JP2513028Y2 - Non-contact type shaft seal device - Google Patents

Non-contact type shaft seal device

Info

Publication number
JP2513028Y2
JP2513028Y2 JP9795490U JP9795490U JP2513028Y2 JP 2513028 Y2 JP2513028 Y2 JP 2513028Y2 JP 9795490 U JP9795490 U JP 9795490U JP 9795490 U JP9795490 U JP 9795490U JP 2513028 Y2 JP2513028 Y2 JP 2513028Y2
Authority
JP
Japan
Prior art keywords
seal
gap
contact type
sealed space
spiral groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9795490U
Other languages
Japanese (ja)
Other versions
JPH0454366U (en
Inventor
徹 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP9795490U priority Critical patent/JP2513028Y2/en
Publication of JPH0454366U publication Critical patent/JPH0454366U/ja
Application granted granted Critical
Publication of JP2513028Y2 publication Critical patent/JP2513028Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、ポンプ、圧縮機等の回転機器の軸封部に装
着され、シール面を非接触状態とした軸封装置を改良す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is intended to improve a shaft sealing device that is mounted on a shaft sealing portion of a rotating device such as a pump or a compressor and has a sealing surface in a non-contact state. is there.

〔従来の技術〕[Conventional technology]

従来から、非接触型軸封装置として、たとえば第5図
に概略的に示すように、ハウジング101側にOリング102
を介して気密的に支持されるとともにコイルスプリング
103で軸方向に付勢された固定環104が、回転軸105の外
周にOリング106を介して気密的に支持された回転環107
と軸方向に対向するとともに、互いに対向するシール面
の一方(図示の例では回転環107のシール面107a)に、
回転によって外周側の密封空間Aの流体を引き込む方向
に傾斜した先止まりのスパイラル溝108を有し、このス
パイラル溝108の動圧効果によって上記両環104,107の間
に微小な隙間Gを介在させて非接触状態に保持してなる
非接触型メカニカルシールが知られている。
Conventionally, as a non-contact type shaft sealing device, for example, as shown schematically in FIG.
Airtightly supported via coil spring
A fixed ring 104 that is axially biased by 103 is a rotating ring 107 that is airtightly supported on the outer circumference of a rotating shaft 105 via an O-ring 106.
To the one of the seal surfaces (the seal surface 107a of the rotary ring 107 in the illustrated example) that face each other in the axial direction and face each other,
It has a spiral groove 108 which is inclined at the end in the direction of drawing the fluid in the sealed space A on the outer peripheral side by the rotation, and the dynamic pressure effect of the spiral groove 108 causes a minute gap G to be present between the rings 104 and 107. A non-contact type mechanical seal which is held in a non-contact state is known.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかし、このような非接触型メカニカルシールは、隙
間Gにおける流体との摩擦によってその両側のシール面
104a,107aが発熱することが避けられないため、上記従
来構造のものでは次のような問題があった。
However, such a non-contact type mechanical seal has a seal surface on both sides thereof due to friction with the fluid in the gap G.
Since the 104a and 107a inevitably generate heat, the conventional structure has the following problems.

すなわち、背面104b,107b側と、発熱源となるシール
面104a,107a側との温度勾配による熱膨張差によって、
第6図に示すように、両環104,107には隙間Gが密封空
間A側である外周側で大きくなるような熱変形が起こ
る。ここで隙間Gのうちスパイラル溝108の溝深さに相
当する部分をg1、シール面104a,107aの間の部分をg2
すると、その比(隙間比g1/g2)は外周側で小さくな
り、このためスパイラル溝108による動圧効果が損なわ
れて隙間Gが狭まり、更なる温度上昇を招いたり、顕著
な場合は反密封空間B側である内周側でシール面104a,1
07aが接触するに至り、摩耗損傷してしまうおそれがあ
った。また、上記メカニカルシールのような端面シール
構造の非接触型軸封装置に限らず、フローティングリン
グシールなど対向周面間の隙間において軸封機能をなす
円筒面シール構造の非接触型軸封装置においても同様の
問題があった。
That is, due to the difference in thermal expansion due to the temperature gradient between the back surface 104b, 107b side and the seal surface 104a, 107a side serving as a heat source,
As shown in FIG. 6, thermal deformation occurs in both rings 104 and 107 such that the gap G becomes larger on the outer peripheral side which is the sealed space A side. If the portion of the gap G corresponding to the groove depth of the spiral groove 108 is g 1 and the portion between the sealing surfaces 104a and 107a is g 2 , the ratio (gap ratio g 1 / g 2 ) is the outer peripheral side. , The dynamic pressure effect of the spiral groove 108 is impaired and the gap G is narrowed, resulting in a further rise in temperature.
There was a risk that the 07a would come into contact and wear and damage. Further, not only the non-contact type shaft sealing device having the end face sealing structure such as the mechanical seal described above, but also the non-contact type shaft sealing device having the cylindrical face sealing structure which performs the shaft sealing function in the gap between the facing peripheral surfaces such as the floating ring seal. Had the same problem.

そこで本考案は、このような点に鑑み、熱歪によって
動圧効果が損なわれることのない非接触型軸封構造とす
ることを課題としてなされたものである。
Therefore, in view of such a point, the present invention has an object to provide a non-contact type shaft seal structure in which the dynamic pressure effect is not impaired by thermal strain.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するため、本考案は、非回転のシール
部材と、回転するシール部材が微小な隙間を介して対向
し、この対向面間で軸封する非接触型軸封装置におい
て、両シール部材の互いに対向するシール面のうちいず
れか一方に、回転時に密封空間から流体を上記隙間内へ
引き込む方向に傾斜した先止まりのスパイラル溝を有
し、このスパイラル溝の溝深さを、上記隙間の流体との
摩擦熱による両シール部材のシール面の開離変形量に対
応して、密封空間側へ向けて漸次深くしたものである。
In order to solve the above problems, the present invention provides a non-contact type shaft sealing device in which a non-rotating seal member and a rotating seal member face each other with a minute gap therebetween and seals between the facing surfaces. On one of the sealing surfaces facing each other of the member, there is a first-end spiral groove inclined in the direction of drawing the fluid from the sealed space into the gap at the time of rotation, and the groove depth of the spiral groove is set to In accordance with the amount of open deformation of the seal surfaces of both seal members due to frictional heat with the fluid, the depth is gradually increased toward the sealed space.

〔作用〕[Action]

本考案の非接触型軸封装置によると、一方のシール面
に形成したスパイラル溝の溝深さが、両シール部材間の
隙間に介在する流体との摩擦熱による両シール部材のシ
ール面の開離変形量に対応して密封空間側へ向けて漸次
深くなっているので、上記摩擦熱が発生して両シール部
材にシール面間の隙間を密封空間側で大きく開離するよ
うに熱変形しても、スパイラル溝の溝深さg1とシール面
間g2との隙間比g1/g2を、密封空間側から反密封空間側
へかけてほぼ一定とすることができ、このため上記隙間
にはシール面間を非接触状態とするのに必要な大きさの
動圧および静圧が得られる。
According to the non-contact type shaft sealing device of the present invention, the groove depth of the spiral groove formed on one of the sealing surfaces causes the sealing surfaces of both sealing members to open due to frictional heat with the fluid present in the gap between the sealing members. Since the depth gradually increases toward the sealed space side according to the amount of separation deformation, the above-mentioned frictional heat is generated and the seal members are thermally deformed so that the gap between the seal surfaces is largely separated on the sealed space side. even, the gap ratio g 1 / g 2 between the groove depth g 1 and the sealing surface between g 2 of spiral grooves may be substantially constant over the sealed space side opposite to the sealed space side. Therefore the In the gap, a dynamic pressure and a static pressure that are large enough to bring the sealing surfaces into non-contact with each other can be obtained.

〔実施例〕〔Example〕

第1図は、本考案を非接触型メカニカルシールについ
て適用した実施例を示すものである。
FIG. 1 shows an embodiment in which the present invention is applied to a non-contact type mechanical seal.

