JP3408664B2 - Gas bearing structure - Google Patents

Gas bearing structure

Info

Publication number
JP3408664B2
JP3408664B2 JP16309395A JP16309395A JP3408664B2 JP 3408664 B2 JP3408664 B2 JP 3408664B2 JP 16309395 A JP16309395 A JP 16309395A JP 16309395 A JP16309395 A JP 16309395A JP 3408664 B2 JP3408664 B2 JP 3408664B2
Authority
JP
Japan
Prior art keywords
bearing
mating member
magnet
gas
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16309395A
Other languages
Japanese (ja)
Other versions
JPH08334124A (en
Inventor
岩男 松本
豊秋 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16309395A priority Critical patent/JP3408664B2/en
Publication of JPH08334124A publication Critical patent/JPH08334124A/en
Application granted granted Critical
Publication of JP3408664B2 publication Critical patent/JP3408664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、回転軸又は及び往復運
動をする軸を支持する気体軸受構造に係り、特に回転機
械に適用される気体軸受構造に関する。 【0002】 【従来の技術】気体軸受は一般に、相手部材と軸受面と
の間に形成される軸受空隙部に、絞りを通過した圧縮気
体を導き、その圧力分布で負荷能力と軸受剛性を得るも
ので、摩擦抵抗が少なく高精度でクリーンである点等の
特徴を生かし、精密機器などに広く使用されている。 【0003】そしてかかる気体軸受には前記絞りの形式
により、絞りに多孔質材を用いる多孔質型、数〜数十個
の小穴を軸受面に開口させてなる多数孔型、軸受内周面
に浅い多数の細溝を設け該細溝を圧縮空気導入孔に連通
させた表面絞り型等の種類があり、性能上の要求により
使い分けられる。 【0004】例えば、軸受空隙が小さく、高精度、高剛
性をねらう場合には、多孔質型と表面絞り型が適してい
る。一方、加工の容易さ、大形軸受という点では、多数
孔型が適しており、特に相手部材が回転軸で、遠心力等
により回転軸の膨張等が生じ、回転時の軸受空隙が静止
時の軸受空隙に比較して変化する。特に軸受口径が大径
の物については多孔質型の絞り機構の採用は困難であ
り、多数孔型が用いられている。 【0005】従って小型精密機器の分野を除いて多数孔
型が多く用いられるが、多数孔型の気体軸受はステンレ
ス鋼、機械構造用炭素鋼にメッキを行ったものを用い、
一方相手側の被軸受部材にも同様なものを用いるから、
例え圧縮空気を介在させていても負荷重量負担が大き
く、軸受の焼き付け事故が多いという問題が生じる。又
前記気体軸受においては空気の粘性が小さいために、振
動減衰特性が悪く、絞りから流出する圧力空気の流動に
よって微小振動が発しやすい。更に、高速回転になると
前記微小振動が増幅されていわゆる振れ回り現象が発生
し、その結果軸受の焼き付け事故が発生するという問題
が生じる。 【0006】かかる欠点を解消するために、例えば特開
平3−74628号に示すように、回転軸の周囲に圧力
空気を流入させる吸気口を有する軸受本体に、該回転中
の固有振動、同期振動振れ回り等の不安定振動を検出
し、その信号に対応して減衰方向に圧力波を付加する固
有振動減衰手段、言換えれば前記吸気口に連通する第1
の圧縮空気源より圧力の高い第2の圧力空気源を設けた
技術が開示されている。 【0007】しかしながら前記の様に複数の圧力源を設
ける事は構成の煩雑化につながり、而も不安定振動を検
出し、その信号に対応して減衰方向に圧力波を付加する
事は電気的検出手段やその為の電気的制御手段も必要と
し、前記したように構成の煩雑化につながるとともに、
特に防爆性の強い箇所に用いる事が困難である。 【0008】一方前記圧縮空気の代りに磁石の磁気的反
発力を利用した磁石軸受も従来より存在する。図5はか
かる従来の技術によるラジアル磁石軸受の構成を示す。
図において020は回転軸、021は磁極、022はバ
イアス電流を流すコイル、023はコントロール電流を
流すコイル、024は位置センサ、025はコントロー
ル装置である。バイアス電流IR コイル022に流すこ
とによりY方向の相隣れる電極021で磁気ループを形
成する。この磁力の大きさにより回転軸020のY方向
の位置が決まる。またX方向にも同様な装置がある。か
かる軸受によれば軸の位置基準置を設定し、設定置と位
置センサ024からの信号置とを比べそれが零となる方
向へコントロール装置025からコントロール電流IC
を流すことにより前記磁気ループにより設定された磁気
的反発力が回転軸020に作用し非接触の軸受が可能と
なる。 【0009】しかしながら前記装置においてもコイルや
コントロール装置等を必要とし、構成の煩雑化につなが
るとともに、特に防爆性の強い箇所に用いる事が困難で
ある。 【0010】本発明はかかる従来技術の欠点に鑑み、負
荷重量負担が大きい軸受においても効果的に非接触で保
持でき、空気(気体)の粘性が小さいために起因する微
小振動の発生を有効に阻止し得る気体軸受構造を提供す
る事にある。本発明の他の目的は低速回転域での負荷能
力を有効に改善し得る気体軸受構造を提供する事にあ
る。本発明の他の目的はコイルやコントロール装置等の
電気的制御部品を用いる事なく簡単な構成で電気目的を
達成し、これにより構成の簡単化とともに、特に防爆性
を数段高める事の出来る気体軸受構造を提供する事にあ
る。 【0011】 【課題を解決するための手段】本願発明はかかる技術的
課題に鑑み、相手部材と軸受面との間の軸受空隙に圧縮
気体を介在させるとともに、該前記軸受空隙の少なくと
も相手部材の負荷を受ける部位に永久磁石により形成さ
れる磁気的反発力を作用させたことを要旨とし、請求項
1記載の発明は、軸受空隙の少なくとも相手部材の負荷
を受ける部位に永久磁石により形成される磁気的反発力
を作用させた軸受構造において、軸受本体軸受面側に
は、該軸受本体内周面と同径の内周径を有するリング状
磁石体が嵌着されており、そして該軸受本体外周面側よ
り磁石体内周面側に向けて、周方向に多数の給気孔を穿
孔配列して、相手部材と軸受面との間の軸受空隙に圧縮
気体を介在させるとともに、一方相手部材は機械構造用
炭素鋼からなる回転軸を用い、該回転軸に前記リング状
磁石体と同極性の永久磁石を内包して構成されており、
前記軸受空隙に反発磁界が生じる様に構成されているこ
とを特徴とする。 【0012】又本発明は多数孔型の気体軸受構造のみな
らず、多孔質型と表面絞り型の気体軸受にも有効であ
る。 【0013】 【作用】かかる技術手段によれば、圧縮空気の軸受空隙
のうち、少なくとも相手部材の負荷が加重される部位に
圧縮空気による支持力とともに磁気的反発力を生じさせ
たために、気体軸受の欠点であった低速回転時における
負荷能力が向上するとともに、負荷重量負担が大きい軸
受においても効果的に非接触で前記相手部材を保持する
事が出来る。また前記磁気的反発力が永久磁石で構成さ
れているために、一切のコントロール装置及び非常用安
全装置等の電気的制御装置が必要でなくなり、これによ
り構成の簡単化とともに、特に防爆性を数段高める事の
出来る気体軸受構造を得ることができる。 【0014】更に本発明は、空気(気体)の粘性が小さ
いために負荷能力が小さくアンバランスによる振動に対
して、前記磁気的反発力がこれを阻止する方向に作用
し、振動を小さく抑えるとともに、過大振動に起因する
焼き付き等の事故を防止し得る。 【0015】 【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但し、この実施例に記載されてい
る構成部品の寸法、材質、形状、その相対位置などは特
に特定的な記載がない限りは、この発明の範囲をそれの
みに限定する趣旨ではなく単なる説明例に過ぎない。図
1は本発明の実施例に係る多数孔型の気体軸受構造を示
す要部概略図で、(A)は軸方向に直交して切断した横
断面図、(B)は縦断面図を示す。図において1は相手
部材(回転軸)、3は軸受本体(軸受メタル)で、その
間に薄層リング状の軸受空隙4が形成してある。 【0016】軸受本体3の軸受面側には、該軸受本体3
内周面と同径の内周径を有するリング状磁石体20が嵌
着されており、そして該軸受本体3外周面側より磁石体
20内周面側に向けて、周方向に等間隔に多数の給気孔
5を穿孔配列する。該給気孔5は図1(B)に示すよう
に、基側(軸受本体3外周側)にチェック弁6を介して
圧縮空気供給源7と連設させるとともに、先端側をオリ
フィス状の絞り5aを介して磁石体20内周面に開口し
ている。又前記相手部材1外周と対面する磁石体20内
周面と軸受本体3内周面には楔状気膜が形成されるよう
に、前記開口と連絡する気路が軸線方向に所定長さ延在
している。 【0017】一方相手部材1は例えば機械構造用炭素鋼
にメッキを行った磁性材からなる回転軸1Aを用い、該
回転軸1Aに前記リング状磁石体20と同極性の円棒状
永久磁石1Bが内包して構成されており、前記リング状
磁石体20と対向する軸受空隙4に2つの磁石1B、2
0の反発磁界からなる磁気的反発力が生じる様に構成さ
れている。 【0018】かかる実施例によれば、チェック弁6及び
