not absorbed by the deformation of 10'a and 10b and do not interfere with each other.

【0034】一方、このように変形自在部分10b,1
0´bが大きいと、接触箇所C1 ,C2 の相対変位に容
易に追従できる反面、変形自在部分10b,10´bが
内径方向に必要以上に変形して、機器の振動等による影
響と相俟って、保持環側保持環側Oリング10が環状溝
11から内径方向に飛び出して脱落する虞れがある。し
かし、変形自在部分10b,10´bの内径方向への変
形や変位は、溝口側部分13aに連なって静止密封環4
の環状凹部4cへと突入する保持環側Oリング保持部5
cによって、一定範囲内に規制されることから、上記し
たような虞れはない。すなわち、変形自在部分10b,
10´bを大きくすることによる弊害が、保持環側Oリ
ング保持部5cによって確実に排除されるのである。し
かも、保持環側Oリング保持部5cは溝口側部分13a
に連なっているから、変形自在部分10b,10´bの
内径方向への変形や変位は環状溝11の溝口に対応する
範囲内に規制されることから、変形自在部分10b,1
0´bの一部(主として見掛け上の溝外部分)の環状溝
11内への復帰も容易となる。したがって、静止密封環
4と保持環5とが歪みや振動等の影響により相対運動し
た場合にも、保持環側保持環側Oリング10がこれに良
好に追従変形し得て、保持環側保持環側Oリング10に
よる二次シール機能が良好に発揮,維持される。なお、
かかる二次シール機能は、環状溝11の内径dを上記し
た範囲(D+0.5mm≦d≦D+4.0mm)で適宜
に設定して、静止密封環4と保持環5とが接近方向に押
圧状態となるようにしておくことによって、更に良好に
発揮されることになることはいうまでもない。
On the other hand, the deformable portions 10b, 1
If 0'b is large, the relative displacement of the contact points C 1 and C 2 can be easily followed, but the deformable portions 10b and 10'b are deformed more than necessary in the inner diameter direction, which may cause an influence of vibration of the device. Together, there is a possibility that the retaining ring side retaining ring side O-ring 10 may jump out from the annular groove 11 in the inner diameter direction and fall off. However, the deformation or displacement of the deformable portions 10b and 10'b in the inner diameter direction is continued to the groove opening side portion 13a, and the stationary seal ring 4 is
Retaining ring side O-ring retaining portion 5 that protrudes into the annular recess 4c of
Since it is regulated within a certain range by c, there is no fear as described above. That is, the deformable portion 10b,
The adverse effect of increasing the size of 10'b is reliably eliminated by the holding ring side O-ring holding portion 5c. Moreover, the retaining ring side O-ring retaining portion 5c is formed in the groove opening side portion 13a.
Since the deformable portions 10b and 10'b are restricted in deformation and displacement in the inner diameter direction within the range corresponding to the groove opening of the annular groove 11, the deformable portions 10b and 10'b are connected to each other.
A part of 0'b (mainly the outer portion of the apparent groove) can be easily returned to the inside of the annular groove 11. Therefore, even when the stationary seal ring 4 and the retaining ring 5 relatively move due to the influence of strain, vibration, etc., the retaining ring side retaining ring side O-ring 10 can be appropriately deformed following this, and the retaining ring side retaining ring can be retained. The secondary sealing function of the ring-side O-ring 10 is excellently exhibited and maintained. In addition,
In the secondary sealing function, the stationary seal ring 4 and the retaining ring 5 are pressed in the approaching direction by appropriately setting the inner diameter d of the annular groove 11 within the above range (D + 0.5 mm ≦ d ≦ D + 4.0 mm). It goes without saying that by setting the above condition, it will be more effectively exhibited.