図において、4はハウジング1側にOリング2を介し
て気密的に支持されるとともにコイルスプリング3で軸
方向に付勢された非回転のシール部材である固定環、7
は固定環4と軸方向に対向するとともに、回転軸5の外
周にOリング6を介して気密的に支持されて回転するシ
ール部材である回転環で、この回転環7のシール面7a
に、第2図に示すように、回転によって外周側の密封空
間の流体を引き込む方向に傾斜した先止まりのスパイラ
ル溝8が形成されている。
In the figure, 4 is a fixed ring which is a non-rotating seal member which is airtightly supported on the housing 1 side via an O-ring 2 and is axially biased by a coil spring 3,
Is a rotary ring that is a seal member that faces the fixed ring 4 in the axial direction and that is supported by the outer periphery of the rotary shaft 5 in an airtight manner via an O-ring 6 and rotates.
As shown in FIG. 2, there is formed a spiral groove 8 which is slanted in the direction in which the fluid in the sealed space on the outer peripheral side is drawn by the rotation.

このスパイラル溝8は、密封空間A側である外周側へ
向けて漸次深くなっており、その溝深さの変化量は、運
転時に固定環4との間の隙間Gに介在する流体との摩擦
熱によって両環4,7のシール面4a,7a間の開離変形量に対
応して設定されている。すなわち第3図に示すように、
固定環4および回転環7は、発熱量の大きい対向シール
面4a,7a側と、あまり発熱しない背面4b,7b側の間の熱膨
張差に起因して、外周側で開離幅が大きくなるような熱
変形が生じるが、この場合のシール面4a,7a間の内周側
の開離幅g2aから外周側の開離幅g2bへの変化量に対応し
て、袋小路状になっている内周端部の溝深さg1aから外
周側の開放端の溝深さg1bへの変化量を設定してなるも
のである。
The spiral groove 8 is gradually deeper toward the outer peripheral side which is the sealed space A side, and the amount of change in the groove depth is due to friction with the fluid interposed in the gap G between the fixed ring 4 and the fixed ring 4. It is set according to the amount of opening deformation between the seal surfaces 4a, 7a of both rings 4, 7 due to heat. That is, as shown in FIG.
The fixed ring 4 and the rotary ring 7 have a large opening width on the outer peripheral side due to the difference in thermal expansion between the opposed seal surfaces 4a and 7a that generate a large amount of heat and the back surfaces 4b and 7b that do not generate much heat. Such thermal deformation occurs, but in this case, it corresponds to the amount of change from the opening width g 2a on the inner peripheral side between the sealing surfaces 4a, 7a to the opening width g 2b on the outer peripheral side, forming a blind alley. The amount of change is set from the groove depth g 1a at the inner peripheral end portion to the groove depth g 1b at the open end on the outer peripheral side.

以上の構成において、回転軸5とともに回転環7が回
転すると、そのシール面7aに形成されたスパイラル溝8
のポンプ作用によって外周の密封空間Aから流体が両環
4,7の間に巻き込まれるので、シール面4a,7a間を開離さ
せる動圧を生じる。また、第4図[イ]に示すような、
反密封空間B側(内周)から密封空間A側(外周)へか
けて均一な隙間G0内の静圧分布勾配p0に対し、第4図
[ロ]に示すような、密封空間A側へ向けて開いた隙間
G1内の静圧分布勾配p1は斜線で示す分だけ増圧され、し
たがって密封空間A側へ向けて漸次深くなるスパイラル
溝8が形成された本実施例では、同様の原理から、スパ
イラル溝8内での静圧も大きく、両シール面4a,7a間を
非接触状態に維持することができる。
In the above structure, when the rotary ring 7 rotates together with the rotary shaft 5, the spiral groove 8 formed in the seal surface 7a thereof.
Due to the pumping action of the
Since it is caught between 4 and 7, a dynamic pressure that separates the seal surfaces 4a and 7a is generated. In addition, as shown in FIG.
With respect to the static pressure distribution gradient p 0 within the uniform gap G 0 from the anti-sealing space B side (inner circumference) to the sealing space A side (outer circumference), as shown in FIG. Gap open to the side
Static pressure distribution gradient p 1 in G 1 is boosted by the amount indicated by oblique lines, thus in this embodiment the spiral grooves 8 are formed which gradually becomes deeper toward the sealed space A side from the same principle, a spiral groove The static pressure inside 8 is also large, and it is possible to maintain a non-contact state between both seal surfaces 4a and 7a.

ここで、運転時間の経過に伴い、固定環4と回転環7
は、両者間の隙間Gに介在する流体との摩擦によってシ
ール面4a,7a側で発熱し、背面4b,7b側との熱膨張差によ
って、第3図に示すように外周側で開離幅が大きくなる
熱変形が生じるが、スパイラル溝8の溝深さg1aからg1b
に到る変化量は、熱変形による開離幅g2aからg2bに到る
変化量に対応して設定されていることから、この熱変形
状態において、スパイラル溝の溝深さg1とシール面4a,7
aの間g2との隙間比g1/g2を、密封空間A側から反密封
空間B側へかけてほぼ一定(g1a/g2a≒g1b/g2b)とす
ることができ、このためシール面4a,7a間を非接触状態
に保持するのに必要な圧力分布が損なわれず、安定した
機能を奏するものである。
Here, as the operating time elapses, the stationary ring 4 and the rotating ring 7
Is heated on the seal surfaces 4a, 7a side due to friction with the fluid interposed in the gap G between the two, and due to the difference in thermal expansion from the back surfaces 4b, 7b side, as shown in FIG. Of the spiral groove 8 from the groove depth g 1a to g 1b
Reaches variation in, since it is set corresponding to the leading amount of change in g 2b from separable width g 2a due to thermal deformation, in the thermal deformation state, the spiral groove groove depth g 1 and the seal Face 4a, 7
The gap ratio g 1 / g 2 between a and g 2 can be made substantially constant (g 1a / g 2a ≈g 1b / g 2b ) from the sealed space A side to the anti-sealed space B side, Therefore, the pressure distribution required to hold the seal surfaces 4a and 7a in a non-contact state is not impaired, and a stable function is achieved.

なお、本実施例はスパイラル溝8を回転環7のシール
面7aに設けたが、これを固定環4のシール面4aに設けて
も効果は同じである。また、非接触型メカニカルシール
以外にも、たとえばフローティングリングシールのよう
な対向周面間の隙間において軸封機能をなす円筒面シー
ル構造の非接触型軸封装置において、円筒状シール面に
本考案を適用することができる。
In this embodiment, the spiral groove 8 is provided on the seal surface 7a of the rotary ring 7, but the same effect can be obtained by providing the spiral groove 8 on the seal surface 4a of the fixed ring 4. Further, in addition to the non-contact type mechanical seal, a non-contact type shaft sealing device having a cylindrical surface sealing structure that performs a shaft sealing function in a gap between opposed peripheral surfaces, such as a floating ring seal, is provided with a cylindrical seal surface. Can be applied.

〔考案の効果〕[Effect of device]

以上、本考案によると、流体との摩擦熱によって固定
側および回転側の両シール部材がシール面間の隙間を密
封空間側で大きく開離するように熱変形しても、隙間比
g1/g2が密封空間側から反密封空間側へかけてほぼ一定
になるため、シール面間を非接触に保つ動圧が損なわれ
ず、またこのシール面間の静圧も増大するので、熱変形
によるシール面間の隙間の減少、これによる発熱量の更
なる増大、そしてシール面の接触、損傷といった不具合
の発生を防止し、長期間安定した機能を維持することが
出来るものである。
As described above, according to the present invention, even if the fixed and rotating seal members are thermally deformed by the frictional heat with the fluid so as to greatly separate the gap between the seal surfaces on the sealed space side, the gap ratio
Since g 1 / g 2 is almost constant from the sealed space side to the anti-sealed space side, the dynamic pressure that keeps the seal faces non-contact is not impaired, and the static pressure between the seal faces also increases. It is possible to maintain a stable function for a long time by reducing the gap between the seal surfaces due to thermal deformation, further increasing the amount of heat generation due to this, and preventing the occurrence of problems such as contact and damage of the seal surfaces.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案をメカニカルシールに適用した一実施例
を示す概略的な半裁断面図、第2図は同じく要部正面
図、第3図は同じく熱変形が生じた状態を示す半裁断面
図、第4図はシール面間の圧力分布状態を示す説明図、
第5図は従来の非接触型軸封装置の一例を示す概略的な
半裁断面図、第6図は同じく熱変形が生じた状態を示す
半裁断面図である。 1……ハウジング、4……固定環(シール部材) 4a,7a……シール面 7……回転環(シール部材) 8……スパイラル溝、A……密封空間 G……隙間
FIG. 1 is a schematic half-cut sectional view showing an embodiment in which the present invention is applied to a mechanical seal, FIG. 2 is a front view of the same main portion, and FIG. 3 is a half-cut sectional view showing a state in which thermal deformation similarly occurs. , FIG. 4 is an explanatory view showing a pressure distribution state between the seal surfaces,
FIG. 5 is a schematic half-cut sectional view showing an example of a conventional non-contact type shaft sealing device, and FIG. 6 is a half-cut sectional view showing a state where thermal deformation similarly occurs. 1 ... Housing, 4 ... Fixed ring (sealing member) 4a, 7a ... Sealing surface 7 ... Rotating ring (sealing member) 8 ... Spiral groove, A ... Sealed space G ... Gap