給気孔5を介して圧縮空気供給源7より軸受空隙4に圧
縮空気を供給する事により、相手部材1の全周に亙って
圧縮空気による支持力が発生するとともに、該軸受空隙
4に2つの永久磁石の反発磁界からなる磁気的反発力が
生じるために、低速回転時においても負荷能力が向上す
るとともに、負荷重量負担が大きい軸受構造においても
効果的に非接触で前記相手部材1を保持する事が出来
る。 【0019】尚、前記相手部材1は、詳細には図示して
いないが縦形の回転機械の回転軸1Aであるので軸受荷
重を支える必要がなく軸受全周に永久磁石2を組み込む
ことで負荷能力を増大させている。 【0020】図2は、横形の回転機械に適用されるスリ
ーブ軸受構造であり、横型の回転機械の場合軸受重荷が
下向きに作用するので、2つの永久磁石1C、21の反
発磁界からなる磁気的反発力を軸受空隙4の下側周面に
だけ作用させている。この為、前記軸受本体3に組込む
磁石体21は半円リング状をなし、又相手部材に内包す
る棒状磁石1Cも半円状をなす。 【0021】図3は本発明の第3の実施例で、縦形の回
転機械に用いるティルティングパット形の永久磁石2を
組み込んだ気体軸受であり、16は軸受パット、17は
ピボットである。本実施例においても、相手部材に機械
構造用炭素鋼にメッキを行った磁性材からなる回転軸1
A内に棒状磁石1Bを内包したものを用い、一方ティル
ティングパット形のほぼリング状の永久磁石20は軸受
本体3側に組込まれている為に、前記実施例と同様に全
周に亙って磁気的反発力を生じさせる事が出来る。尚、
前記スリーブ軸受形やティルティングパット形の軸受に
ついて説明したがスラスト軸受についても永久磁石を組
み込んだ気体軸受とすることができる。 【0022】図4は多孔質型の軸受構造を示し、ハウジ
ング12の内面に多孔質材からなる軸受部材11を配設
し、その軸受面が相手部材1である回転軸に軸受空隙4
を介して対向させている。軸受部材11とハウジング1
2の間には、円環状の給気キャビティ15が設けられて
おり、ハウジング12に穿孔された給気孔14を介して
圧縮空気源7と接続されている。そして前記軸受部材1
1はカーボン又はグラファイトを圧粉成形した後に焼結
してなる多孔質体に樹脂を含浸させた円筒状の焼結体で
形成するとともに、その内周面側を矩形状に削成し、該
削成部にリング円状の永久磁石体20を嵌着する。又外
周側には給気キャビティ15を設け給気孔14と連続さ
せる。一方相手部材1は例えば機械構造用炭素鋼にメッ
キを行った磁性材からなる回転軸1Aを用い、該回転軸
1Aに前記リング状磁石体20と同極性の棒状磁石が内
包されており、前記リング状磁石体20と対向する軸受
空隙4に2つの磁石1B、20の反発磁界からなる磁気
的反発力が生じる様に構成されている。 【0023】かかる実施例によれば、圧縮空気供給源7
より給気孔14及び給気キャビティ15を介して焼結体
からなる軸受部材11に圧縮空気を供給する事により、
該焼結体内に形成された多数の微小連通孔より軸受空隙
4にむけ圧縮空気が流出し、相手部材1の全周に亙って
圧縮空気による支持力が発生するとともに、前記軸受部
材11のほぼ中央部に位置する軸受空隙4に2つの永久
磁石1B、20の反発磁界からなる磁気的反発力が生
じ、前記実施例と同様な効果が生じる。 【0024】 【発明の効果】以上記載した如く本発明によれば、気体
軸受は絶対的な負荷能力が小さいが、永久磁石の反発力
は気体軸受の負荷能力に比べ相対的に大きく軸受の負荷
能力を大幅に向上させることができる。特に永久磁石の
反発力が軸の回転数に無関係であることから気体軸受の
低速回転域での負荷能力改善に非常に効果的である。又
本発明によれば、負荷重量負担が大きい軸受においても
効果的に非接触で保持でき、空気(気体)の粘性が小さ
いために起因する微小振動の発生を有効に阻止し得る。
更に本発明によればコイルやコントロール装置等の電気
的制御部品を用いる事なく簡単な構成で電気目的を達成
し、これにより構成の簡単化とともに、特に防爆性を数
段高める事が出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas bearing structure for supporting a rotating shaft or a reciprocating shaft, and more particularly to a gas bearing structure applied to a rotating machine. . 2. Description of the Related Art Generally, in a gas bearing, a compressed gas that has passed through a throttle is introduced into a bearing gap formed between a mating member and a bearing surface, and a load distribution and a bearing rigidity are obtained by the pressure distribution. It is widely used in precision equipment, etc., taking advantage of its features such as low frictional resistance and high accuracy and cleanness. [0003] Such a gas bearing has a porous type using a porous material for the throttle, a multi-hole type in which several to several tens of small holes are opened in the bearing surface, and a gas bearing having an inner peripheral surface. There are a variety of types such as a surface drawing type in which a large number of shallow narrow grooves are provided and the narrow grooves communicate with the compressed air introduction holes. For example, when a bearing gap is small and high precision and high rigidity are aimed at, a porous type and a surface drawing type are suitable. On the other hand, in terms of ease of processing and large bearings, a multi-hole type is suitable.Particularly, the mating member is a rotating shaft, centrifugal force causes expansion of the rotating shaft, etc., and the bearing gap during rotation is stationary. Of the bearing gap. In particular, for a bearing having a large diameter, it is difficult to employ a porous type drawing mechanism, and a multi-hole type is used. Therefore, except for the field of small precision equipment, a multi-hole type is often used, but a multi-hole type gas bearing is formed by plating stainless steel or carbon steel for machine structure.
On the other hand, since the same material is used for the mating bearing member,
Even if compressed air is interposed, there is a problem in that the load weight burden is large and bearings are frequently burned. Further, in the gas bearing, since the viscosity of the air is small, the vibration damping characteristics are poor, and the minute vibration is easily generated by the flow of the compressed air flowing out of the throttle. Further, when the rotation speed is increased, the minute vibration is amplified and a so-called whirling phenomenon occurs. As a result, there is a problem that a burning accident of the bearing occurs. In order to solve such a drawback, for example, as shown in Japanese Patent Application Laid-Open No. 3-74628, a bearing body having an intake port through which compressed air flows around a rotating shaft is provided with a natural vibration and a synchronous vibration during the rotation. Natural vibration damping means for detecting an unstable vibration such as whirling and adding a pressure wave in a damping direction in accordance with the signal, in other words, a first vibration communicating means connected to the intake port.
A technique is disclosed in which a second pressure air source having a higher pressure than the compressed air source is provided. However, providing a plurality of pressure sources as described above complicates the configuration. Further, detecting unstable vibration and adding a pressure wave in a damping direction in response to the signal is an electrical problem. Detecting means and electrical control means for it are also required, which leads to complicated configuration as described above,
In particular, it is difficult to use in places with strong explosion-proof properties. On the other hand, there has conventionally been a magnet bearing utilizing a magnetic repulsive force of a magnet instead of the compressed air. FIG. 5 shows the configuration of such a conventional radial magnet bearing.
In the figure, 020 is a rotation axis, 021 is a magnetic pole, 022 is a coil for flowing a bias current, 023 is a coil for flowing a control current, 024 is a position sensor, and 025 is a control device. To form a magnetic loop electrode 021 are next phase in the Y direction by flowing the bias current I R coil 022. The position of the rotating shaft 020 in the Y direction is determined by the magnitude of the magnetic force. There is also a similar device in the X direction. According to such a bearing, the position reference position of the shaft is set, the setting position is compared with the signal position from the position sensor 024, and the control device 025 controls the control current I C in a direction in which it becomes zero.
, The magnetic repulsion force set by the magnetic loop acts on the rotating shaft 020 to enable a non-contact bearing. However, the above-described device also requires a coil, a control device, and the like, which leads to a complicated configuration, and it is difficult to use the device in a location having a particularly strong explosion-proof property. In view of the above-mentioned drawbacks of the prior art, the present invention can effectively maintain a non-contact state even in a bearing having a large load weight, and effectively prevents the generation of minute vibrations due to the low viscosity of air (gas). It is an object of the present invention to provide a gas bearing structure that can be prevented. Another object of the present invention is to provide a gas bearing structure capable of effectively improving the load capability in a low speed rotation range. Another object of the present invention is to achieve an electric object with a simple structure without using electric control parts such as coils and control devices, thereby simplifying the structure and improving the explosion-proof property by several steps. It is to provide a bearing structure. SUMMARY OF THE INVENTION In view of the above technical problems, the present invention has a compressed gas interposed in a bearing gap between a mating member and a bearing surface, and has at least the mating member in the bearing gap. The invention is characterized in that a magnetic repulsive force formed by a permanent magnet is applied to a portion receiving a load, and the invention according to claim 1 is formed by a permanent magnet at least in a portion of the bearing gap that receives a load of a mating member. In a bearing structure in which a magnetic repulsion force is applied, a ring-shaped magnet body having an inner diameter equal to the inner diameter of the bearing body is fitted on the bearing surface of the bearing body. A large number of air supply holes are arranged in a circumferential direction from the outer peripheral surface side toward the inner peripheral surface side of the magnet, and compressed gas is interposed in a bearing gap between the mating member and the bearing surface, while the mating member is a machine. Structural carbon steel Using a rotating shaft consisting of, comprising a permanent magnet having the same polarity as the ring-shaped magnet body in the rotating shaft,
The bearing gap is configured to generate a repulsive magnetic field . Further, the present invention is effective not only for a multi-hole type gas bearing structure but also for a porous type and a surface drawing type gas bearing. [0013] According to the above technical means, since the bearing force of the compressed air and the magnetic repulsion force are generated at least in a portion of the bearing gap of the compressed air to which the load of the partner member is applied, the gas bearing is provided. The load capacity at the time of low-speed rotation, which is a drawback of the above, is improved, and the mating member can be effectively held in a non-contact manner even in a bearing having a large load weight load. In addition, since the magnetic repulsion is constituted by permanent magnets, no electrical control device such as a control device and an emergency safety device is required, thereby simplifying the configuration and increasing explosion-proof properties. It is possible to obtain a gas bearing structure that can be stepped up. Further, according to the present invention, the load of the air (gas) is small due to the low viscosity of the air (gas), and the magnetic repulsive force acts in a direction to prevent the vibration due to the imbalance, thereby suppressing the vibration. In addition, accidents such as burn-in caused by excessive vibration can be prevented. Embodiments of the present invention will be described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples. It's just FIG. 1 is a schematic view of a main part showing a multi-hole type gas bearing structure according to an embodiment of the present invention, in which (A) is a cross-sectional view cut perpendicularly to the axial direction, and (B) is a longitudinal cross-sectional view. . In the figure, reference numeral 1 denotes a mating member (rotating shaft), and 3 denotes a bearing body (bearing metal), between which a thin ring-shaped bearing gap 4 is formed. On the bearing surface side of the bearing body 3, the bearing body 3
A ring-shaped magnet body 20 having the same inner diameter as the inner circumferential surface is fitted, and is arranged at equal intervals in the circumferential direction from the outer circumferential surface side of the bearing body 3 toward the inner circumferential surface side of the magnet body 20. A large number of air supply holes 5 are pierced and arranged. As shown in FIG. 1B, the air supply hole 5 is connected to a compressed air supply source 7 via a check valve 6 on the base side (outer peripheral side of the bearing body 3), and an orifice-shaped throttle 5a is formed at the tip end. The opening is formed on the inner peripheral surface of the magnet body 20 through the opening. An air passage communicating with the opening extends a predetermined length in the axial direction so that a wedge-shaped gas film is formed on the inner peripheral surface of the magnet body 20 facing the outer periphery of the counterpart member 1 and the inner peripheral surface of the bearing body 3. are doing. On the other hand, the mating member 1 uses, for example, a rotating shaft 1A made of a magnetic material plated with carbon steel for machine structure, and a rod-shaped permanent magnet 1B having the same polarity as that of the ring-shaped magnet body 20 on the rotating shaft 1A. The two magnets 1 </ b> B, 2 </ b> B
It is configured such that a magnetic repulsive force consisting of a zero repulsive magnetic field is generated. According to this embodiment, the compressed air is supplied from the compressed air supply source 7 to the bearing gap 4 through the check valve 6 and the air supply hole 5, so that the compressed air is supplied over the entire circumference of the mating member 1. And a magnetic repulsive force consisting of the repulsive magnetic fields of the two permanent magnets is generated in the bearing gap 4, so that the load capacity is improved even at low speed rotation and the load weight burden is large. Can effectively hold the mating member 1 in a non-contact manner. The mating member 1 is a rotating shaft 1A of a vertical rotary machine (not shown in detail), so that it is not necessary to support a bearing load. Is increasing. FIG. 2 shows a sleeve bearing structure applied to a horizontal rotating machine. In the case of a horizontal rotating machine, the bearing load acts downward, so that the magnetic field is formed by the repulsive magnetic fields of the two permanent magnets 1C and 21. The repulsive force acts only on the lower peripheral surface of the bearing gap 4. For this reason, the magnet body 21 incorporated in the bearing main body 3 has a semicircular ring shape, and the rod-shaped magnet 1C included in the mating member also has a semicircular shape. FIG. 3 shows a third embodiment of the present invention, which is a gas bearing incorporating a tilting pad type permanent magnet 2 used for a vertical rotary machine, 16 is a bearing pad, and 17 is a pivot. Also in this embodiment, the rotating shaft 1 made of a magnetic material obtained by plating a mating member with carbon steel for machine structural use.
A, in which a rod-shaped magnet 1B is included in A, is used. On the other hand, a tilting pad-shaped substantially ring-shaped permanent magnet 20 is incorporated in the bearing body 3 side, so that the entire circumference is the same as in the above embodiment. Magnetic repulsion can be generated. still,
Although the sleeve bearing type and the tilting pad type bearing have been described, the thrust bearing may be a gas bearing incorporating a permanent magnet. FIG. 4 shows a porous type bearing structure, in which a bearing member 11 made of a porous material is disposed on the inner surface of a housing 12, and the bearing surface of the bearing member 11 is formed on a rotating shaft which is a mating member 1.
Are opposed to each other. Bearing member 11 and housing 1
An annular air supply cavity 15 is provided between the two, and is connected to the compressed air source 7 through an air supply hole 14 formed in the housing 12. And the bearing member 1
1 is formed of a cylindrical sintered body in which resin is impregnated with a porous body obtained by compacting carbon or graphite and then sintering, and the inner peripheral surface side is cut into a rectangular shape. A ring-shaped permanent magnet body 20 is fitted to the cut portion. Further, an air supply cavity 15 is provided on the outer peripheral side so as to be continuous with the air supply hole 14. On the other hand, the mating member 1 uses, for example, a rotating shaft 1A made of a magnetic material plated with carbon steel for machine structure, and the rotating shaft 1A includes a rod-shaped magnet having the same polarity as the ring-shaped magnet body 20. It is configured such that a magnetic repulsive force consisting of the repulsive magnetic fields of the two magnets 1B, 20 is generated in the bearing gap 4 facing the ring-shaped magnet body 20. According to this embodiment, the compressed air supply source 7
By supplying compressed air to the bearing member 11 made of a sintered body through the air supply hole 14 and the air supply cavity 15,
Compressed air flows out toward the bearing gap 4 from a large number of minute communication holes formed in the sintered body, and a supporting force by the compressed air is generated over the entire circumference of the mating member 1. A magnetic repulsive force consisting of the repulsive magnetic fields of the two permanent magnets 1B and 20 is generated in the bearing gap 4 located substantially at the center, and the same effect as in the above embodiment is obtained. As described above, according to the present invention, the gas bearing has a small absolute load capacity, but the repulsive force of the permanent magnet is relatively large as compared with the load capacity of the gas bearing. Ability can be greatly improved. In particular, since the repulsive force of the permanent magnet is independent of the rotational speed of the shaft, it is very effective in improving the load capability of the gas bearing in the low-speed rotation range. Further, according to the present invention, it is possible to effectively hold the bearing in a non-contact manner even in a bearing having a large load weight burden, and it is possible to effectively prevent the generation of minute vibration due to the low viscosity of air (gas).
Further, according to the present invention, an electric object can be achieved with a simple configuration without using electric control parts such as a coil and a control device, so that the configuration can be simplified and the explosion-proof property can be particularly improved by several steps.

【図面の簡単な説明】 【図1】本発明の実施例に係る多数孔型の気体軸受構造
を示す要部概略図で、(A)は軸方向に直交して切断し
た横断面図、(B)は縦断面図を示す。 【図2】本発明の他の実施例に係わる永久磁石を軸受の
下側周面に組み込んだ気体軸受構造を示す要部概略図
で、軸方向に直交して切断した横断面図である。 【図3】本発明の第3実施例に係わる永久磁石を組み込
んだティルティングパット形の気体軸受断面図。 【図4】図4は多孔質型の軸受構造を示す。 【図5】従来技術のラジアル磁気軸受の構成図。 【符号の説明】 1 相手部材 4 軸受空隙 3、11、12 軸受本体 5、14 給気孔 20、21、1B 永久磁石
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a main part showing a multi-hole type gas bearing structure according to an embodiment of the present invention, where (A) is a cross-sectional view cut perpendicularly to the axial direction, B) shows a longitudinal section. FIG. 2 is a schematic cross-sectional view of a main part of a gas bearing structure in which a permanent magnet according to another embodiment of the present invention is incorporated in a lower peripheral surface of a bearing, and is cut perpendicular to the axial direction. FIG. 3 is a sectional view of a tilting pad type gas bearing incorporating a permanent magnet according to a third embodiment of the present invention. FIG. 4 shows a porous type bearing structure. FIG. 5 is a configuration diagram of a conventional radial magnetic bearing. [Description of Signs] 1 Mating member 4 Bearing gap 3, 11, 12 Bearing body 5, 14 Air supply holes 20, 21, 1B Permanent magnet

Claims (1)

(57)【特許請求の範囲】 【請求項1】 軸受空隙の少なくとも相手部材の負荷を
受ける部位に永久磁石により形成される磁気的反発力を
作用させた軸受構造において、 軸受本体軸受面側には、該軸受本体内周面と同径の内周
径を有するリング状磁石体が嵌着されており、そして該
軸受本体外周面側より磁石体内周面側に向けて、周方向
に多数の給気孔を穿孔配列して、相手部材と軸受面との
間の軸受空隙に圧縮気体を介在させるとともに、 一方相手部材は機械構造用炭素鋼からなる回転軸を用
い、該回転軸に前記リング状磁石体と同極性の永久磁石
を内包して構成されており、前記軸受空隙に反発磁界が
生じる様に構成されていることを特徴とする気体軸受構
造。
(57) [Claim 1] In a bearing structure in which a magnetic repulsive force formed by a permanent magnet is applied to at least a portion of a bearing gap that receives a load of a mating member, A ring-shaped magnet body having the same inner diameter as the inner circumferential surface of the bearing body is fitted, and a large number of circumferentially extending from the outer circumferential surface side of the bearing body toward the inner circumferential surface side of the magnet. The air supply holes are pierced and arranged, and compressed gas is interposed in the bearing gap between the mating member and the bearing surface. On the other hand, the mating member uses a rotating shaft made of carbon steel for machine structure, and the ring shaft is used as the rotating shaft. A gas bearing structure comprising a permanent magnet having the same polarity as that of a magnet body and configured to generate a repulsive magnetic field in the bearing gap.
JP16309395A 1995-06-07 1995-06-07 Gas bearing structure Expired - Fee Related JP3408664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16309395A JP3408664B2 (en) 1995-06-07 1995-06-07 Gas bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16309395A JP3408664B2 (en) 1995-06-07 1995-06-07 Gas bearing structure

Publications (2)

Publication Number Publication Date
JPH08334124A JPH08334124A (en) 1996-12-17
JP3408664B2 true JP3408664B2 (en) 2003-05-19

Family

ID=15767055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16309395A Expired - Fee Related JP3408664B2 (en) 1995-06-07 1995-06-07 Gas bearing structure

Country Status (1)

Country Link
JP (1) JP3408664B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69919242T2 (en) 1998-02-12 2005-08-11 Canon K.K. A method of manufacturing an electron-emitting element, electron source and image forming apparatus
US9429191B2 (en) * 2013-10-11 2016-08-30 General Electric Company Journal bearing assemblies and methods of assembling same
WO2016140426A1 (en) * 2015-03-04 2016-09-09 한국에너지기술연구원 Hybrid passive magnetic bearing
CN107269702A (en) * 2017-07-20 2017-10-20 中国工程物理研究院机械制造工艺研究所 A kind of pressurized air journal bearing
CN112578853B (en) * 2020-12-15 2022-12-27 安徽东升达精密机件有限公司 Stop fixing mechanism and notebook computer rotating shaft based on same

Also Published As

Publication number Publication date
JPH08334124A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
US5894181A (en) Passive magnetic bearing system
US4128280A (en) Self-pressurizing floating gas bearing having a magnetic bearing therein
US5751085A (en) Axial gap type electric motor with dynamic pressure air bearing
JP2005532516A (en) Thrust load relaxation device for rotor bearing system using permanent magnet
EP0633406A4 (en) Combination bearing construction.
JP3408664B2 (en) Gas bearing structure
US20200063795A1 (en) Rotation system having radial gas bearing
US5434695A (en) Dynamic pressure bearing and rotary polygon mirror device with the bearing
JP4204251B2 (en) Static pressure gas bearing spindle device
JPS62127513A (en) Spindle
US20030011256A1 (en) Hydrodynamic gas bearing
EP0794344A4 (en) High-speed rotary body
JPS63210414A (en) Magnetic bearing device
JP2810631B2 (en) Hydrostatic gas bearing device
JP2004003572A (en) Magnetic bearing and bearing device provided with it
JPS59175619A (en) Dynamic pressure pneumatic bearing
JP2676359B2 (en) Position detector for magnetic bearings
RU214414U1 (en) Non-contact bearing on a passive magnetic suspension of increased reliability
JP2790446B2 (en) Laser beam scanner motor
JPH06200941A (en) Magnetic supporter
JPH03255220A (en) Magnetic bearing device
JPH0216363A (en) Starting charger device for engine
JP2002339970A (en) Magnetic bearing device, and turbo-molecular pump
KR940000809Y1 (en) Bearing device
JPH0752418Y2 (en) Dynamic bearing structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030212

LAPS Cancellation because of no payment of annual fees