【0035】なお、本発明に係る非接触形メカニカルシ
ールは上記実施例に限定されるものではなく、本発明の
基本原理を逸脱しない範囲において適宜に改良,変更す
ることができる。例えば、静止密封環4と保持環5との
歪み干渉をより確実に回避するための環状溝11の内径
側壁面13の形状は、保持環側保持環側Oリング10が
溝口側部分13aに非接触の状態で支持させるものであ
る限り、図5に例示する如く任意である。すなわち、図
5(A)に示すものでは、内径側壁面13を溝口方向に
漸次縮径する円弧面として、保持環側保持環側Oリング
10を溝口側部分13aに非接触の状態で溝奥側部分1
3bに支持させるようにしてある。また、同図(B)又
は(C)に示すものでは、内径側壁面13を階段状とし
て、保持環側保持環側Oリング10を小径の溝口側部分
13aから離した状態で大径の溝奥側部分13bに支持
させるようにしてある。
The non-contact mechanical seal according to the present invention is not limited to the above embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention. For example, as for the shape of the inner diameter side wall surface 13 of the annular groove 11 for more surely avoiding the strain interference between the stationary seal ring 4 and the retaining ring 5, the retaining ring side retaining ring side O ring 10 is not formed in the groove mouth side portion 13a. It is arbitrary as illustrated in FIG. 5 as long as it is supported in a contact state. That is, in the structure shown in FIG. 5 (A), the inner diameter side wall surface 13 is an arc surface that gradually reduces in diameter in the groove opening direction, and the retaining ring side retaining ring side O-ring 10 is not in contact with the groove opening side portion 13a. Side part 1
3b is supported. Further, in the case shown in FIG. 1B or 1C, the inner diameter side wall surface 13 has a stepped shape, and the holding ring side holding ring side O ring 10 is separated from the small diameter groove mouth side portion 13a, and the large diameter groove is formed. The rear side portion 13b is supported.

【0036】また、図6に示す如く、シールケース1
に、リテーナ部1bから保持環5を貫通して静止密封環
4の内周部へと延びる円筒状のガイド部1cを形成し
て、静止密封環4をガイド部1cに外嵌させることによ
って、静止密封環4をシールケース1に軸線方向移動可
能に且つ径方向変位不能に内嵌保持させておくようにし
てもよい。この場合においても、すき間ばめ程度の寸法
公差(JIS−B0401)をもって静止密封環4をガ
イド部1cに嵌合させておき、静止密封環4の内周面と
ガイド部1cの外周面との間には、静止密封環4の径方
向変位を阻止するも、その軸線方向移動並びに流体の通
過を許容する、極く微小な隙間が形成されるようにして
おく。この隙間は、上記実施例におけると同様に、静止
密封環4の径やシール条件等に応じて適宜に設定され、
一般に、静止密封環4の内径寸法とガイド部1cの外径
寸法との差を10〜100μm程度としておくことが好
ましい。勿論、両密封端面3a,4a間に動圧を発生さ
せるための手段も任意である。すなわち、動圧発生溝3
aの形状やこれを形成する密封端面3a,4aの選択も
任意である。
Further, as shown in FIG. 6, the seal case 1
By forming a cylindrical guide portion 1c extending from the retainer portion 1b to the inner peripheral portion of the stationary seal ring 4 through the retaining ring 5 and fitting the stationary seal ring 4 onto the guide portion 1c, The stationary seal ring 4 may be retained in the seal case 1 so as to be movable in the axial direction and not displaceable in the radial direction. Even in this case, the stationary seal ring 4 is fitted to the guide portion 1c with a dimensional tolerance (JIS-B0401) of a clearance fit, and the inner peripheral surface of the stationary seal ring 4 and the outer peripheral surface of the guide portion 1c are separated from each other. An extremely minute gap is formed between the stationary seal ring 4 and the radial displacement of the stationary seal ring 4, which allows movement of the stationary seal ring 4 in the axial direction and passage of fluid. This gap is appropriately set according to the diameter of the stationary seal ring 4, the sealing conditions, etc., as in the above embodiment.
Generally, it is preferable to set the difference between the inner diameter of the stationary seal ring 4 and the outer diameter of the guide portion 1c to about 10 to 100 μm. Of course, any means may be used to generate a dynamic pressure between the sealed end surfaces 3a and 4a. That is, the dynamic pressure generating groove 3
The shape of a and the sealing end faces 3a and 4a forming the same are arbitrary.