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】非回転のシール部材と、回転するシール部
材が微小な隙間を介して対向し、この対向面間で軸封す
る非接触型軸封装置において、両シール部材の互いに対
向するシール面のうちいずれか一方に、回転時に密封空
間から上記隙間内へ流体を引き込む方向に傾斜した先止
まりのスパイラル溝を有し、このスパイラル溝の溝深さ
を、上記隙間の流体との摺動熱による両シール部材のシ
ール面の開離変形量に対応して、密封空間側へ向けて漸
次深くしたことを特徴とする非接触型軸封装置。
1. A non-contact type shaft sealing device in which a non-rotating seal member and a rotating seal member are opposed to each other with a minute gap therebetween, and a shaft is sealed between the facing surfaces. One of the surfaces has a first-end spiral groove that is inclined in the direction that draws fluid from the sealed space into the gap during rotation, and the groove depth of this spiral groove slides with the fluid in the gap. A non-contact type shaft sealing device, which is gradually deepened toward the sealed space in correspondence with the amount of open deformation of the seal surfaces of both seal members due to heat.
JP9795490U 1990-09-18 1990-09-18 Non-contact type shaft seal device Expired - Fee Related JP2513028Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9795490U JP2513028Y2 (en) 1990-09-18 1990-09-18 Non-contact type shaft seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9795490U JP2513028Y2 (en) 1990-09-18 1990-09-18 Non-contact type shaft seal device

Publications (2)

Publication Number Publication Date
JPH0454366U JPH0454366U (en) 1992-05-11
JP2513028Y2 true JP2513028Y2 (en) 1996-10-02

Family

ID=31838746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9795490U Expired - Fee Related JP2513028Y2 (en) 1990-09-18 1990-09-18 Non-contact type shaft seal device

Country Status (1)

Country Link
JP (1) JP2513028Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303050B4 (en) * 1992-02-26 2004-02-26 Sedy, Josef, Mt. Prospect Mechanical seal
DE102011118294B3 (en) * 2011-11-10 2013-04-18 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal assembly with Tesla pump

Also Published As

Publication number Publication date
JPH0454366U (en) 1992-05-11

Similar Documents

Publication Publication Date Title
US3333856A (en) Labyrinth type face seal
US3804424A (en) Gap seal with thermal and pressure distortion compensation
EP0578377B1 (en) Seals
EP0922891A2 (en) Rotary, reciprocating seals with internal metal band
WO2013176009A1 (en) Sliding component
WO2019221231A1 (en) Seal ring
US3452995A (en) Axially narrow metal face seals
US2917329A (en) Rotary seal
JPWO2019221229A1 (en) Seal ring
JPS63111371A (en) Slide-ring seal
JP2513028Y2 (en) Non-contact type shaft seal device
JPH04145267A (en) Noncontact end-face seal
JPH0478379A (en) Non-contact end face seal
JP3305196B2 (en) Shaft sealing device
KR20190124586A (en) Mechanical seal including advanced plate structure and cap structure
JP2009024836A (en) Mechanical seal
US3061318A (en) Rotary seal with flexible stator
JPH04272581A (en) Non-contact type sealing device
US4265456A (en) Sealing assembly
JPH0231636Y2 (en)
JPH0129324Y2 (en)
JP2008164059A (en) Non-contact mechanical seal
JPH01141277A (en) Shaft sealing device for vacuum pump
JP7350449B2 (en) mechanical seal
US10557554B2 (en) Mechanical seal with high pressure high temperature secondary seal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees