JPH08334124A - Gas bearing structure - Google Patents

Gas bearing structure

Info

Publication number
JPH08334124A
JPH08334124A JP16309395A JP16309395A JPH08334124A JP H08334124 A JPH08334124 A JP H08334124A JP 16309395 A JP16309395 A JP 16309395A JP 16309395 A JP16309395 A JP 16309395A JP H08334124 A JPH08334124 A JP H08334124A
Authority
JP
Japan
Prior art keywords
bearing
magnetic
air supply
compressed air
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16309395A
Other languages
Japanese (ja)
Other versions
JP3408664B2 (en
Inventor
Iwao Matsumoto
岩男 松本
Toyoaki Furukawa
豊秋 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16309395A priority Critical patent/JP3408664B2/en
Publication of JPH08334124A publication Critical patent/JPH08334124A/en
Application granted granted Critical
Publication of JP3408664B2 publication Critical patent/JP3408664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To achieve an electrical purpose without using an electrical control part so as to improve explosion proof properties much better, by interposing compressed air in a bearing void, and actuating upon a part for receiving the load of a counter, magnetic action formed by a permanent magnet, preferably magnetic repulsive force. CONSTITUTION: A thin layered ring bearing void 4 is formed between a counter member 1 (rotary shaft) and a bearing main body 3 (bearing metal). Multiple air supply holes 5 are opened and arranged at equal intervals in the peripheral direction from the outer circumferential surface side of the bearing main body 3 toward the inner circumferential side of a magnet body 20. These air supply holes 5 are provided adjacently to a compressed air supply source 7 through a check valve 6 on the outer circumferential side of the bearing main body 3. The counter member 1 is formed in such a manner that a cylindrical permanent magnet 1B having the same magnetism as the ring magnet body 20 is included in a rotary shaft 1A so that magnetic repulsive force consisting of the repulsive magnetic fields of two magnets 1B, 20 by using the rotary shaft 1A formed of a magnetic material is generated in the bearing void 4 opposed to the ring magnetic body 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸又は及び往復運
動をする軸を支持する気体軸受構造に係り、特に回転機
械に適用される気体軸受構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas bearing structure for supporting a rotating shaft or a shaft which reciprocates, and more particularly to a gas bearing structure applied to a rotary machine.

【0002】[0002]

【従来の技術】気体軸受は一般に、相手部材と軸受面と
の間に形成される軸受空隙部に、絞りを通過した圧縮気
体を導き、その圧力分布で負荷能力と軸受剛性を得るも
ので、摩擦抵抗が少なく高精度でクリーンである点等の
特徴を生かし、精密機器などに広く使用されている。
2. Description of the Related Art Generally, a gas bearing guides compressed gas that has passed through a throttle into a bearing gap formed between a mating member and a bearing surface, and obtains load capacity and bearing rigidity by its pressure distribution. It is widely used in precision equipment, taking advantage of its features such as low friction resistance, high precision and cleanliness.

【0003】そしてかかる気体軸受には前記絞りの形式
により、絞りに多孔質材を用いる多孔質型、数〜数十個
の小穴を軸受面に開口させてなる多数孔型、軸受内周面
に浅い多数の細溝を設け該細溝を圧縮空気導入孔に連通
させた表面絞り型等の種類があり、性能上の要求により
使い分けられる。
Depending on the type of the throttle, the gas bearing is of a porous type in which a porous material is used for the throttle, a multi-hole type in which a few to several tens of small holes are opened in the bearing surface, and a bearing inner peripheral surface is formed. There are various types such as a surface drawing type in which a large number of shallow grooves are provided and the narrow grooves are communicated with the compressed air introduction hole, and they are used properly depending on the performance requirements.

【0004】例えば、軸受空隙が小さく、高精度、高剛
性をねらう場合には、多孔質型と表面絞り型が適してい
る。一方、加工の容易さ、大形軸受という点では、多数
孔型が適しており、特に相手部材が回転軸で、遠心力等
により回転軸の膨張等が生じ、回転時の軸受空隙が静止
時の軸受空隙に比較して変化する。特に軸受口径が大径
の物については多孔質型の絞り機構の採用は困難であ
り、多数孔型が用いられている。
For example, when the bearing gap is small and high precision and high rigidity are aimed at, a porous type and a surface drawing type are suitable. On the other hand, in terms of ease of processing and large size bearings, the multi-hole type is suitable, especially when the mating member is the rotating shaft and the rotating shaft expands due to centrifugal force, etc. It changes compared to the bearing air gap. In particular, it is difficult to adopt a porous type throttle mechanism for a bearing having a large diameter, and a multi-hole type is used.

【0005】従って小型精密機器の分野を除いて多数孔
型が多く用いられるが、多数孔型の気体軸受はステンレ
ス鋼、機械構造用炭素鋼にメッキを行ったものを用い、
一方相手側の被軸受部材にも同様なものを用いるから、
例え圧縮空気を介在させていても負荷重量負担が大き
く、軸受の焼き付け事故が多いという問題が生じる。又
前記気体軸受においては空気の粘性が小さいために、振
動減衰特性が悪く、絞りから流出する圧力空気の流動に
よって微小振動が発しやすい。更に、高速回転になると
前記微小振動が増幅されていわゆる振れ回り現象が発生
し、その結果軸受の焼き付け事故が発生するという問題
が生じる。
Therefore, the multi-hole type is often used except for the field of small precision equipment, but the multi-hole type gas bearing is made of stainless steel or carbon steel for machine structure plated.
On the other hand, since a similar bearing member is used,
Even if compressed air is interposed, the burden on the load is large, and there is a problem that the bearing is often seized. Further, in the gas bearing, since the viscosity of air is small, the vibration damping characteristic is poor, and minute vibrations are easily generated by the flow of pressure air flowing out from the throttle. Further, at high speed rotation, the minute vibration is amplified and a so-called whirling phenomenon occurs, resulting in a problem that a bearing seizure accident occurs.

【0006】かかる欠点を解消するために、例えば特開
平3−74628号に示すように、回転軸の周囲に圧力
空気を流入させる吸気口を有する軸受本体に、該回転中
の固有振動、同期振動振れ回り等の不安定振動を検出
し、その信号に対応して減衰方向に圧力波を付加する固
有振動減衰手段、言換えれば前記吸気口に連通する第1
の圧縮空気源より圧力の高い第2の圧力空気源を設けた
技術が開示されている。
In order to eliminate such drawbacks, as shown in, for example, Japanese Patent Laid-Open No. 3-74628, a bearing body having an intake port for letting pressurized air flow around a rotary shaft has a natural vibration and a synchronous vibration during rotation. Natural vibration damping means for detecting unstable vibration such as whirling and adding a pressure wave in the damping direction corresponding to the signal, in other words, a first vibration communicating with the intake port.
The technique of providing a second compressed air source having a higher pressure than the compressed air source of the above is disclosed.

【0007】しかしながら前記の様に複数の圧力源を設
ける事は構成の煩雑化につながり、而も不安定振動を検
出し、その信号に対応して減衰方向に圧力波を付加する
事は電気的検出手段やその為の電気的制御手段も必要と
し、前記したように構成の煩雑化につながるとともに、
特に防爆性の強い箇所に用いる事が困難である。
However, providing a plurality of pressure sources as described above leads to a complicated structure, and it is electrical to detect an unstable vibration and add a pressure wave in the damping direction corresponding to the signal. It also requires detection means and electrical control means therefor, which leads to complication of the configuration as described above,
In particular, it is difficult to use it in places with strong explosion-proof properties.

【0008】一方前記圧縮空気の代りに磁石の磁気的反
発力を利用した磁石軸受も従来より存在する。図5はか
かる従来の技術によるラジアル磁石軸受の構成を示す。
図において020は回転軸、021は磁極、022はバ
イアス電流を流すコイル、023はコントロール電流を
流すコイル、024は位置センサ、025はコントロー
ル装置である。バイアス電流IR コイル022に流すこ
とによりY方向の相隣れる電極021で磁気ループを形
成する。この磁力の大きさにより回転軸020のY方向
の位置が決まる。またX方向にも同様な装置がある。か
かる軸受によれば軸の位置基準置を設定し、設定置と位
置センサ024からの信号置とを比べそれが零となる方
向へコントロール装置025からコントロール電流IC
を流すことにより前記磁気ループにより設定された磁気
的反発力が回転軸020に作用し非接触の軸受が可能と
なる。
On the other hand, there is conventionally a magnetic bearing which utilizes the magnetic repulsive force of a magnet instead of the compressed air. FIG. 5 shows the structure of a radial magnet bearing according to such a conventional technique.
In the figure, 020 is a rotating shaft, 021 is a magnetic pole, 022 is a coil for supplying a bias current, 023 is a coil for supplying a control current, 024 is a position sensor, and 025 is a control device. By supplying the bias current I R coil 022, a magnetic loop is formed by the adjacent electrodes 021 in the Y direction. The magnitude of this magnetic force determines the position of the rotary shaft 020 in the Y direction. There is also a similar device in the X direction. According to such a bearing, the position reference position of the shaft is set, the setting position is compared with the signal position from the position sensor 024, and the control current I C
The magnetic repulsive force set by the magnetic loop acts on the rotary shaft 020 by flowing the magnetic field, and a non-contact bearing becomes possible.

【0009】しかしながら前記装置においてもコイルや
コントロール装置等を必要とし、構成の煩雑化につなが
るとともに、特に防爆性の強い箇所に用いる事が困難で
ある。
However, the above-mentioned device also requires a coil, a control device and the like, which leads to a complicated structure and is difficult to use particularly in a place having a strong explosion-proof property.

【0010】本発明はかかる従来技術の欠点に鑑み、負
荷重量負担が大きい軸受においても効果的に非接触で保
持でき、空気(気体)の粘性が小さいために起因する微
小振動の発生を有効に阻止し得る気体軸受構造を提供す
る事にある。本発明の他の目的は低速回転域での負荷能
力を有効に改善し得る気体軸受構造を提供する事にあ
る。本発明の他の目的はコイルやコントロール装置等の
電気的制御部品を用いる事なく簡単な構成で電気目的を
達成し、これにより構成の簡単化とともに、特に防爆性
を数段高める事の出来る気体軸受構造を提供する事にあ
る。
In view of the above-mentioned drawbacks of the prior art, the present invention can effectively hold a bearing that bears a heavy load weight in a non-contact manner, and effectively generates a microvibration due to the low viscosity of air (gas). An object is to provide a gas bearing structure that can be prevented. Another object of the present invention is to provide a gas bearing structure capable of effectively improving the load capacity in the low speed rotation range. Another object of the present invention is to achieve an electric object with a simple structure without using electric control parts such as a coil and a control device, which simplifies the structure and, in particular, makes it possible to enhance the explosion-proof property by several steps. To provide a bearing structure.

【0011】[0011]

【課題を解決するための手段】本願発明はかかる技術的
課題に鑑み、相手部材と軸受面との間の軸受空隙に圧縮
気体を介在させるとともに、該前記軸受空隙の少なくと
も相手部材の負荷を受ける部位に永久磁石により形成さ
れる磁気的作用力、好ましくは磁気的反発力を作用させ
たことを特徴とする。この場合前記磁気的反発力を生じ
させる為には、例えば回転軸等の相手部材側とこれと対
向する軸受面側に夫々同極性の永久磁石を夫々対向して
配置させる事により容易に達成し得るが、これのみに限
定されない。
In view of the above technical problems, the present invention allows compressed gas to be interposed in a bearing gap between a mating member and a bearing surface, and receives at least a load of the mating member in the bearing gap. A magnetic acting force, preferably a magnetic repulsive force, formed by a permanent magnet is applied to the portion. In this case, in order to generate the magnetic repulsive force, for example, it is easily achieved by disposing opposing permanent magnets of the same polarity on the mating member side such as the rotating shaft and the bearing surface side facing the mating member side. However, the present invention is not limited to this.

【0012】又本発明は多数孔型の気体軸受構造のみな
らず、多孔質型と表面絞り型の気体軸受にも有効であ
る。
Further, the present invention is effective not only in the multi-hole type gas bearing structure but also in the porous type and surface drawing type gas bearings.

【0013】[0013]

【作用】かかる技術手段によれば、圧縮空気の軸受空隙
のうち、少なくとも相手部材の負荷が加重される部位に
圧縮空気による支持力とともに磁気的反発力を生じさせ
たために、気体軸受の欠点であった低速回転時における
負荷能力が向上するとともに、負荷重量負担が大きい軸
受においても効果的に非接触で前記相手部材を保持する
事が出来る。また前記磁気的反発力が永久磁石で構成さ
れているために、一切のコントロール装置及び非常用安
全装置等の電気的制御装置が必要でなくなり、これによ
り構成の簡単化とともに、特に防爆性を数段高める事の
出来る気体軸受構造を得ることができる。
According to such a technical means, the bearing force of the compressed air and the magnetic repulsion force are generated at least in the bearing gap of the compressed air where the load of the counterpart member is applied. The load capacity at the time of low speed rotation is improved, and the mating member can be effectively held in a non-contact manner even in a bearing that bears a heavy load weight. Further, since the magnetic repulsion force is composed of a permanent magnet, no electric control device such as a control device or an emergency safety device is required, which simplifies the structure and particularly increases the explosion-proof property. It is possible to obtain a gas bearing structure that can be stepped up.

【0014】更に本発明は、空気(気体)の粘性が小さ
いために負荷能力が小さくアンバランスによる振動に対
して、前記磁気的反発力がこれを阻止する方向に作用
し、振動を小さく抑えるとともに、過大振動に起因する
焼き付き等の事故を防止し得る。
Further, according to the present invention, since the viscosity of air (gas) is small, the load capacity is small and the magnetic repulsive force acts on the vibration due to the imbalance so as to prevent it, and the vibration is suppressed to a small level. It is possible to prevent an accident such as seizure due to excessive vibration.

【0015】[0015]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但し、この実施例に記載されてい
る構成部品の寸法、材質、形状、その相対位置などは特
に特定的な記載がない限りは、この発明の範囲をそれの
みに限定する趣旨ではなく単なる説明例に過ぎない。図
1は本発明の実施例に係る多数孔型の気体軸受構造を示
す要部概略図で、(A)は軸方向に直交して切断した横
断面図、(B)は縦断面図を示す。図において1は相手
部材(回転軸)、3は軸受本体(軸受メタル)で、その
間に薄層リング状の軸受空隙4が形成してある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, the dimensions, materials, shapes, relative positions, etc., of the components described in this embodiment are not intended to limit the scope of the present invention thereto, unless there is a specific description, and are merely illustrative examples. Nothing more than. 1A and 1B are schematic views showing a main part of a multi-hole type gas bearing structure according to an embodiment of the present invention. FIG. 1A is a cross sectional view taken along a line orthogonal to the axial direction, and FIG. . In the figure, 1 is a mating member (rotating shaft), 3 is a bearing main body (bearing metal), and a thin-layer ring-shaped bearing gap 4 is formed between them.

【0016】軸受本体3の軸受面側には、該軸受本体3
内周面と同径の内周径を有するリング状磁石体20が嵌
着されており、そして該軸受本体3外周面側より磁石体
20内周面側に向けて、周方向に等間隔に多数の給気孔
5を穿孔配列する。該給気孔5は図1(B)に示すよう
に、基側(軸受本体3外周側)にチェック弁6を介して
圧縮空気供給源7と連設させるとともに、先端側をオリ
フィス状の絞り5aを介して磁石体20内周面に開口し
ている。又前記相手部材1外周と対面する磁石体20内
周面と軸受本体3内周面には楔状気膜が形成されるよう
に、前記開口と連絡する気路が軸線方向に所定長さ延在
している。
On the bearing surface side of the bearing body 3, the bearing body 3
A ring-shaped magnet body 20 having an inner diameter equal to that of the inner circumferential surface is fitted, and the bearing body 3 is circumferentially equidistant from the outer circumferential surface side toward the inner circumferential surface side of the magnet body 20. A large number of air supply holes 5 are arranged in a hole. As shown in FIG. 1 (B), the air supply hole 5 is connected to the compressed air supply source 7 through a check valve 6 on the base side (outer peripheral side of the bearing body 3), and the tip side is an orifice-shaped throttle 5a. The inner peripheral surface of the magnet body 20 is opened through. Further, the air passage communicating with the opening extends for a predetermined length in the axial direction so that a wedge-shaped air film is formed on the inner peripheral surface of the magnet body 20 and the inner peripheral surface of the bearing body 3 facing the outer periphery of the mating member 1. are doing.

【0017】一方相手部材1は例えば機械構造用炭素鋼
にメッキを行った磁性材からなる回転軸1Aを用い、該
回転軸1Aに前記リング状磁石体20と同極性の円棒状
永久磁石1Bが内包して構成されており、前記リング状
磁石体20と対向する軸受空隙4に2つの磁石1B、2
0の反発磁界からなる磁気的反発力が生じる様に構成さ
れている。
On the other hand, the mating member 1 uses, for example, a rotating shaft 1A made of a magnetic material obtained by plating carbon steel for machine structure, and a rod-shaped permanent magnet 1B having the same polarity as the ring-shaped magnet body 20 is attached to the rotating shaft 1A. Two magnets 1B, 2 are included in the bearing gap 4 facing the ring-shaped magnet body 20.
A magnetic repulsive force composed of a repulsive magnetic field of 0 is generated.

【0018】かかる実施例によれば、チェック弁6及び
給気孔5を介して圧縮空気供給源7より軸受空隙4に圧
縮空気を供給する事により、相手部材1の全周に亙って
圧縮空気による支持力が発生するとともに、該軸受空隙
4に2つの永久磁石の反発磁界からなる磁気的反発力が
生じるために、低速回転時においても負荷能力が向上す
るとともに、負荷重量負担が大きい軸受構造においても
効果的に非接触で前記相手部材1を保持する事が出来
る。
According to this embodiment, the compressed air is supplied from the compressed air supply source 7 to the bearing gap 4 through the check valve 6 and the air supply hole 5, so that the compressed air is distributed all around the mating member 1. Bearing force is generated and a magnetic repulsive force composed of repulsive magnetic fields of the two permanent magnets is generated in the bearing gap 4, so that the load capacity is improved even at low speed rotation, and the load structure bears a large load weight. Also in the above, it is possible to effectively hold the mating member 1 in a non-contact manner.

【0019】尚、前記相手部材1は、詳細には図示して
いないが縦形の回転機械の回転軸1Aであるので軸受荷
重を支える必要がなく軸受全周に永久磁石2を組み込む
ことで負荷能力を増大させている。
Although not shown in detail, since the mating member 1 is a rotary shaft 1A of a vertical rotary machine, it is not necessary to support the bearing load, and the permanent magnets 2 are incorporated around the entire circumference of the bearing to provide load capacity. Is increasing.

【0020】図2は、横形の回転機械に適用されるスリ
ーブ軸受構造であり、横型の回転機械の場合軸受重荷が
下向きに作用するので、2つの永久磁石1C、21の反
発磁界からなる磁気的反発力を軸受空隙4の下側周面に
だけ作用させている。この為、前記軸受本体3に組込む
磁石体21は半円リング状をなし、又相手部材に内包す
る棒状磁石1Cも半円状をなす。
FIG. 2 shows a sleeve bearing structure applied to a horizontal type rotary machine. In the case of a horizontal type rotary machine, the bearing load acts downward, so that a magnetic field composed of repulsive magnetic fields of the two permanent magnets 1C and 21 is used. The repulsive force acts only on the lower peripheral surface of the bearing gap 4. Therefore, the magnet body 21 incorporated in the bearing main body 3 has a semicircular ring shape, and the rod-shaped magnet 1C included in the mating member also has a semicircular shape.

【0021】図3は本発明の第3の実施例で、縦形の回
転機械に用いるティルティングパット形の永久磁石2を
組み込んだ気体軸受であり、16は軸受パット、17は
ピボットである。本実施例においても、相手部材に機械
構造用炭素鋼にメッキを行った磁性材からなる回転軸1
A内に棒状磁石1Bを内包したものを用い、一方ティル
ティングパット形のほぼリング状の永久磁石20は軸受
本体3側に組込まれている為に、前記実施例と同様に全
周に亙って磁気的反発力を生じさせる事が出来る。尚、
前記スリーブ軸受形やティルティングパット形の軸受に
ついて説明したがスラスト軸受についても永久磁石を組
み込んだ気体軸受とすることができる。
FIG. 3 shows a third embodiment of the present invention, which is a gas bearing incorporating a tilting pad type permanent magnet 2 used in a vertical rotary machine, wherein 16 is a bearing pad and 17 is a pivot. Also in the present embodiment, the rotating shaft 1 made of a magnetic material plated with carbon steel for machine structure is used as a mating member.
A rod-shaped magnet 1B is included in A, while the tilting pad type substantially ring-shaped permanent magnet 20 is incorporated in the bearing main body 3 side. Can generate magnetic repulsion. still,
Although the sleeve bearing type and the tilting pad type bearing have been described above, the thrust bearing can also be a gas bearing incorporating a permanent magnet.

【0022】図4は多孔質型の軸受構造を示し、ハウジ
ング12の内面に多孔質材からなる軸受部材11を配設
し、その軸受面が相手部材1である回転軸に軸受空隙4
を介して対向させている。軸受部材11とハウジング1
2の間には、円環状の給気キャビティ15が設けられて
おり、ハウジング12に穿孔された給気孔14を介して
圧縮空気源7と接続されている。そして前記軸受部材1
1はカーボン又はグラファイトを圧粉成形した後に焼結
してなる多孔質体に樹脂を含浸させた円筒状の焼結体で
形成するとともに、その内周面側を矩形状に削成し、該
削成部にリング円状の永久磁石体20を嵌着する。又外
周側には給気キャビティ15を設け給気孔14と連続さ
せる。一方相手部材1は例えば機械構造用炭素鋼にメッ
キを行った磁性材からなる回転軸1Aを用い、該回転軸
1Aに前記リング状磁石体20と同極性の棒状磁石が内
包されており、前記リング状磁石体20と対向する軸受
空隙4に2つの磁石1B、20の反発磁界からなる磁気
的反発力が生じる様に構成されている。
FIG. 4 shows a porous bearing structure in which a bearing member 11 made of a porous material is arranged on the inner surface of a housing 12, and the bearing surface has a bearing gap 4 in a rotating shaft which is a counterpart member 1.
Are facing each other. Bearing member 11 and housing 1
An annular air supply cavity 15 is provided between the two, and is connected to the compressed air source 7 through an air supply hole 14 formed in the housing 12. And the bearing member 1
1 is a cylindrical sintered body obtained by impregnating a resin into a porous body obtained by compacting carbon or graphite and then sintering, and cutting the inner peripheral surface side into a rectangular shape, The ring-shaped permanent magnet body 20 is fitted to the cut portion. An air supply cavity 15 is provided on the outer peripheral side and is connected to the air supply hole 14. On the other hand, the mating member 1 uses, for example, a rotating shaft 1A made of a magnetic material obtained by plating carbon steel for machine structural use, and the rotating shaft 1A contains a rod-shaped magnet having the same polarity as that of the ring-shaped magnet body 20. A magnetic repulsive force composed of repulsive magnetic fields of the two magnets 1B and 20 is formed in the bearing gap 4 facing the ring-shaped magnet body 20.

【0023】かかる実施例によれば、圧縮空気供給源7
より給気孔14及び給気キャビティ15を介して焼結体
からなる軸受部材11に圧縮空気を供給する事により、
該焼結体内に形成された多数の微小連通孔より軸受空隙
4にむけ圧縮空気が流出し、相手部材1の全周に亙って
圧縮空気による支持力が発生するとともに、前記軸受部
材11のほぼ中央部に位置する軸受空隙4に2つの永久
磁石1B、20の反発磁界からなる磁気的反発力が生
じ、前記実施例と同様な効果が生じる。
According to such an embodiment, the compressed air supply source 7
By supplying compressed air to the bearing member 11 made of a sintered body through the air supply hole 14 and the air supply cavity 15,
Compressed air flows out into the bearing gap 4 through a large number of minute communication holes formed in the sintered body, and a supporting force of the compressed air is generated over the entire circumference of the mating member 1, and the bearing member 11 A magnetic repulsive force composed of the repulsive magnetic fields of the two permanent magnets 1B and 20 is generated in the bearing gap 4 located substantially in the center, and the same effect as that of the above-described embodiment is produced.

【0024】[0024]

【発明の効果】以上記載した如く本発明によれば、気体
軸受は絶対的な負荷能力が小さいが、永久磁石の反発力
は気体軸受の負荷能力に比べ相対的に大きく軸受の負荷
能力を大幅に向上させることができる。特に永久磁石の
反発力が軸の回転数に無関係であることから気体軸受の
低速回転域での負荷能力改善に非常に効果的である。又
本発明によれば、負荷重量負担が大きい軸受においても
効果的に非接触で保持でき、空気(気体)の粘性が小さ
いために起因する微小振動の発生を有効に阻止し得る。
更に本発明によればコイルやコントロール装置等の電気
的制御部品を用いる事なく簡単な構成で電気目的を達成
し、これにより構成の簡単化とともに、特に防爆性を数
段高める事が出来る。
As described above, according to the present invention, the absolute load capacity of the gas bearing is small, but the repulsive force of the permanent magnet is relatively large as compared with the load capacity of the gas bearing, and the load capacity of the bearing is greatly increased. Can be improved. In particular, since the repulsive force of the permanent magnet is irrelevant to the rotation speed of the shaft, it is very effective in improving the load capacity of the gas bearing in the low speed rotation range. Further, according to the present invention, even a bearing that bears a heavy load can be effectively held in a non-contact manner, and it is possible to effectively prevent the occurrence of minute vibrations due to the low viscosity of air (gas).
Further, according to the present invention, the electric purpose can be achieved with a simple structure without using an electric control component such as a coil or a control device, whereby the structure can be simplified and particularly the explosion-proof property can be increased by several steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る多数孔型の気体軸受構造
を示す要部概略図で、(A)は軸方向に直交して切断し
た横断面図、(B)は縦断面図を示す。
FIG. 1 is a schematic view of a main part of a multi-hole type gas bearing structure according to an embodiment of the present invention, in which (A) is a cross-sectional view taken along a line orthogonal to the axial direction, and (B) is a vertical cross-sectional view. Show.

【図2】本発明の他の実施例に係わる永久磁石を軸受の
下側周面に組み込んだ気体軸受構造を示す要部概略図
で、軸方向に直交して切断した横断面図である。
FIG. 2 is a schematic view of a main part showing a gas bearing structure in which a permanent magnet according to another embodiment of the present invention is incorporated in the lower peripheral surface of the bearing, and is a cross-sectional view taken along a line orthogonal to the axial direction.

【図3】本発明の第3実施例に係わる永久磁石を組み込
んだティルティングパット形の気体軸受断面図。
FIG. 3 is a sectional view of a tilting pad type gas bearing incorporating a permanent magnet according to a third embodiment of the present invention.

【図4】図4は多孔質型の軸受構造を示す。FIG. 4 shows a porous bearing structure.

【図5】従来技術のラジアル磁気軸受の構成図。FIG. 5 is a configuration diagram of a conventional radial magnetic bearing.

【符号の説明】[Explanation of symbols]

1 相手部材 4 軸受空隙 3、11、12 軸受本体 5、14 給気孔 20、21、1B 永久磁石 1 Mating member 4 Bearing gap 3, 11, 12 Bearing body 5, 14 Air supply hole 20, 21, 1B Permanent magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 相手部材と軸受面との間の軸受空隙に圧
縮気体を介在させるとともに、該前記軸受空隙の少なく
とも相手部材の負荷を受ける部位に永久磁石により形成
される磁気的作用力、好ましくは磁気的反発力を作用さ
せたことを特徴とする気体軸受構造。
1. A magnetic force formed by a permanent magnet in a bearing space between a mating member and a bearing surface, and a compressed gas is interposed in the bearing space, and at least a portion of the bearing space receiving a load of the mating member, preferably a magnetic force. Is a gas bearing structure characterized by magnetic repulsion.
JP16309395A 1995-06-07 1995-06-07 Gas bearing structure Expired - Fee Related JP3408664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16309395A JP3408664B2 (en) 1995-06-07 1995-06-07 Gas bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16309395A JP3408664B2 (en) 1995-06-07 1995-06-07 Gas bearing structure

Publications (2)

Publication Number Publication Date
JPH08334124A true JPH08334124A (en) 1996-12-17
JP3408664B2 JP3408664B2 (en) 2003-05-19

Family

ID=15767055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16309395A Expired - Fee Related JP3408664B2 (en) 1995-06-07 1995-06-07 Gas bearing structure

Country Status (1)

Country Link
JP (1) JP3408664B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267636B1 (en) 1998-02-12 2001-07-31 Canon Kabushiki Kaisha Method for manufacturing electron emission element, electron source, and image forming apparatus
WO2016140426A1 (en) * 2015-03-04 2016-09-09 한국에너지기술연구원 Hybrid passive magnetic bearing
JP2016539286A (en) * 2013-10-11 2016-12-15 ゼネラル・エレクトリック・カンパニイ Journal bearing assembly and method of assembling the same
CN107269702A (en) * 2017-07-20 2017-10-20 中国工程物理研究院机械制造工艺研究所 A kind of pressurized air journal bearing
CN112578853A (en) * 2020-12-15 2021-03-30 安徽东升达精密机件有限公司 Stop fixing mechanism and notebook computer rotating shaft based on same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267636B1 (en) 1998-02-12 2001-07-31 Canon Kabushiki Kaisha Method for manufacturing electron emission element, electron source, and image forming apparatus
US6379211B2 (en) 1998-02-12 2002-04-30 Canon Kabushiki Kaisha Method for manufacturing electron emission element, electron source, and image forming apparatus
US7021981B2 (en) 1998-02-12 2006-04-04 Canon Kabushiki Kaisha Method for manufacturing electron emission element, electron source, and image forming apparatus
JP2016539286A (en) * 2013-10-11 2016-12-15 ゼネラル・エレクトリック・カンパニイ Journal bearing assembly and method of assembling the same
WO2016140426A1 (en) * 2015-03-04 2016-09-09 한국에너지기술연구원 Hybrid passive magnetic bearing
CN107269702A (en) * 2017-07-20 2017-10-20 中国工程物理研究院机械制造工艺研究所 A kind of pressurized air journal bearing
CN112578853A (en) * 2020-12-15 2021-03-30 安徽东升达精密机件有限公司 Stop fixing mechanism and notebook computer rotating shaft based on same

Also Published As

Publication number Publication date
JP3408664B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US8482174B2 (en) Electromagnetic actuator
US4827169A (en) Hybrid fluid bearing with stiffness modified by electromagnetic effect
US7467930B2 (en) Magnetically levitated pump utilizing magnetic bearings
US5894181A (en) Passive magnetic bearing system
JP3121819B2 (en) Magnetic bearing device with permanent magnet that receives radial force applied to the shaft
AU2003245151B2 (en) Device to relieve thrust load in a rotor-bearing system using permanent magnets
WO2001086151A3 (en) Magnetic bearing with damping
US20030180162A1 (en) Vacuum pump
US20110163622A1 (en) Combination Radial/Axial Electromagnetic Actuator
CN101218445A (en) Device for magnetically supporting a rotor shaft comprising a radial guiding element and having axial adjustment
EP0633406A4 (en) Combination bearing construction.
JPH08261237A (en) Gas turbine engine
JPH08334124A (en) Gas bearing structure
CN101218446B (en) Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements
JP3106474B2 (en) Hydrostatic gas bearing
JP4204251B2 (en) Static pressure gas bearing spindle device
WO2001084693A1 (en) Full levitation bearing system with improved passive radial magnetic bearings
JP2014149082A (en) Magnetic fluid sealing apparatus with shunt element
US3719405A (en) Gas bearing
JPS62127513A (en) Spindle
Heya et al. Triaxial active control magnetic bearing with asymmetric structure
JPS63210414A (en) Magnetic bearing device
JPH0226310A (en) Magnetic thrust bearing
RU214414U1 (en) Non-contact bearing on a passive magnetic suspension of increased reliability
JP2676359B2 (en) Position detector for magnetic bearings

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030212

LAPS Cancellation because of no payment of annual fees