【0037】[0037]

【発明の効果】以上の説明から容易に理解されるよう
に、本発明の非接触形メカニカルシールは、静止密封環
と保持環との組み込み時の形態や保持環側Oリングの性
状変化等のシール条件に拘わらず、密封環によるシール
機能及び保持環側Oリングによる二次シール機能を良好
に発揮,維持させることができ、長期に亘って被密封流
体領域と非密封流体領域とのシールを良好に行うことが
できるものである。
As can be easily understood from the above description, the non-contact mechanical seal of the present invention has a configuration such as a form when the stationary seal ring and the retaining ring are assembled and a property change of the retaining ring side O-ring. Regardless of the sealing conditions, the sealing function of the sealing ring and the secondary sealing function of the O-ring on the retaining ring side can be excellently exerted and maintained, and the sealed fluid region and the non-sealed fluid region can be sealed for a long period of time. It can be done well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非接触形メカニカルシールの一実
施例を示す半截の縦断側面図である。
FIG. 1 is a half-section vertical side view showing an embodiment of a non-contact type mechanical seal according to the present invention.

【図2】図1の要部を拡大して示す縦断側面図である。FIG. 2 is a vertical cross-sectional side view showing an enlarged main part of FIG.

【図3】図2の要部を拡大して示す縦断側面図である。FIG. 3 is a vertical cross-sectional side view showing an enlarged main part of FIG.

【図4】静止密封環及び保持環に作用する圧力分布図で
ある。
FIG. 4 is a pressure distribution diagram acting on a stationary seal ring and a retaining ring.

【図5】環状溝の変形例を示す図3相当の縦断側面図で
ある。
FIG. 5 is a vertical sectional side view corresponding to FIG. 3 showing a modified example of the annular groove.

【図6】他の実施例を示す図1相当の縦断側面図であ
る。
FIG. 6 is a vertical sectional side view corresponding to FIG. 1 showing another embodiment.

【図7】従来シールを示す図1相当の縦断側面図であ
る。
FIG. 7 is a vertical sectional side view corresponding to FIG. 1 showing a conventional seal.

【図8】図7の要部を拡大して示す縦断側面図である。8 is a vertical cross-sectional side view showing an enlarged main part of FIG.

【符号の説明】[Explanation of symbols]

1…シールケース、2…回転軸、3…回転密封環、3
a,4a…密封端面、3b…動圧発生溝、4…静止密封
環、4c…環状凹部、4d…静止密封環の背面、5…保
持環、5b…押圧部、5c…Oリング保持部、5d…押
圧部の前面、6…スプリング、10…保持環側Oリン
グ、11…環状溝、13…内径側壁面、d…環状溝の内
径、D…被保持部の外径、H…被密封流体領域、L…非
密封流体領域。
1 ... Seal case, 2 ... Rotating shaft, 3 ... Rotating sealing ring, 3
a, 4a ... Sealing end face, 3b ... Dynamic pressure generating groove, 4 ... Stationary sealing ring, 4c ... Annular recess, 4d ... Rear surface of stationary sealing ring, 5 ... Holding ring, 5b ... Pressing section, 5c ... O-ring holding section, 5d ... Front of pressing portion, 6 ... Spring, 10 ... Holding ring side O-ring, 11 ... Annular groove, 13 ... Inner diameter side wall surface, d ... Inner diameter of annular groove, D ... Outer diameter of held portion, H ... Sealed Fluid region, L ... Non-sealed fluid region.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に固定された回転密封環と、シー
ルケースにケース側Oリングを介して二次シールされた
状態で軸線方向移動可能に保持された筒状の被保持部と
その前端部に形成された環状の押圧部とを有する保持環
と、保持環を介して回転密封環へと押圧附勢された静止
密封環と、前記押圧部の前面に形成した環状溝に保持さ
れており、該押圧部の前面と静止密封環の背面との間を
二次シールされた非接触状態に保持する保持環側Oリン
グと、を具備して、回転密封環と静止密封環との対向端
面である密封端面を非接触状態で相対回転させることに
より、密封端面の外周側領域である被密封流体領域と内
周側領域である非密封流体領域とをシールさせるように
構成された非接触形メカニカルシールにおいて、前記押
圧部の前面に、前記環状溝の内径側壁面に連なって静止
密封環の内周部に形成した環状凹部に若干の径方向隙間
を有して遊嵌状に突入する環状のOリング保持部を突設
すると共に、前記環状溝を、その内径dが前記被保持部
の外径Dに対してD+0.5mm≦d≦D+4.0mm
となるように構成したことを特徴とする非接触形メカニ
カルシール。
1. A rotary seal ring fixed to a rotary shaft, and a tubular portion to be held axially movable in a state of being secondarily sealed in a seal case via a case-side O-ring and its front end. A retaining ring having an annular pressing portion formed on the pressing portion, a stationary sealing ring that is biased to the rotary sealing ring via the retaining ring, and an annular groove formed on the front surface of the pressing portion. And a holding ring side O-ring that holds the front surface of the pressing portion and the back surface of the stationary sealing ring in a secondary sealed non-contact state, and opposes the rotary sealing ring and the stationary sealing ring. A non-contact structure configured to seal a sealed fluid region, which is an outer peripheral side region of the sealed end face, and a non-sealing fluid region, which is an inner peripheral side region, by relatively rotating the sealed end face that is the end face in a non-contact state. In the mechanical seal, An annular O-ring holding portion is formed so as to be loosely fitted into the annular concave portion formed in the inner peripheral portion of the stationary sealing ring and connected to the inner diameter side wall surface of the annular groove with a slight radial gap. The inner diameter d of the annular groove is D + 0.5 mm ≦ d ≦ D + 4.0 mm with respect to the outer diameter D of the held portion.
A non-contact type mechanical seal characterized by being configured as follows.
JP7140948A 1995-06-07 1995-06-07 Non-contact type mechanical seal Expired - Fee Related JP2843973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140948A JP2843973B2 (en) 1995-06-07 1995-06-07 Non-contact type mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140948A JP2843973B2 (en) 1995-06-07 1995-06-07 Non-contact type mechanical seal

Publications (2)

Publication Number Publication Date
JPH08334174A true JPH08334174A (en) 1996-12-17
JP2843973B2 JP2843973B2 (en) 1999-01-06

Family

ID=15280541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140948A Expired - Fee Related JP2843973B2 (en) 1995-06-07 1995-06-07 Non-contact type mechanical seal

Country Status (1)

Country Link
JP (1) JP2843973B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059197A1 (en) * 2017-09-20 2019-03-28 イーグル工業株式会社 Mecanical seal
US11549589B2 (en) 2018-02-21 2023-01-10 Eagle Industry Co., Ltd. Mechanical seal
US11739844B2 (en) 2016-09-14 2023-08-29 Eagle Industry Co., Ltd. Mechanical seal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296259A (en) * 1991-03-25 1992-10-20 Nippon Pillar Packing Co Ltd Noncontact sealing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296259A (en) * 1991-03-25 1992-10-20 Nippon Pillar Packing Co Ltd Noncontact sealing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739844B2 (en) 2016-09-14 2023-08-29 Eagle Industry Co., Ltd. Mechanical seal
WO2019059197A1 (en) * 2017-09-20 2019-03-28 イーグル工業株式会社 Mecanical seal
CN111094814A (en) * 2017-09-20 2020-05-01 伊格尔工业股份有限公司 Mechanical sealing element
JPWO2019059197A1 (en) * 2017-09-20 2020-10-15 イーグル工業株式会社 mechanical seal
US11221074B2 (en) 2017-09-20 2022-01-11 Eagle Industry Co., Ltd. Mechanical seal
US11549589B2 (en) 2018-02-21 2023-01-10 Eagle Industry Co., Ltd. Mechanical seal

Also Published As

Publication number Publication date
JP2843973B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JPH083763Y2 (en) Non-contact mechanical seal
EP0922891B1 (en) Rotary, reciprocating seals with internal metal band
US2760794A (en) Vibration rings for mechanical seals
JPH10220594A (en) Seal
US8523186B2 (en) Slide ring seal arrangement
US2995390A (en) Mountings for rings or discs
JPH04272582A (en) Noncontact packing apparatus for axis insulating gas
JPH08334174A (en) Noncontact mechanical seal
JP2999415B2 (en) mechanical seal
JPS583150B2 (en) mechanical seal
JP6577329B2 (en) mechanical seal
US3367666A (en) Seal
JP2700868B2 (en) Non-contact type mechanical seal
JPH0756344B2 (en) mechanical seal
JP2994270B2 (en) Non-contact type mechanical seal
JP2009024836A (en) Mechanical seal
EP0395713B1 (en) Helical seal
JPH081259B2 (en) Non-contact sealing device
JP3903499B2 (en) High pressure mechanical seal
JP2899261B2 (en) Sealing device
JP3280344B2 (en) mechanical seal
JP4528762B2 (en) Non-contact mechanical seal
JP2891900B2 (en) Non-contact type mechanical seal
JPH0658426A (en) Lip type seal
JP3017954B2 (en) Non-contact type mechanical seal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees