JP2009024836A - Mechanical seal - Google Patents

Mechanical seal Download PDF

Info

Publication number
JP2009024836A
JP2009024836A JP2007190907A JP2007190907A JP2009024836A JP 2009024836 A JP2009024836 A JP 2009024836A JP 2007190907 A JP2007190907 A JP 2007190907A JP 2007190907 A JP2007190907 A JP 2007190907A JP 2009024836 A JP2009024836 A JP 2009024836A
Authority
JP
Japan
Prior art keywords
ring
sealing
seal
mechanical seal
sealing ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007190907A
Other languages
Japanese (ja)
Inventor
Takeshi Yamanoi
毅 山野井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2007190907A priority Critical patent/JP2009024836A/en
Publication of JP2009024836A publication Critical patent/JP2009024836A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanical seal which can retain a gap between sealing end surfaces in a proper non-contact state or a contact state under a condition where the temperature and/or the pressure of a fluid to be sealed is significantly fluctuated, and demonstrate an excellent and a stable sealing functions. <P>SOLUTION: The fluid to be sealed is sealed at a relative rotation part of opposing end faces 3a and 4a between a first sealing ring 3 fixed on one of a seal case 2 and a rotary shaft 1 passing therethrough, and a second sealing ring 4 retained on the other side so as to be movable in the axial direction and also not to be relatively rotatable via a retention ring 5. The second sealing ring 4 and the retention ring 5 are connected with distortion in a diameter direction of both the rings 4 and 5 mutually interfered by bringing the opposing end faces 4e and 5c of both the rings 4 and 5 into contact therewith with pressure via an O ring 9. The second sealing ring 4 is made of carbon and the retention ring 5 is composed of titanium that a coefficient of thermal expansion and/or a Young's modulus is approximate to a component of the second sealing ring 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シールケース及びこれを洞貫する回転軸の一方に固定された第1密封環とその他方に保持環を介して軸線方向移動可能且つ相対回転不能に保持された第2密封環との対向端面の相対回転部分において被密封流体をシールするように構成されたメカニカルシールであって、特に、保持環と第2密封環とがそれらの径方向歪が相互に干渉する状態で連結されているメカニカルシールに関するものである。   The present invention includes a first sealing ring fixed to one of a sealing case and a rotating shaft penetrating through the sealing case, and a second sealing ring that is axially movable and non-rotatably supported through a holding ring on the other side. A mechanical seal configured to seal a fluid to be sealed at a relative rotating portion of the opposed end surface of the first end face, and in particular, the holding ring and the second sealing ring are coupled in a state where their radial strains interfere with each other. It relates to mechanical seals.

従来のこの種のメカニカルシールとしては、例えば、図4又は図6に示す如く、回転軸101に固定された第1密封環103と、シールケース102にOリング107を介して軸線方向移動可能に保持された保持環105と、シールケース102と保持環105との間に介装されたスプリング部材106と、このスプリング部材106により保持環105を介して第1密封環103へと押圧附勢された第2密封環104とを具備し、両密封環103,104の対向端面たる密封端面103a,104aの相対回転により、その相対回転部分において密封端面103a,104aの外周側領域である被密封流体領域Hとその内周側領域である非密封流体領域(大気領域)Lとをシールしうるように構成されたものが周知である(例えば、特許文献1の図1、図4又は図5を参照)。   As a conventional mechanical seal of this type, for example, as shown in FIG. 4 or 6, the first seal ring 103 fixed to the rotary shaft 101 and the seal case 102 can be moved in the axial direction via an O-ring 107. The holding ring 105 held, the spring member 106 interposed between the seal case 102 and the holding ring 105, and the spring member 106 is pressed and urged to the first sealing ring 103 via the holding ring 105. And a second sealed ring 104, and a sealed fluid which is an outer peripheral side region of the sealed end faces 103a and 104a in the relative rotation portion by relative rotation of the sealed end faces 103a and 104a which are opposite end faces of the both sealed rings 103 and 104. What is configured to be able to seal the region H and the non-sealed fluid region (atmospheric region) L which is the inner peripheral region is well known (for example, patent documents) Figure 1 1, see FIG. 4 or FIG. 5).

而して、図4に示すメカニカルシール(以下「第1従来シール」という)にあっては、保持環105と第2密封環104との連結が対向端面104b,105aを直接に押圧接触させることにより行なわれている。また、図6に示すメカニカルシール(以下「第2従来シール」という)にあっては、保持環105と第2密封環104との連結が対向端面104b,105aをOリング109を介して間接的に押圧接触させることにより行なわれている。また、第1及び第2従来シールにあっては、何れの場合にも、第1密封環103、第2密封環104及び保持環105は、その機能や形状の違いから異質材で構成されており、一般に、第1密封環103はWC,SiC等の硬質材で、第2密封環104は第1密封環103の構成材に比して軟質のカーボンで、また保持環105は金属材(一般にステンレス鋼)で構成されている。   Thus, in the mechanical seal shown in FIG. 4 (hereinafter referred to as “first conventional seal”), the connection between the holding ring 105 and the second sealing ring 104 directly presses the opposed end faces 104b and 105a. It is done by. Further, in the mechanical seal shown in FIG. 6 (hereinafter referred to as “second conventional seal”), the connection between the holding ring 105 and the second sealing ring 104 is indirect via the O-ring 109 at the opposing end faces 104b and 105a. It is performed by making it press-contact to. Further, in any case, the first seal ring 103, the second seal ring 104, and the holding ring 105 are made of different materials because of differences in function and shape. In general, the first sealing ring 103 is a hard material such as WC or SiC, the second sealing ring 104 is softer than the constituent material of the first sealing ring 103, and the holding ring 105 is a metal material ( Generally, it is made of stainless steel.

実開平4−134963号公報Japanese Utility Model Publication No. 4-134963

ところで、第1従来シールにあっては、第2密封環104と保持環105との対向端面104b,105aが直接に押圧接触する摩擦係合状態にあるため、両環104,105の接触部分104b,105aにおいてそれらの熱歪及び/又は圧力歪が相互に干渉することになる。すなわち、両環104,105はそれらの径方向歪が相互に干渉する状態で連結されているのである。   By the way, in the first conventional seal, the opposing end faces 104b, 105a of the second sealing ring 104 and the holding ring 105 are in a frictional engagement state in which they directly press contact with each other. , 105a, these thermal strains and / or pressure strains interfere with each other. That is, both rings 104 and 105 are connected in a state where their radial strains interfere with each other.

一方、両環104,105は上記した如く異質材で構成されており、それらの熱膨張係数(線膨張係数)及びヤング率が大きく異なる(例えば、第2密封環104を構成するカーボンの熱膨張係数が4×10−6〜5×10−6mm/℃であり、ヤング率が2500kg/mmであるのに対し、保持環105の一般的な構成材であるステンレス鋼の熱膨張係数は16×10−6〜20×10−6mm/℃であり、ヤング率は19700kg/mmである)。 On the other hand, both rings 104 and 105 are made of different materials as described above, and their thermal expansion coefficient (linear expansion coefficient) and Young's modulus are greatly different (for example, the thermal expansion of carbon constituting the second sealing ring 104). While the coefficient is 4 × 10 −6 to 5 × 10 −6 mm / ° C. and the Young's modulus is 2500 kg / mm 2 , the thermal expansion coefficient of stainless steel, which is a general component of the retaining ring 105, is 16 × 10 −6 to 20 × 10 −6 mm / ° C., and Young's modulus is 19700 kg / mm 2 ).

したがって、第1従来シールを被密封流体の温度及び/又は圧力が大きく変動する条件下で使用した場合、両環104,105の接触部分104b,105aにおける径方向歪(径方向における熱歪及び/又は圧力歪)が大きく異なることから、第2密封環104については、保持環105の熱歪や圧力歪の影響を強く受けて、それ自身の熱歪や圧力歪とは全く異なる歪状態を呈することなる。その結果、第2密封環104の密封端面104aの平面度や相手密封端面103aに対する同心度,平行度が損なわれて、密封端面103a,104aの相対回転によるシール機能が不安定となったり低下する虞れがあり、極端な場合にはシール機能が喪失する虞れがある。例えば、被密封流体が昇温された場合、図5(A)に示す如く、保持環105の径方向歪量(熱膨張量)e1は第2密封環104の径方向歪量(熱膨張量)E1に比して大きいことから、両環104,105の接触部分104b,105aにおいて径方向歪が相互に干渉して、第2密封環104の歪量はそれ自身の歪量より増大されることになる。その結果、第2密封環104には、保持環105に対して図5(A)に示す方向のモーメントM1が作用することになり、第2密封環104の密封端面104aが相手密封端面(第1密封環103の密封端面103a)に対して内開き状態に傾くことになる。また、逆に被密封流体が降温された場合、図5(B)に示す如く、保持環105の径方向熱歪量(熱収縮量)e2は第2密封環104の径方向熱歪量(熱収縮量)E2に比して大きいため、第2密封環104には、上記降温時とは逆方向のモーメントM2が作用して、第2密封環104の密封端面104aが相手密封端面103aに対して外開き状態に傾くことになる。これらのことは、被密封流体の圧力により両環104,105が径方向の圧力歪を生じる場合にも同様であり、被密封流体が圧力変動することにより、接触部分104b,105aにおいて径方向歪が相互干渉して、上記と同様のモーメントM1,M2が発生する。   Therefore, when the first conventional seal is used under conditions in which the temperature and / or pressure of the fluid to be sealed fluctuates greatly, radial strain (thermal strain and / or radial direction in the contact portions 104b and 105a of both rings 104 and 105). The second sealing ring 104 is strongly influenced by the thermal strain and pressure strain of the holding ring 105 and exhibits a completely different strain state from its own thermal strain and pressure strain. It will be different. As a result, the flatness of the sealing end surface 104a of the second sealing ring 104, the concentricity and parallelism with respect to the mating sealing end surface 103a are impaired, and the sealing function due to the relative rotation of the sealing end surfaces 103a and 104a becomes unstable or decreases. In extreme cases, the sealing function may be lost. For example, when the temperature of the sealed fluid is raised, as shown in FIG. 5A, the radial strain amount (thermal expansion amount) e1 of the retaining ring 105 is equal to the radial strain amount (thermal expansion amount) of the second seal ring 104. ) Since it is larger than E1, radial strains interfere with each other at the contact portions 104b and 105a of both rings 104 and 105, and the strain amount of the second sealing ring 104 is increased from its own strain amount. It will be. As a result, a moment M1 in the direction shown in FIG. 5A acts on the holding ring 105 on the second sealing ring 104, and the sealing end face 104a of the second sealing ring 104 becomes the mating sealing end face (first sealing ring 104). The sealing end face 103a of the one sealing ring 103 is inclined inwardly. On the contrary, when the temperature of the sealed fluid is lowered, as shown in FIG. 5B, the radial thermal strain amount (thermal contraction amount) e2 of the holding ring 105 is equal to the radial thermal strain amount of the second sealed ring 104 ( Since the amount of heat shrinkage (E2) is larger than E2, a moment M2 in the direction opposite to that when the temperature is lowered acts on the second sealing ring 104, so that the sealing end face 104a of the second sealing ring 104 acts on the mating sealing end face 103a. On the other hand, it will be tilted outward. The same applies to the case where both rings 104 and 105 cause radial pressure distortion due to the pressure of the sealed fluid. When the sealed fluid changes in pressure, radial strain occurs in the contact portions 104b and 105a. Mutually interfere to generate moments M1 and M2 similar to those described above.

また、第2従来シールにあっては、第2密封環104と保持環105との対向端面104b,105a間にOリング109が介在しており、対向端面104b,105aが直接に接触していないため、当該対向端面104b,105aにおける径方向歪の相互干渉は生じない。しかし、当該対向端面104b,105a間にOリング109が挟圧されており、両環104,105はそれらの径方向歪がOリング109を介して相互に干渉する状態で連結されていることになり、第1従来シールと同様の問題が生じる。すなわち、保持環105の径方向歪量(熱歪量又は圧力歪量)e1,e2は第2密封環104の径方向歪量(熱歪量又は圧力歪量)E1,E2に比して大きいことから、Oリング109における両環104,105との接触点が相対的に逆方向に変位することになる。したがって、Oリング109には、その断面において図7(A)又は同図(B)に示す方向の回転力が付与されることになる。その結果、第2密封環104には、保持環105に対して図7(A)又は同図(B)に示す方向のモーメントM1又はM2が作用することになり、第2密封環104の密封端面104aが相手密封端面103aに対して内開き状態(図7(A))又は外開き状態(同図(B))に傾くことになる。   Further, in the second conventional seal, the O-ring 109 is interposed between the opposed end faces 104b and 105a of the second sealing ring 104 and the holding ring 105, and the opposed end faces 104b and 105a are not in direct contact with each other. Therefore, mutual interference of radial strains at the facing end faces 104b and 105a does not occur. However, the O-ring 109 is sandwiched between the opposed end faces 104b and 105a, and both the rings 104 and 105 are connected in a state where their radial strains interfere with each other via the O-ring 109. Thus, the same problem as the first conventional seal occurs. That is, the radial strain (thermal strain or pressure strain) e1 and e2 of the holding ring 105 is larger than the radial strain (thermal strain or pressure strain) E1 and E2 of the second sealing ring 104. Therefore, the contact point of the O-ring 109 with both the rings 104 and 105 is relatively displaced in the opposite direction. Therefore, a rotational force in the direction shown in FIG. 7A or FIG. 7B is applied to the O-ring 109 in its cross section. As a result, the moment M1 or M2 in the direction shown in FIG. 7A or FIG. 7B acts on the holding ring 105 on the second sealing ring 104, and the second sealing ring 104 is sealed. The end face 104a is inclined inwardly opened (FIG. 7A) or outwardly opened (FIG. 7B) with respect to the mating sealed end face 103a.

本発明は、このような点に鑑みてなされたもので、被密封流体の温度及び/又は圧力が大きく変動するような条件下においても、密封端面間を適正な非接触状態又は接触状態に保持することができ、良好且つ安定したシール機能を発揮しうるメカニカルシールを提供することを目的とするものである。   The present invention has been made in view of the above points, and maintains a proper non-contact state or a contact state between the sealed end faces even under conditions in which the temperature and / or pressure of the sealed fluid greatly fluctuates. It is an object of the present invention to provide a mechanical seal that can perform a good and stable sealing function.

本発明は、シールケース及びこれを洞貫する回転軸の一方に固定された第1密封環とその他方に保持環を介して軸線方向移動可能且つ相対回転不能に保持された第2密封環との対向端面の相対回転部分において被密封流体をシールするように構成されたメカニカルシールであって、保持環と第2密封環とがそれらの径方向歪が相互に干渉する状態で連結されているメカニカルシールにおいて、上記の目的を達成すべく、特に、保持環を第2密封環の構成材と熱膨張係数(線膨張係数)及び/又はヤング率が近似する金属材で構成しておくことを提案するものである。すなわち、本発明のメカニカルシールにあっては、熱歪による影響を強く受ける高温条件下で使用される場合には保持環を少なくとも熱膨張係数が第2密封環の構成材に近似する金属材で構成しておくのであり、圧力歪による影響を強く受ける高圧条件下で使用される場合には保持環を少なくともヤング率が第2密封環の構成材に近似する金属材で構成しておくのであり、熱歪及び圧力歪による影響を共に強く受ける高温,高圧条件下で使用される場合には、保持環を熱膨張係数及びヤング率の何れもが第2密封環の構成材に近似する金属材で構成しておくのである。一般に、第2密封環はカーボンで構成されるが、このような場合、保持環の構成材としてはチタン等を選択することが好ましい。例えば、チタンの熱膨張係数は8×10−6mm/℃であり、ヤング率は11000kg/mmであるから、保持環の一般的な構成材であるステンレス鋼(熱膨張係数:16×10−6〜20×10−6mm/℃,ヤング率:19700kg/mm)に比してカーボンの熱膨張係数(4×10−6〜5×10−6mm/℃)及びヤング率(2500kg/mm)に近似する。 The present invention includes a first sealing ring fixed to one of a sealing case and a rotating shaft penetrating through the sealing case, and a second sealing ring that is axially movable and non-rotatably supported through a holding ring on the other side. A mechanical seal configured to seal a fluid to be sealed at a relative rotation portion of the opposed end surface of the first and second holding rings, wherein the holding ring and the second sealing ring are connected in a state where their radial strains interfere with each other. In the mechanical seal, in order to achieve the above-described object, in particular, the holding ring is made of a metal material whose thermal expansion coefficient (linear expansion coefficient) and / or Young's modulus approximates the constituent material of the second sealing ring. It is what we propose. That is, in the mechanical seal of the present invention, when used under high temperature conditions that are strongly affected by thermal strain, the retaining ring is made of a metal material whose thermal expansion coefficient is at least similar to that of the constituent material of the second sealing ring. When used under high pressure conditions that are strongly influenced by pressure strain, the retaining ring is made of a metal material whose Young's modulus approximates that of the second sealing ring. When used under high temperature and high pressure conditions that are strongly affected by both thermal strain and pressure strain, the retaining ring is a metal material whose thermal expansion coefficient and Young's modulus both approximate the components of the second sealing ring. It is composed of. In general, the second sealing ring is made of carbon. In such a case, it is preferable to select titanium or the like as a constituent material of the retaining ring. For example, since the thermal expansion coefficient of titanium is 8 × 10 −6 mm / ° C. and the Young's modulus is 11000 kg / mm 2 , stainless steel (thermal expansion coefficient: 16 × 10 6), which is a general component of the retaining ring. Carbon expansion coefficient (4 × 10 −6 to 5 × 10 −6 mm / ° C.) and Young's modulus (2500 kg) compared to −6 to 20 × 10 −6 mm / ° C., Young's modulus: 19700 kg / mm 2 / Mm 2 ).

好ましい実施の形態にあって、本発明のメカニカルシールは、両密封環の対向端面たる密封端面がその間に発生させた動圧及び/又は静圧により非接触に保持された状態で相対回転するように構成された非接触形メカニカルシールであり、或いは両密封環の対向端面たる密封端面が接触する状態で相対回転するように構成された端面接触形メカニカルシールである。また、保持環と第2密封環との連結は、当該両環の相対回転をドライブピンにより阻止した状態で、両環の対向端面を直接に押圧接触させることにより行われるのであり、或いは当該両環の相対回転をドライブピンにより阻止した状態で、両環の対向端面をOリングを介して間接的に押圧接触させることにより行なわれる。   In a preferred embodiment, the mechanical seal of the present invention is configured to rotate relative to each other while the sealing end surfaces, which are the opposite end surfaces of both sealing rings, are held in non-contact by the dynamic pressure and / or static pressure generated therebetween. It is a non-contact type mechanical seal constructed in the above, or an end face contact type mechanical seal constructed so as to rotate relative to each other in a state where the sealed end faces as opposed end faces of both sealing rings are in contact with each other. Further, the connection between the holding ring and the second sealing ring is performed by directly pressing and contacting the opposing end faces of both rings in a state where relative rotation of the both rings is prevented by the drive pin, or both In a state where the relative rotation of the rings is prevented by the drive pins, the opposing end faces of both rings are indirectly pressed and contacted via the O-ring.

本発明の非接触形メカニカルシールにあっては、保持環を第2密封環の構成材と熱膨張係数及び/又はヤング率が近似する金属材で構成する(例えば、第2密封環がカーボン製のものである場合、保持環をチタン製のものとする)ため、被密封流体が大きく温度変化及び/又は圧力変動するような条件下においても、第2密封環と保持環との間に径方向における大きな歪量差が生じず、冒頭で述べたような問題を生じることなく、良好且つ安定したシール機能を発揮させることができる。   In the non-contact type mechanical seal of the present invention, the retaining ring is made of a metal material whose thermal expansion coefficient and / or Young's modulus is similar to the constituent material of the second sealing ring (for example, the second sealing ring is made of carbon. The retaining ring is made of titanium), the diameter of the sealed fluid is between the second sealing ring and the retaining ring even under conditions in which the fluid to be sealed undergoes a large temperature change and / or pressure fluctuation. A great difference in distortion in the direction does not occur, and a satisfactory and stable sealing function can be exhibited without causing the problems described at the beginning.

図1は本発明に係るメカニカルシールの第1の実施の形態を示す縦断側面図であり、この実施の形態におけるメカニカルシールは、図1に示す如く、回転軸1が上下方向に延びる回転機器(攪拌機等)の軸封手段として使用される縦型の非接触形メカニカルシールであり、回転機器ハウジングの軸封部(図示せず)に取り付けられたシールケース2と、回転軸1に固定された第1密封環たる回転密封環3と、回転密封環3の上位に配して当該密封環3に直対向する第2密封環たる静止密封環4と、静止密封環4の上位に配してシールケース2に保持された保持環5と、シールケース2と保持環5との間に介装されたスプリング部材6とを具備して、両密封環3,4の上下対向端面たる密封端面3a,4aを、その間に発生させた動圧により非接触状態に保持しつつ、当該回転機器の機内領域である被密封流体領域(機内ガス領域)Hと機外領域である非密封流体領域(大気領域)Lとを遮蔽するように構成された動圧形の非接触形メカニカルシールである。   FIG. 1 is a longitudinal side view showing a first embodiment of a mechanical seal according to the present invention. As shown in FIG. 1, the mechanical seal in this embodiment is a rotating device in which a rotating shaft 1 extends vertically. This is a vertical non-contact mechanical seal used as a shaft sealing means of an agitator, etc., and is fixed to the rotating shaft 1 with a seal case 2 attached to a shaft sealing portion (not shown) of the rotating device housing. A rotary seal ring 3 as a first seal ring, a stationary seal ring 4 as a second seal ring directly above the rotary seal ring 3 and directly opposite the seal ring 3, and disposed above the stationary seal ring 4 A sealing end face 3a which is provided with a holding ring 5 held by the seal case 2 and a spring member 6 interposed between the seal case 2 and the holding ring 5 and which is the vertically opposed end faces of both the sealing rings 3 and 4. , 4a due to the dynamic pressure generated during A movement configured to shield a sealed fluid region (in-machine gas region) H which is an in-machine region of the rotating device and an unsealed fluid region (atmosphere region) L which is an out-of-machine region while maintaining the touch state. It is a pressure-type non-contact type mechanical seal.

シールケース2は、図1に示す如く、円筒状のガイド部2aと円環状のリテーナ部2bとを有する円筒構造体であって、ステンレス鋼等の金属材で構成されている。回転軸1は、ガイド部2a及びリテーナ部2bを上下方向に同心状に貫通する。   As shown in FIG. 1, the seal case 2 is a cylindrical structure having a cylindrical guide portion 2a and an annular retainer portion 2b, and is made of a metal material such as stainless steel. The rotating shaft 1 passes through the guide portion 2a and the retainer portion 2b concentrically in the vertical direction.

回転密封環3はWC,SiC等のセラミックスや超硬合金等の硬質材で構成されたもので、図1に示す如く、静止密封環4に対向する一側端面(上端面)は軸線に直交する平滑平面である密封端面3aに構成されている。この密封端面3aには、被密封流体領域Hに臨む外周部へと開口するスパイラル状等の適宜形状をなす動圧発生溝3bが形成されていて、この動圧発生溝3bの作用により、両密封環3,4の相対回転に伴い密封端面3a,4a間に動圧を発生せしめて、密封端面3a,4a間を流体膜を介在形成させた非接触状態に保持する。而して、この流体膜の形成部分において、密封端面3a,4aの外周側領域である被密封流体領域Hとその内周側領域である非密封流体領域Lとの間をシールするようになっている。   The rotary seal ring 3 is made of a hard material such as ceramics such as WC and SiC and cemented carbide, and as shown in FIG. 1, one side end face (upper end face) facing the stationary seal ring 4 is orthogonal to the axis. It is comprised by the sealing end surface 3a which is a smooth plane. The sealed end surface 3a is formed with a dynamic pressure generating groove 3b having an appropriate shape such as a spiral opening to the outer peripheral portion facing the sealed fluid region H. By the action of the dynamic pressure generating groove 3b, both Along with the relative rotation of the sealing rings 3 and 4, a dynamic pressure is generated between the sealing end surfaces 3a and 4a to keep the sealing end surfaces 3a and 4a in a non-contact state in which a fluid film is formed. Thus, in the formation portion of the fluid film, the space between the sealed fluid region H that is the outer peripheral side region of the sealed end surfaces 3a and 4a and the non-sealed fluid region L that is the inner peripheral side region are sealed. ing.

静止密封環4は回転密封環3の構成材より軟質の材料(この例では、カーボン)で構成されたもので、図1に示す如く、回転密封環5に対向する一側端面(下端面)は軸線に直交する平滑平面である密封端面4aに構成されている。この静止密封環4は、図1に示す如く、シールケース2のガイド部2aに極く微小な隙間を有する状態で軸線方向移動自在に内嵌保持されている。すなわち、静止密封環4の背面側(上面側)における外周部分及び内周部分には夫々環状凸部4b及び環状凹部4cが形成されていて、環状凸部4bを、例えばJIS−B0401にいう「すき間ばめ」程度の寸法公差をもってガイド部2aに嵌合させることによって、環状凸部4bの外周面とガイド部2aの内周面との間に、静止密封環4の径方向変位を可及的に阻止するも、その軸線方向移動並びに流体の通過を許容する、極く微小な隙間が形成されるようになっている。   The stationary seal ring 4 is made of a material softer than the constituent material of the rotary seal ring 3 (in this example, carbon). As shown in FIG. 1, one side end face (lower end face) facing the rotary seal ring 5 is used. Is formed on the sealed end face 4a, which is a smooth plane orthogonal to the axis. As shown in FIG. 1, the stationary seal ring 4 is fitted and held in the guide portion 2a of the seal case 2 so as to be movable in the axial direction with a very small gap. That is, an annular convex portion 4b and an annular concave portion 4c are formed on the outer peripheral portion and the inner peripheral portion on the back side (upper surface side) of the stationary seal ring 4, respectively. The annular convex portion 4b is referred to as, for example, JIS-B0401. By fitting the guide portion 2a with a dimensional tolerance of “clearance fit”, the radial displacement of the stationary seal ring 4 is possible between the outer peripheral surface of the annular convex portion 4b and the inner peripheral surface of the guide portion 2a. Even if it is blocked, a very small gap is formed to allow the movement in the axial direction and the passage of fluid.

保持環5は、図1に示す如く、円筒状の被保持部5aとその先端側(下端側)に形成された円環状の押圧部5bとを備えた断面L字形状に成形されている。この保持環5は、図1に示す如く、被保持部5aをシールケース2のリテーナ部2bの内周部にOリング7を介して嵌挿保持させることによって、シールケース2に、これとの間を二次シールさせた状態で、軸線方向(上下方向)に移動可能に保持されている。保持環5は、静止密封環4の構成材であるカーボンと熱膨張係数及び/又はヤング率が近似する金属材で構成されるが、この例では、熱膨張係数及びヤング率の何れもが一般的な保持環構成材であるステンレス鋼に比してカーボン(熱膨張係数:4×10−6〜5×10−6mm/℃,ヤング率:2500kg/mm)に近似するチタン(熱膨張係数:8×10−6mm/℃,ヤング率(11000kg/mm)で構成してある。 As shown in FIG. 1, the holding ring 5 is formed in an L-shaped cross section including a cylindrical held portion 5 a and an annular pressing portion 5 b formed on the tip side (lower end side) thereof. As shown in FIG. 1, the retaining ring 5 is inserted into and held by the inner peripheral portion of the retainer portion 2b of the seal case 2 via an O-ring 7 so that the seal case 2 It is held so as to be movable in the axial direction (vertical direction) in a state where the space is secondarily sealed. The retaining ring 5 is made of a metal material whose thermal expansion coefficient and / or Young's modulus is similar to that of carbon, which is a constituent material of the stationary sealing ring 4. In this example, both the thermal expansion coefficient and Young's modulus are generally used. Titanium (thermal expansion coefficient) similar to carbon (thermal expansion coefficient: 4 × 10 −6 to 5 × 10 −6 mm / ° C., Young's modulus: 2500 kg / mm 2 ) compared to stainless steel, which is a typical retaining ring component Coefficient: 8 × 10 −6 mm / ° C., Young's modulus (11000 kg / mm 2 )

なお、静止密封環4は、図1に示す如く、これに形成した凹部4dに保持環5の押圧部5bに植設せる適当数のドライブピン(1本のみ図示)8aを突入係合させておくことにより、保持環5に対して相対回転不能とされている。また、保持環5は、図1に示す如く、これに植設せる適当数のドライブピン(1本のみ図示)8bをシールケース2のリテーナ部2bに形成した凹部2cに突入係合させておくことにより、シールケース2に対して相対回転不能とされている。   As shown in FIG. 1, the stationary seal ring 4 has a recess 4d formed therein and an appropriate number of drive pins (only one shown) 8a that can be implanted in the pressing portion 5b of the holding ring 5 are inserted and engaged. Thus, relative rotation with respect to the holding ring 5 is impossible. In addition, as shown in FIG. 1, the retaining ring 5 has a suitable number of drive pins (only one shown) 8b that can be implanted in the retaining ring 5 inserted into a recess 2c formed in the retainer portion 2b of the seal case 2. Thus, relative rotation with respect to the seal case 2 is impossible.

スプリング部材6は、図1に示す如く、適当数のコイルスプリング(1個のみ図示)をシールケース2のリテーナ部2bと保持環5の押圧部5bとの間に介装してなり、保持環5を軸線方向において回転密封環3に向かう方向に押圧附勢する。   As shown in FIG. 1, the spring member 6 includes an appropriate number of coil springs (only one is shown) interposed between the retainer portion 2 b of the seal case 2 and the pressing portion 5 b of the holding ring 5. 5 is pressed and urged in a direction toward the rotary seal ring 3 in the axial direction.

静止密封環4と保持環5とは、図1に示す如く、両環4,5の軸線方向における対向端面4e,5c間にOリング9を介在させることによって、二次シールされた非接触状態で連結されている。   As shown in FIG. 1, the stationary sealing ring 4 and the holding ring 5 are in a non-contact state in which the O-ring 9 is interposed between the opposing end faces 4e and 5c in the axial direction of the rings 4 and 5, and is secondarily sealed. It is connected with.

すなわち、保持環5の前面つまり押圧部5bの前面5cに同心の環状溝5dを形成し、この環状溝5dにOリング9を若干突出させた状態で嵌合保持させることによって、静止密封環4を、スプリング部材6による附勢作用と相俟って、保持環5との間に適当なクリアランスを有したシール状態で、回転密封環3へと押圧させるべく附勢保持せしめている。なお、押圧部5bの前面5cには、図1に示す如く、静止密封環4の内周側空間つまり環状凹部4cへと遊嵌状に突入する円環状のOリング保持部5eが突設されている。Oリング9は、径方向において、被密封流体領域Hの流体圧力によってOリング保持部5e(環状溝5dの内径側壁面部)に押圧接触された状態であって環状溝5dの外径側壁面部5fには非接触の状態で保持される。すなわち、静止密封環4と保持環5とは、第2従来シールと同様に、当該両環4,5の相対回転をドライブピン9により阻止した状態で且つ両環4,5の対向端面4e,5cがOリング11を介して押圧接触される状態で連結されている。なお、環状凹部4cとOリング保持部5eとの径方向隙間は、両部4c,5eが両環4,5の歪によっては干渉しない範囲で可及的に小さく設定しておくことが好ましい。   That is, a concentric annular groove 5d is formed on the front surface of the holding ring 5, that is, the front surface 5c of the pressing portion 5b, and the O-ring 9 is slightly protruded and held in this annular groove 5d. In combination with the urging action by the spring member 6, the urging force is held to be pressed against the rotary sealing ring 3 in a sealed state having an appropriate clearance with the holding ring 5. As shown in FIG. 1, an annular O-ring holding portion 5e is provided on the front surface 5c of the pressing portion 5b. The annular O-ring holding portion 5e projects into the inner peripheral space of the stationary seal ring 4, that is, the annular recess 4c. ing. The O-ring 9 is pressed against the O-ring holding portion 5e (inner diameter side wall surface portion of the annular groove 5d) by the fluid pressure in the sealed fluid region H in the radial direction, and the outer diameter side wall surface portion 5f of the annular groove 5d. Is held in a non-contact state. That is, the stationary seal ring 4 and the holding ring 5 are in the state in which the relative rotation of the rings 4 and 5 is blocked by the drive pin 9 and the opposite end faces 4e and 4e of the rings 4 and 5 are the same as in the second conventional seal. 5c is connected in a state of being pressed and contacted via the O-ring 11. The radial clearance between the annular recess 4c and the O-ring holding portion 5e is preferably set as small as possible so long as the portions 4c and 5e do not interfere with each other due to distortion of the rings 4 and 5.

以上のように構成された非接触形メカニカルシールにあっては、静止密封環4と保持環5とが、それらの径方向歪がOリング9を介して相互に干渉する状態で連結されており、冒頭で述べた第2従来シールと同様の問題が生じる虞れがある。しかし、保持環5が静止密封環4の構成材たるカーボンと熱膨張係数及びヤング率が近似するチタンで構成されているから、被密封流体の温度及び/又は圧力が大きく変動する場合にも、両環4,5の径方向における熱歪量差及び/又は圧力歪量差が小さく、両環4,5とOリング9との接触点における径方向での相対変位が僅かであり、Oリング9の弾性変形で吸収される程度となり、両環4,5の対向端面4e,5c間に挟圧されたOリング9に回転力を与えることがなく、第2従来シールにおける如き問題を生じることがない。すなわち、昇温時及び/又は降圧時において図6(A)に示す如きモーメントM1が生じることがなく、また降温時及び/又は昇圧時において同図(B)に示す如きモーメントM2が作用することがない。したがって、被密封流体の温度や圧力が大きく変動する高温条件下や高圧条件下で使用した場合にも、静止密封環4が傾くようなことがなく、その密封端面4aの平面度や相手密封端面3aとの平行度,同心度が損なわれず適正に保持され、非接触形メカニカルシールによるシール機能(ノンコタクトシール機能)が良好に発揮される。   In the non-contact type mechanical seal configured as described above, the stationary seal ring 4 and the holding ring 5 are connected in a state where their radial strains interfere with each other via the O-ring 9. There is a possibility that the same problem as the second conventional seal described at the beginning may occur. However, since the retaining ring 5 is composed of carbon, which is a constituent material of the stationary sealing ring 4, and titanium whose thermal expansion coefficient and Young's modulus are close to each other, even when the temperature and / or pressure of the fluid to be sealed varies greatly, The difference in thermal strain and / or pressure strain in the radial direction of both rings 4 and 5 is small, and the relative displacement in the radial direction at the contact point between both rings 4 and 5 and the O-ring 9 is slight. 9 is absorbed by the elastic deformation of the ring 9, and no rotational force is applied to the O-ring 9 sandwiched between the opposed end faces 4e and 5c of the rings 4 and 5, causing problems as in the second conventional seal. There is no. That is, the moment M1 as shown in FIG. 6 (A) does not occur when the temperature is raised and / or lowered, and the moment M2 as shown in FIG. 6 (B) acts when the temperature is lowered and / or raised. There is no. Therefore, even when used under high temperature conditions or high pressure conditions where the temperature and pressure of the fluid to be sealed fluctuate greatly, the stationary sealing ring 4 does not tilt, and the flatness of the sealed end face 4a and the mating sealed end face The parallelism and concentricity with 3a are maintained properly without being impaired, and the sealing function (non-contact sealing function) by the non-contact type mechanical seal is satisfactorily exhibited.

ところで、保持環4の構成材であるチタンは、一般的な保持環構成材であるステンレス鋼より軽比重である(例えば、SUS316の比重が7.88であるのに対し、チタンの比重は4.51である)から、形状を同一とした場合、チタン製の保持環5は、ステンレス鋼製の一般的な保持環に比して、大幅に軽量化される。したがって、回転軸1が低速回転する条件下や機器振動等の外乱要因がある条件下においても、保持環5の軸線方向移動が円滑に行われ、その結果、静止密封環4の追従動作が円滑に行われ、密封端面3a,4a間を適正な非接触状態に保持することができる。かかる点は、特に、図1に示す如く、静止密封環4が回転密封環3の上方に位置する縦型の非接触形メカニカルシールにあっては、適正なシール機能を発揮する上で大きなメリットとなる。すなわち、かかる縦型の非接触形メカニカルシールにおいては、保持環5の重量が密封端面3a,4a間を閉じる方向に作用する閉力として機能することになるが、上記した如く保持環5が軽量化されているために、保持環5の重量が密封端面3a,4a間に発生する動圧とのバランスを損なうようなことがなく、密封端面3a,4a間を適正な非接触状態に保持することができる。   By the way, titanium which is a constituent material of the retaining ring 4 has lighter specific gravity than stainless steel which is a general retaining ring constituent material (for example, the specific gravity of titanium is 4.88 while the specific gravity of SUS316 is 7.88). When the shape is the same, the titanium retaining ring 5 is significantly lighter than a typical stainless steel retaining ring. Therefore, the axial movement of the retaining ring 5 is performed smoothly even under conditions where the rotating shaft 1 rotates at a low speed and there are disturbance factors such as equipment vibrations. As a result, the follow-up operation of the stationary sealing ring 4 is smooth. The sealing end surfaces 3a and 4a can be maintained in an appropriate non-contact state. In particular, as shown in FIG. 1, in the case of a vertical non-contact type mechanical seal in which the stationary seal ring 4 is positioned above the rotary seal ring 3, a great merit is exhibited in order to perform an appropriate sealing function. It becomes. That is, in such a vertical non-contact mechanical seal, the weight of the retaining ring 5 functions as a closing force that acts in the direction of closing between the sealed end faces 3a and 4a. However, as described above, the retaining ring 5 is lightweight. Therefore, the weight of the holding ring 5 does not impair the balance with the dynamic pressure generated between the sealed end surfaces 3a and 4a, and the sealed end surfaces 3a and 4a are held in an appropriate non-contact state. be able to.

したがって、上記した構成の非接触形メカニカルシールによれば、温度や圧力が大きく変動するような条件下や低速回転等により静止密封環4の回転密封環3からの動圧による離間作用(浮上作用)が困難である条件下においても、密封端面3a,4a間を適正な非接触状態に保持することができ、良好且つ安定したシール機能を発揮することができる。   Therefore, according to the non-contact type mechanical seal having the above-described configuration, the separation action (the levitation action) of the stationary seal ring 4 due to the dynamic pressure from the rotary seal ring 3 under the condition that the temperature and the pressure greatly fluctuate or under low speed rotation. ) Can be maintained in an appropriate non-contact state between the sealed end faces 3a and 4a, and a good and stable sealing function can be exhibited.

また、図2は本発明に係るメカニカルシールの第2の実施の形態を示す縦断側面図であり、この実施の形態におけるメカニカルシールは、図2に示す如く、回転機器ハウジングの軸封部(図示せず)に取り付けられたシールケース22と、回転軸21に固定された第1密封環たる回転密封環23と、シールケース22に軸線方向移動可能に保持された保持環25と、シールケース22と保持環5との間に介装されたスプリング部材26と、シールケース22に保持環25を介して軸線方向移動可能に保持されると共にスプリング部材26により回転密封環23へと押圧接触された第2密封環たる静止密封環24と、を具備して、両密封環23,24の対向端面たる密封端面23a,24aの相対回転摺接作用により、当該回転機器の機内領域である被密封流体領域(例えばポンプ室)Hと機外領域である非密封流体領域(例えばポンプ室外の大気領域)Lとを遮蔽するように構成された端面接触形メカニカルシールである。   FIG. 2 is a longitudinal side view showing a second embodiment of the mechanical seal according to the present invention. The mechanical seal in this embodiment is a shaft seal portion (see FIG. 2) of the rotary device housing as shown in FIG. A seal case 22 attached to the rotary shaft 21, a rotary seal ring 23 as a first seal ring fixed to the rotary shaft 21, a holding ring 25 held by the seal case 22 so as to be movable in the axial direction, and a seal case 22 The spring member 26 interposed between the holding ring 5 and the seal case 22 is held by the holding ring 25 so as to be movable in the axial direction, and pressed against the rotary sealing ring 23 by the spring member 26. A stationary sealing ring 24 as a second sealing ring, and an in-machine region of the rotating device by a relative rotational sliding contact action of the sealing end surfaces 23a and 24a as opposed end surfaces of both sealing rings 23 and 24. Is there the sealed fluid region (e.g. the pump chamber) H and a non-sealed fluid region (for example, atmospheric region of the pump outdoor) L and configured end surface contact type mechanical seal to shield which is outside the region.

シールケース22は、図2に示す如く、円筒構造体であってステンレス鋼等の金属材で構成されている。回転軸1は、シールケース22を同心状に貫通する。   As shown in FIG. 2, the seal case 22 is a cylindrical structure and is made of a metal material such as stainless steel. The rotating shaft 1 passes through the seal case 22 concentrically.

回転密封環23はWC,SiC等のセラミックスや超硬合金等の硬質材で構成されたもので、回転軸21にスリーブ21a,21bを介して固定されている。回転密封環23の一側端面は軸線に直交する平滑平面である密封端面23aに構成されている。   The rotary seal ring 23 is made of a hard material such as ceramics such as WC or SiC or cemented carbide, and is fixed to the rotary shaft 21 via sleeves 21a and 21b. One side end face of the rotary sealing ring 23 is configured as a sealing end face 23a which is a smooth plane orthogonal to the axis.

静止密封環24は回転密封環23の構成材より軟質の材料(この例では、カーボン)で構成されたもので、後述する如く、保持環25にこれとの対向端面24b,25aが直接に押圧接触された状態で連結されている。静止密封環24の一側端面は軸線に直交する平滑平面たる密封端面24aに構成されている。   The stationary seal ring 24 is made of a softer material (carbon in this example) than the constituent material of the rotary seal ring 23. As will be described later, the opposite end faces 24b and 25a of the holding ring 25 are directly pressed against the holding ring 25. They are connected in contact. One end face of the stationary sealing ring 24 is formed as a sealing end face 24a which is a smooth plane perpendicular to the axis.

スプリング部材26は、図2に示す如く、適当数のコイルスプリング(1個のみ図示)をシールケース22と保持環25との間に介装してなり、保持環25を軸線方向において回転密封環23に向かう方向に押圧附勢することにより、静止密封環24を回転密封環23に押圧接触させるものである。   As shown in FIG. 2, the spring member 26 includes an appropriate number of coil springs (only one is shown) interposed between the seal case 22 and the holding ring 25, and the holding ring 25 is rotated and sealed in the axial direction. By pressing and energizing in the direction toward 23, the stationary seal ring 24 is brought into press contact with the rotary seal ring 23.

保持環25は、図2に示す如く、断面L字形状の円環状体であり、シールケース22にOリング27を介して軸線方向に移動可能に保持されている。なお、シールケース22に対する保持環25の相対回転は、図1に示す如く、保持環25に植設せる適当数のドライブピン(1本のみ図示)28aをシールケース2に形成した凹部22aに突入係合させておくことにより阻止されている。   As shown in FIG. 2, the holding ring 25 is an annular body having an L-shaped cross section, and is held by the seal case 22 via an O-ring 27 so as to be movable in the axial direction. The relative rotation of the holding ring 25 with respect to the seal case 22 rushes into a recess 22a formed in the seal case 2 with an appropriate number of drive pins (only one shown) 28a that can be implanted in the holding ring 25 as shown in FIG. It is blocked by keeping it engaged.

保持環25の外周部にはOリング29aを介して連結環29が嵌合固定されており、この連結環29にOリング29bを介して静止密封環24を内嵌保持させることにより、両環24,25を対向端面24b,25aが直接に押圧接触された状態に連結している。連結環29は両環24,25を軸線方向に分離不能に連結するためのものであり、連結環29に対する静止密封環24の相対回転は、図2に示す如く、保持環25に植設せる適当数のドライブピン(1本のみ図示)28bを静止密封環24に形成した凹部24cに突入係合させておくことにより阻止されている。なお、Oリング29bは、静止密封環24と連結環29との間を二次シールすると共に、両環24,29間に径方向歪量の差が生じた場合においてこれを吸収して連結環29の歪が静止密封環24に与える影響を排除する。   A connecting ring 29 is fitted and fixed to the outer peripheral portion of the holding ring 25 via an O-ring 29a, and the stationary sealing ring 24 is internally fitted and held by the connecting ring 29 via an O-ring 29b. 24 and 25 are connected in a state where the opposed end faces 24b and 25a are directly pressed and contacted. The connecting ring 29 is used to connect the rings 24 and 25 in an axially inseparable manner, and relative rotation of the stationary sealing ring 24 with respect to the connecting ring 29 can be implanted in the holding ring 25 as shown in FIG. An appropriate number of drive pins (only one is shown) 28b is blocked by plunging into a recess 24c formed in the stationary seal ring 24. The O-ring 29b provides a secondary seal between the stationary seal ring 24 and the connection ring 29, and absorbs the difference in radial strain between the rings 24 and 29 to absorb the connection ring. The effect of 29 strain on the stationary seal ring 24 is eliminated.

而して、保持環25は、静止密封環4の構成材であるカーボンと熱膨張係数及び/又はヤング率が近似する金属材で構成されるが、この例では、第1の実施の形態における保持環5と同様に、熱膨張係数及びヤング率の何れもが一般的な保持環構成材(ステンレス鋼)に比してカーボンに近似するチタンで構成してある。なお、静止密封環24と連結環29との間に径方向歪量の差が生じた場合、それはOリング29bによって吸収されることから、両環24,29が異質材で構成されることによる弊害(径方向歪の相互干渉による弊害)は生じることがない。したがって、連結環29の構成材は静止密封環24の構成材との関係(特に、熱膨張係数及び/又はヤング率との関係)を考慮する必要がなく、一般に、ステンレス鋼等の金属材で構成しておくことができるが、この例では、保持環25と同質のチタンで構成してある。このように連結環29を保持環25と同質のチタンで構成しておくことにより、仮に静止密封環24が連結環29に密に内嵌されている場合にも両環24,29の径方向歪が相互干渉することによる弊害は回避される。   Thus, the retaining ring 25 is made of a metal material whose thermal expansion coefficient and / or Young's modulus is close to that of carbon, which is a constituent material of the stationary sealing ring 4. In this example, the retaining ring 25 is the same as that of the first embodiment. Similar to the retaining ring 5, both the thermal expansion coefficient and the Young's modulus are made of titanium that approximates carbon as compared with a general retaining ring component (stainless steel). In addition, when a difference in radial strain occurs between the stationary seal ring 24 and the connecting ring 29, it is absorbed by the O-ring 29b, so that both the rings 24 and 29 are made of different materials. Defects (defects due to mutual interference of radial strains) do not occur. Therefore, it is not necessary to consider the relationship (particularly, the relationship with the thermal expansion coefficient and / or Young's modulus) of the constituent material of the connecting ring 29 with the constituent material of the stationary seal ring 24, and generally a metal material such as stainless steel. In this example, it is made of the same titanium as the retaining ring 25. In this way, the connecting ring 29 is made of the same titanium as the holding ring 25, so that the radial direction of both rings 24 and 29 is provided even when the stationary sealing ring 24 is closely fitted in the connecting ring 29. Detrimental effects caused by mutual interference of distortions are avoided.

ところで、静止密封環24と保持環25との連結は、上記した連結環29を使用することなく行うようにしてもよい。例えば、図3に示す如く、静止密封環24を、スプリング部材26の附勢力により、回転密封環23と保持環25との間に挟圧させることにより、対向端面24b,25aが直接押圧接触した状態で保持環25に連結させておくのである。この場合、両環24,25の相対回転を上記したドライブピン28bに阻止させておくと共に、両環24,25の接触面24b,25b間をOリング29cにより二次シールしておく。   By the way, the stationary sealing ring 24 and the holding ring 25 may be coupled without using the coupling ring 29 described above. For example, as shown in FIG. 3, the opposing end faces 24 b and 25 a are brought into direct pressing contact by causing the stationary seal ring 24 to be clamped between the rotary seal ring 23 and the holding ring 25 by the biasing force of the spring member 26. In this state, it is connected to the holding ring 25. In this case, the relative rotation of both rings 24 and 25 is prevented by the drive pin 28b, and the contact surfaces 24b and 25b of both rings 24 and 25 are secondarily sealed by an O-ring 29c.

以上のように構成された端面接触形メカニカルシールにあっては、図2又は図3に示す如く、異質材で構成される静止密封環24と保持環25とが、その対向端面24b,25aで直接に押圧接触する状態、つまり両環24,25の径方向歪が相互に干渉する状態で連結されているため、冒頭で述べた第1従来シールと同様の問題が生じる虞れがある。しかし、保持環25が静止密封環24の構成材たるカーボンと熱膨張係数及びヤング率が近似するチタンで構成されているから、被密封流体の温度及び/又は圧力が大きく変動する場合にも、両環24,25の径方向における熱歪量差及び/又は圧力歪量差が小さく、両環24,25の接触部分24b,25aにおける径方向での相対変位が僅かであり、第1従来シールにおける如き問題を生じることがない。すなわち、昇温時及び/又は降圧時において図6(A)に示す如きモーメントM1が生じることがなく、また降温時及び/又は昇圧時において同図(B)に示す如きモーメントM2が作用することがない。したがって、被密封流体の温度及び/又は圧力が大きく変動する条件で使用した場合にも、静止密封環4が傾くようなことがなく、その密封端面24aの平面度や相手密封端面23aとの平行度,同心度が損なわれず適正に保持され、端面接触形メカニカルシールによるシール機能が良好に発揮される。   In the end surface contact type mechanical seal configured as described above, as shown in FIG. 2 or FIG. 3, the stationary sealing ring 24 and the holding ring 25 made of different materials are provided at the opposite end surfaces 24b and 25a. Since they are connected in a state where they are in direct pressing contact, that is, in a state where the radial strains of both rings 24 and 25 interfere with each other, there is a possibility that problems similar to those of the first conventional seal described at the beginning may occur. However, since the retaining ring 25 is made of carbon, which is a constituent material of the stationary sealing ring 24, and titanium whose thermal expansion coefficient and Young's modulus are close to each other, even when the temperature and / or pressure of the sealed fluid greatly varies, The difference in thermal strain and / or pressure strain in the radial direction of both rings 24 and 25 is small, and the relative displacement in the radial direction in the contact portions 24b and 25a of both rings 24 and 25 is slight. This causes no problems. That is, the moment M1 as shown in FIG. 6 (A) does not occur when the temperature is raised and / or lowered, and the moment M2 as shown in FIG. 6 (B) acts when the temperature is lowered and / or raised. There is no. Therefore, even when used under conditions in which the temperature and / or pressure of the fluid to be sealed fluctuates greatly, the stationary sealing ring 4 does not tilt, and the flatness of the sealed end surface 24a and the parallel with the mating sealed end surface 23a are avoided. The degree of concentricity and the degree of concentricity are maintained properly and the sealing function by the end face contact type mechanical seal is exhibited well.

なお、本発明のメカニカルシールは上記した実施の形態に限定されるものでなく、本発明の基本原理を逸脱しない範囲において適宜に改良,変更することができる。   The mechanical seal of the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention.

例えば、本発明は、上記した非接触形メカニカルシール又は端面接触形メカニカルシールに適用できる他、一方の密封環を貫通するシールガス供給路から密封端面間に被密封流体より高圧のシールガスを供給することによって、両密封環の密封端面がその間に発生させたシールガスによる静圧により非接触に保持された状態で相対回転するように構成された静圧形の非接触形メカニカルシールに適用することも可能であり、更には、一方の密封端面に動圧発生溝を形成しておくことによって、両密封環の密封端面がその間に発生させたシールガスによる静圧及び被密封流体による動圧により非接触に保持された状態で相対回転するように構成された動圧形且つ静圧形の非接触形メカニカルシールにも適用することが可能である。また、本発明は、非接触形であると端面接触形とを問わず、静止密封環と保持環とが、図1に示す如くOリングを介して間接的に押圧接触するように構成されたメカニカルシール及び図2又は図3に示す如くOリングを介することなく直接的に押圧接触するように構成されたメカニカルシールの何れにおいても適用することができる。   For example, the present invention can be applied to the above-described non-contact type mechanical seal or end face contact type mechanical seal, and supplies a seal gas having a pressure higher than that of the sealed fluid from a seal gas supply path that penetrates one seal ring to the sealed end face. By doing so, the sealing end surfaces of both sealing rings are applied to a static pressure type non-contact type mechanical seal configured to rotate relative to each other while being held in a non-contact state by a static pressure generated by a seal gas generated between them. Furthermore, by forming a dynamic pressure generating groove on one sealed end face, static pressure due to the seal gas generated between the sealed end faces of both seal rings and dynamic pressure due to the sealed fluid Therefore, the present invention can also be applied to a dynamic pressure type and a static pressure type non-contact type mechanical seal configured to rotate relative to each other while being held in a non-contact state. In addition, the present invention is configured such that the stationary sealing ring and the holding ring are indirectly in contact with each other via the O-ring as shown in FIG. The present invention can be applied to either a mechanical seal or a mechanical seal configured to be in direct pressing contact without an O-ring as shown in FIG. 2 or FIG.

本発明に係るメカニカルシールの第1の実施の形態を示す縦断側面図である。It is a vertical side view which shows 1st Embodiment of the mechanical seal which concerns on this invention. 本発明に係るメカニカルシールの第2の実施の形態を示す縦断側面図である。It is a vertical side view which shows 2nd Embodiment of the mechanical seal which concerns on this invention. 第2の実施の形態における変形例を示す図2相当の縦断側面図である。It is a vertical side view equivalent to FIG. 2 which shows the modification in 2nd Embodiment. 第1従来シールを示す縦断側面図である。It is a vertical side view which shows a 1st conventional seal | sticker. 図4の要部を拡大して示す作用説明図である。FIG. 5 is an operation explanatory diagram showing an enlarged main part of FIG. 4. 第2従来シールを示す縦断側面図である。It is a vertical side view which shows a 2nd conventional seal | sticker. 図6の要部を拡大して示す作用説明図である。FIG. 7 is an operation explanatory diagram showing an enlarged main part of FIG. 6.

符号の説明Explanation of symbols

1 回転軸
2 シールケース
3 回転密封環(第1密封環)
3a 回転密封環の密封端面(第1密封環の密封端面)
4 静止密封環(第2密封環)
4a 静止密封環の密封端面(第2密封環の密封端面)
4e 静止密封環(第2密封環)における保持環との対向端面
5c 保持環における静止密封環(第2密封環)との対向端面
5 保持環
6 スプリング部材
9 Oリング
21 回転軸
22 シールケース
23 回転密封環(第1密封環)
23a 回転密封環の密封端面(第1密封環の密封端面)
24 静止密封環(第2密封環)
24a 静止密封環の密封端面(第2密封環の密封端面)
24b 静止密封環(第2密封環)における保持環との対向端面
25 保持環
25a 保持環における静止密封環(第2密封環)との対向端面
26 スプリング部材
H 被密封流体領域
L 非密封流体領域
1 Rotating shaft 2 Seal case 3 Rotating seal ring (first seal ring)
3a Sealing end face of the rotating sealing ring (sealing end face of the first sealing ring)
4 Static seal ring (second seal ring)
4a Sealing end face of stationary sealing ring (sealing end face of second sealing ring)
4e End face of the stationary seal ring (second seal ring) facing the holding ring 5c End face of the holding ring facing the stationary seal ring (second seal ring) 5 Holding ring 6 Spring member 9 O-ring 21 Rotating shaft 22 Seal case 23 Rotating seal ring (first seal ring)
23a Sealing end face of the rotating sealing ring (sealing end face of the first sealing ring)
24 Static seal ring (second seal ring)
24a Sealing end face of stationary sealing ring (sealing end face of second sealing ring)
24b End face facing the holding ring in the stationary sealing ring (second sealing ring) 25 Holding ring 25a End face facing the stationary sealing ring (second sealing ring) in the holding ring 26 Spring member H Sealed fluid region L Non-sealing fluid region

Claims (6)

シールケース及びこれを洞貫する回転軸の一方に固定された第1密封環とその他方に保持環を介して軸線方向移動可能且つ相対回転不能に保持された第2密封環との対向端面の相対回転部分において被密封流体をシールするように構成されたメカニカルシールであって、保持環と第2密封環とがそれらの径方向歪が相互に干渉する状態で連結されているメカニカルシールにおいて、
保持環を第2密封環の構成材と熱膨張係数及び/又はヤング率が近似する金属材で構成したことを特徴とするメカニカルシール。
A seal case and a first seal ring fixed to one of the rotating shafts penetrating the seal case, and an opposite end face of the second seal ring that is axially movable and non-rotatably supported through the holding ring on the other side. In the mechanical seal configured to seal the sealed fluid in the relative rotating portion, wherein the holding ring and the second sealing ring are connected in a state where their radial strains interfere with each other,
A mechanical seal, wherein the retaining ring is made of a metal material having a thermal expansion coefficient and / or a Young's modulus that is similar to the constituent material of the second sealing ring.
両密封環の対向端面たる密封端面がその間に発生させた動圧及び/又は静圧により非接触に保持された状態で相対回転するように構成された非接触形メカニカルシールであることを特徴とする、請求項1に記載するメカニカルシール。   It is a non-contact type mechanical seal configured so as to rotate relative to each other in a state in which the sealing end faces as opposed end faces of both sealing rings are held in non-contact by dynamic pressure and / or static pressure generated therebetween. The mechanical seal according to claim 1. 両密封環の対向端面たる密封端面が接触する状態で相対回転するように構成された端面接触形メカニカルシールであることを特徴とする、請求項1に記載するメカニカルシール。   2. The mechanical seal according to claim 1, wherein the mechanical seal is an end surface contact type mechanical seal configured to rotate relative to each other in a state where the sealing end surfaces as opposed end surfaces of both sealing rings are in contact with each other. 保持環と第2密封環との連結が、これら両環の対向端面を直接に押圧接触させることにより行なわれていることを特徴とする、請求項1〜3の何れかに記載するメカニカルシール。   The mechanical seal according to any one of claims 1 to 3, wherein the holding ring and the second sealing ring are connected by directly pressing and contacting the opposed end faces of both rings. 保持環と第2密封環との連結が、これら両環の対向端面をOリングを介して押圧接触させることにより行なわれていることを特徴とする、請求項1〜3の何れかに記載するメカニカルシール。   The connection between the holding ring and the second sealing ring is performed by pressing and contacting the opposing end faces of both rings via an O-ring. mechanical seal. 第2密封環がカーボン製のものである場合において、保持環がチタンで構成されていることを特徴とする、請求項1〜5の何れかに記載するメカニカルシール。 The mechanical seal according to any one of claims 1 to 5, wherein the holding ring is made of titanium when the second sealing ring is made of carbon.
JP2007190907A 2007-07-23 2007-07-23 Mechanical seal Pending JP2009024836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007190907A JP2009024836A (en) 2007-07-23 2007-07-23 Mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007190907A JP2009024836A (en) 2007-07-23 2007-07-23 Mechanical seal

Publications (1)

Publication Number Publication Date
JP2009024836A true JP2009024836A (en) 2009-02-05

Family

ID=40396816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007190907A Pending JP2009024836A (en) 2007-07-23 2007-07-23 Mechanical seal

Country Status (1)

Country Link
JP (1) JP2009024836A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209937A (en) * 2009-03-06 2010-09-24 Nippon Pillar Packing Co Ltd Contact type mechanical seal
CN103487212A (en) * 2013-09-11 2014-01-01 清华大学 Axis adjustable vertical type mechanical seal test stand
JP2018100685A (en) * 2016-12-19 2018-06-28 イーグル工業株式会社 Detent mechanism
WO2020054842A1 (en) 2018-09-14 2020-03-19 イーグルブルグマンジャパン株式会社 Vertical sealing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262059A (en) * 1985-09-09 1987-03-18 Eagle Ind Co Ltd Mechanical seal
JPH04296259A (en) * 1991-03-25 1992-10-20 Nippon Pillar Packing Co Ltd Noncontact sealing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262059A (en) * 1985-09-09 1987-03-18 Eagle Ind Co Ltd Mechanical seal
JPH04296259A (en) * 1991-03-25 1992-10-20 Nippon Pillar Packing Co Ltd Noncontact sealing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209937A (en) * 2009-03-06 2010-09-24 Nippon Pillar Packing Co Ltd Contact type mechanical seal
CN103487212A (en) * 2013-09-11 2014-01-01 清华大学 Axis adjustable vertical type mechanical seal test stand
JP2018100685A (en) * 2016-12-19 2018-06-28 イーグル工業株式会社 Detent mechanism
WO2020054842A1 (en) 2018-09-14 2020-03-19 イーグルブルグマンジャパン株式会社 Vertical sealing device

Similar Documents

Publication Publication Date Title
JPH083763Y2 (en) Non-contact mechanical seal
JP2009024836A (en) Mechanical seal
JP2013194899A (en) Cartridge type mechanical seal
WO2016143485A1 (en) Floating ring mechanical seal
JP4724727B2 (en) mechanical seal
JPH0560247A (en) Noncontact type mechanical seal
JP6087439B2 (en) Tandem double seal for nuclear power plant
JP2003214541A (en) Seal device
JP4528762B2 (en) Non-contact mechanical seal
GB2415020A (en) A mechanical seal with a central component
JP5364727B2 (en) Contamination seal device
JP2009103242A (en) Ball valve
JP4724699B2 (en) Non-contact mechanical seal
JP5153731B2 (en) mechanical seal
JP2843973B2 (en) Non-contact type mechanical seal
JP2700868B2 (en) Non-contact type mechanical seal
JP2994270B2 (en) Non-contact type mechanical seal
JPH04296259A (en) Noncontact sealing device
JP6022385B2 (en) mechanical seal
JP5611692B2 (en) End face contact type mechanical seal with counter pressure structure
JP6446296B2 (en) Non-contact gas seal
JP6708496B2 (en) mechanical seal
JPH0574750B2 (en)
JP2513028Y2 (en) Non-contact type shaft seal device
JP6742232B2 (en) Non-rotating mechanism

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20100630

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Effective date: 20100913

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20101116

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110513