JPH0833252B2 - Dehumidifier - Google Patents

Dehumidifier

Info

Publication number
JPH0833252B2
JPH0833252B2 JP2200702A JP20070290A JPH0833252B2 JP H0833252 B2 JPH0833252 B2 JP H0833252B2 JP 2200702 A JP2200702 A JP 2200702A JP 20070290 A JP20070290 A JP 20070290A JP H0833252 B2 JPH0833252 B2 JP H0833252B2
Authority
JP
Japan
Prior art keywords
temperature
evaporators
evaporator
indoor air
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2200702A
Other languages
Japanese (ja)
Other versions
JPH0484074A (en
Inventor
敏郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2200702A priority Critical patent/JPH0833252B2/en
Publication of JPH0484074A publication Critical patent/JPH0484074A/en
Publication of JPH0833252B2 publication Critical patent/JPH0833252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は冷凍サイクルを用いた除湿装置の改良に関
するものである。
TECHNICAL FIELD The present invention relates to an improvement of a dehumidifying device using a refrigeration cycle.

〔従来の技術〕[Conventional technology]

第3図は従来の除湿装置を示す構成図で、図におい
て、(1)は圧縮機、(2)は冷媒を流通する冷媒配管
(図示せず)とこの冷媒配管の外周面に取付けられたフ
ィン(図示せず)とを備えた凝縮器、(3)は絞り装
置、(4)は冷媒を流通する冷媒配管(図示せず)とこ
の冷媒配管の外周面に取付けられたフィン(図示せず)
とを備えた蒸発器で、これらを冷媒配管(5)で順次接
続して冷凍サイクルを構成している。(6)は蒸発器
(4)から凝縮器(2)へと直列に室内空気を送風する
送風機、(7)は蒸発器(4)の下方に配設されたドレ
ンパン、(8)はドレンパン(7)に接続された排水管
である。
FIG. 3 is a block diagram showing a conventional dehumidifier, in which (1) is a compressor, (2) is a refrigerant pipe (not shown) through which a refrigerant flows, and is attached to the outer peripheral surface of this refrigerant pipe. A condenser provided with a fin (not shown), (3) a throttle device, (4) a refrigerant pipe (not shown) through which a refrigerant flows, and a fin (not shown) attached to the outer peripheral surface of this refrigerant pipe. No)
In the evaporator provided with, the refrigeration cycle is configured by sequentially connecting these with the refrigerant pipe (5). (6) is a blower that blows indoor air in series from the evaporator (4) to the condenser (2), (7) is a drain pan disposed below the evaporator (4), and (8) is a drain pan ( It is a drainage pipe connected to 7).

次に動作について説明する。圧縮機(1)から吐出さ
れた高温高圧のガス冷媒は凝縮器(2)において、ここ
へ送風機(6)によって矢印方向に送風される蒸発器
(4)を通過した室内空気と熱交換し冷却され凝縮し高
圧液冷媒となる。そしてこの高圧液冷媒は絞り装置
(3)において減圧され低圧気液二相冷媒となり、さら
に蒸発器(4)において、送風機(6)によって矢印方
向に送風される室内空気と熱交換し、蒸発し、低圧ガス
冷媒となって圧縮機(1)へ戻る。
Next, the operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor (1) is cooled in the condenser (2) by exchanging heat with the room air that has passed through the evaporator (4) blown by the blower (6) in the direction of the arrow. It is condensed and becomes high pressure liquid refrigerant. Then, this high-pressure liquid refrigerant is decompressed in the expansion device (3) to become a low-pressure gas-liquid two-phase refrigerant, and further in the evaporator (4), heat is exchanged with the room air blown by the blower (6) in the direction of the arrow to evaporate. , Becomes a low-pressure gas refrigerant and returns to the compressor (1).

一方室内空気は送風機(6)によって蒸発器(4)か
ら凝縮器2へと矢印方向に直列に送風され、蒸発器
(4)通過時に絞り装置(3)から蒸発器(4)に供給
される低圧気液二相冷媒と熱交換し冷却されると共に蒸
発器(4)のフィン表面温度が送風される室内空気の露
点温度よりも低いためフィン表面に結露し、この結露に
よって除湿される。この除湿された室内空気はさらに凝
縮器(2)において圧縮機(1)から吐出される高温高
圧のガス冷媒と熱交換し加熱され、加熱により温度上昇
し相対湿度が低下して室内に戻る。この室内空気の循環
により室内空気は徐々に除湿されて行く。なお、上記フ
ィン表面に結露した結露水は重力によってフィン表面を
下方に伝いドレンパン(7)に滴下し、排水管(8)を
通り室外に排出される。
On the other hand, the indoor air is blown by the blower (6) from the evaporator (4) to the condenser 2 in series in the arrow direction, and is supplied from the expansion device (3) to the evaporator (4) when passing through the evaporator (4). Since the fins are cooled by exchanging heat with the low-pressure gas-liquid two-phase refrigerant and the fin surface temperature of the evaporator (4) is lower than the dew point temperature of the blown indoor air, dew condensation occurs on the fin surfaces and dehumidifies by this dew condensation. The dehumidified indoor air is further heated in the condenser (2) by exchanging heat with the high-temperature and high-pressure gas refrigerant discharged from the compressor (1), and the temperature rises due to heating and the relative humidity decreases and returns to the room. The indoor air is gradually dehumidified by the circulation of the indoor air. The dew condensation water that has condensed on the surface of the fins travels down the surface of the fins by gravity and drops into the drain pan (7), and is discharged outside the room through the drain pipe (8).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の除湿装置は以上のように構成されているので、
室内空気の湿度が低くなるに従い上記室内空気の露点温
度よりも低い表面温度の蒸発器の表面積は少なくなり結
露量が減少し、やがて全く結露しなくなる。このように
室内空気の湿度の低下に伴ない除湿量は減少し、やがて
除湿不能となる等の問題点があった。
Since the conventional dehumidifier is configured as described above,
As the humidity of the indoor air becomes lower, the surface area of the evaporator having a surface temperature lower than the dew point temperature of the indoor air becomes small, the amount of dew condensation decreases, and eventually the dew condensation stops. In this way, the dehumidification amount decreases with the decrease in the humidity of the indoor air, and there is a problem that dehumidification becomes impossible in the end.

この発明は上記のような問題点を解決するためなされ
たもので、低湿度条件においても除湿量の低下の少ない
除湿装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a dehumidifying device with a small decrease in dehumidification amount even under low humidity conditions.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る除湿装置は室内空気の送風方向に対し
複数個の蒸発器に直列に配設し、上記複数個の蒸発器に
それぞれ二方弁と絞り装置とを直列に接続すると共に、
上記蒸発器の表面温度を検出する検出手段と、上記蒸発
器に送風する室内空気の露点温度を検出する露点温度検
出手段とを設け、上記両検出手段の検出信号を比較し、
その比較値に応じて上記二方弁を開閉制御すると共に、
上記送風手段による上記複数個の蒸発器への送風量を制
御するようにしたのである。
The dehumidifying device according to the present invention is arranged in series with a plurality of evaporators in the blowing direction of room air, and a two-way valve and a throttle device are connected in series with the plurality of evaporators, respectively,
A detection means for detecting the surface temperature of the evaporator and a dew-point temperature detection means for detecting the dew-point temperature of the room air blown to the evaporator are provided, and the detection signals of the both detection means are compared,
While controlling the opening and closing of the two-way valve according to the comparison value,
The amount of air blown to the plurality of evaporators by the air blower is controlled.

また室内空気の送風方向に対し複数個の蒸発器を並列
に配設し並列に室内空気を送風すると共に、上記複数個
の蒸発器のそれぞれに二方弁と絞り装置とを直列に接続
し、上記蒸発器の表面温度を検出する温度検出手段と、
上記室内空気の露点温度を検出する露点温度検出手段と
の両検出手段の検出信号を比較し、その比較値に応じて
上記二方弁を開閉制御すると共に上記送風手段による上
記複数個の蒸発器への送風量を制御するようにしたもの
である。
A plurality of evaporators are arranged in parallel with respect to the blowing direction of the indoor air to blow the indoor air in parallel, and a two-way valve and a throttle device are connected in series to each of the plurality of evaporators, Temperature detecting means for detecting the surface temperature of the evaporator,
The dew point temperature detecting means for detecting the dew point temperature of the indoor air is compared with the detection signals of both detecting means, and the two-way valve is opened / closed according to the comparison value and the plurality of evaporators are provided by the blowing means. It controls the amount of air blown into.

〔作用〕[Action]

この発明における除湿装置は複数個の蒸発器に送風す
る室内空気の露点温度を検出する露点温度検出手段と、
上記複数個の蒸発器の温度を検出する温度検出手段との
両検出手段の検出信号が制御手段によって比較され、そ
の比較値に応じて、上記複数個の蒸発器にそれぞれ直列
に接続された二方弁が開閉制御されると共に、送風手段
による複数個の蒸発器への送風量が制御され、蒸発器の
表面温度が室内空気の露点温度以下に保たれる。
The dehumidifying device in this invention is a dew point temperature detecting means for detecting the dew point temperature of the indoor air blown to the plurality of evaporators,
The control means compares the detection signals of both the temperature detecting means and the temperature detecting means for detecting the temperature of the plurality of evaporators, and according to the comparison value, the two detectors are respectively connected in series to the plurality of evaporators. The one-way valve is controlled to be opened / closed, and the amount of air blown to the plurality of evaporators is controlled by the air blower, so that the surface temperature of the evaporator is maintained below the dew point temperature of the room air.

また、上記制御器によって複数個の蒸発器にそれぞれ
直列に接続された二方弁が上記比較値によって開閉制御
されると共に、上記複数個の蒸発器に並列に送風する送
風手段による上記複数個の蒸発器のそれぞれへの送風量
が制御され、蒸発器の表面温度が室内空気の露点温度以
下に保たれる。
Further, the two-way valve connected in series to each of the plurality of evaporators by the controller is controlled to be opened and closed by the comparison value, and the plurality of evaporators are blown in parallel by the blowing means. The amount of air blown to each of the evaporators is controlled, and the surface temperature of the evaporators is kept below the dew point temperature of room air.

〔実施例〕〔Example〕

以下、この発明の一実施例を示す第1図について説明
する。図において(9)は冷媒を流通する冷媒配管(図
示せず)の外周面にフィン(図示せず)を備えた第1,第
2,第3の蒸発器(4a)(4b)(4c)と、第1,第2,第3の
絞り装置(3a)(3b)(3c)と、第1,第2,第3の二方弁
(10a)(10b)(10c)とをそれぞれ直列に冷媒配管で
接続した直列接続回路(11a)(11b)(11c)を並列に
接続してなる冷媒回路で、この冷媒回路(9)と、アキ
ュームレータ(12)と、圧縮機(1)と、凝縮器(2)
とを順次冷媒配管(5)で接続して冷凍サイクルを構成
している。(13a)は第1,第2,第3の蒸発器(4a)(4
b)(4c)に室内空気を矢印方向に直列に送風する第1
の送風機、(13b)は凝縮器(2)に室内空気を送風す
る第2の送風機、(14a)(14b)(14c)は蒸発器(4
a)(4b)(4c)の冷媒配管温度を検出する温度検出器
で、蒸発器(4a)(4b)(4c)の各冷媒配管(図示せ
ず)表面と感温部(図示せず)が取付けられている。な
お、蒸発器(4a)(4b)(4c)の冷媒配管(図示せず)
の外周面に取付けられたフィン(図示せず)の表面温度
は温度検出器(14a)(14b)(14c)で検出された冷媒
配管温度t14a,t14b,t14cよりも所定の値だけ高い。
Hereinafter, FIG. 1 showing an embodiment of the present invention will be described. In the figure, (9) shows the first and first fins (not shown) provided on the outer peripheral surface of the refrigerant pipe (not shown) for circulating the refrigerant.
Second, third evaporator (4a) (4b) (4c), first, second, third expansion device (3a) (3b) (3c), first, second, third A refrigerant circuit in which serial connection circuits (11a) (11b) (11c) in which the one-way valves (10a) (10b) (10c) are connected in series by refrigerant pipes are connected in parallel, and this refrigerant circuit (9) , Accumulator (12), compressor (1), and condenser (2)
And are sequentially connected by a refrigerant pipe (5) to form a refrigeration cycle. (13a) is the first, second and third evaporators (4a) (4a
b) First to blow indoor air in series in the direction of the arrow to (4c)
Fan (13b) is a second fan that blows indoor air to the condenser (2), and (14a) (14b) (14c) is an evaporator (4
a) A temperature detector that detects the temperature of the refrigerant pipes of (4b) and (4c). Each refrigerant pipe (not shown) surface of the evaporator (4a) (4b) (4c) and the temperature sensing part (not shown) Is installed. Refrigerant piping (not shown) for the evaporators (4a) (4b) (4c)
The surface temperature of the fins (not shown) attached to the outer peripheral surface of the refrigerant is higher than the refrigerant pipe temperatures t14a, t14b, t14c detected by the temperature detectors (14a) (14b) (14c) by a predetermined value.

(15)は第1,第2,第3の蒸発器(4a)(4b)(4c)に送
風される室内空気の露点温度を検出する露点温度検出
器、(16)は温度検出器(14a)(14b)(14c)および
露点温度検出器(15)の両検出器の検出信号を比較し、
その比較値に応じて二方弁(10a)(10b)(10c)をそ
れぞれ開閉制御する制御器である。
(15) is a dew point temperature detector that detects the dew point temperature of the indoor air blown to the first, second, and third evaporators (4a) (4b) (4c), and (16) is the temperature detector (14a ) (14b) (14c) and dew point temperature detector (15)
It is a controller that controls opening / closing of the two-way valves (10a) (10b) (10c) according to the comparison value.

次に動作について説明する。露点温度検出器(15)で
検出された室内空気の露点温度t15と、第1,第2,第3の
温度検出器(14a)(14b)(14c)で検出された蒸発器
(4a)(4b)(4c)の冷媒配管温度t14a,t14b,t14cとが
制御器(16)で比較され、上記室内空気の湿度が高く露
点温度t15が蒸発器(4a)(4b)(4c)の冷媒配管温度t
14a,t14b,t14cのうち最も高い温度よりも所定の値(例
えば5℃)だけ高い温度以上高い場合、即ちその蒸発器
のフィン表面温度が室内空気の露点温度t15よりも低い
場合には制御器(16)により第1,第2,第3の二方弁(10
a)(10b)(10c)の全てが開かれる。このとき圧縮器
(1)より吐出された高温高圧のガス冷媒は凝縮器
(2)において、第2の送風機(13b)から送風される
室内空気と熱交換され、室内空気を加温すると共に自ら
は凝縮した後、第1,第2,第3の二方弁(10a)(10b)
(10c)に配分され、各々第1,第2,第3の絞り装置(3
a)(3b)(3c)で減圧され低温低圧の気液二相冷媒と
なり、各々第1,第2,第3の蒸発器(4a)(4b)(4c)に
おいて、第1の送風機(13a)によって送風される室内
空気と熱交換し、室内空気より吸熱気化しアキュームレ
ータ(12)を経て圧縮機(1)へ戻る。上記第1の送風
機(13a)によって送風される室内空気はこの室内空気
の露点温度よりも低いフィン表面温度の第1,第2,第3の
蒸発器(4a)(4b)(4c)を第3の蒸発器(4c)から第
2,第1の熱発機(4b)(4a)へと直列に送風され、順次
冷却され、フィン表面に結露し、除湿される。この除湿
された室内空気は凝縮器(2)で加温された室内空気と
室内において混合され温度が上昇し相対湿度が低下す
る。この室内空気の循環により室内空気は徐々に除湿さ
れる。なお、第1,第2,第3の蒸発器(4a)(4b)(4c)
の各フィン表面に結露した結露水はドレンパン(7)へ
滴下し、排水管(8)を通り室外に排出される。
Next, the operation will be described. The dew point temperature t15 of the indoor air detected by the dew point temperature detector (15) and the evaporator (4a) (detected by the first, second and third temperature detectors (14a) (14b) (14c) 4b) The refrigerant pipe temperatures t14a, t14b, t14c of (4c) are compared by the controller (16), and the humidity of the indoor air is high and the dew point temperature t15 is the refrigerant pipe of the evaporator (4a) (4b) (4c). Temperature t
If the temperature is higher than the highest temperature of 14a, t14b, t14c by a predetermined value (for example, 5 ° C) or more, that is, if the fin surface temperature of the evaporator is lower than the dew point temperature t15 of the indoor air, the controller (16) allows the first, second and third two-way valves (10
All of a) (10b) (10c) are opened. At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) is heat-exchanged with the indoor air blown from the second blower (13b) in the condenser (2) to heat the indoor air and After condensation, the first, second and third two-way valves (10a) (10b)
(10c), the first, second, and third diaphragm devices (3
a) (3b) (3c) is reduced in pressure to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and in the first, second, and third evaporators (4a) (4b) (4c), the first blower (13a) ) Heat-exchanges with the room air blown by the air, and the heat is absorbed from the room air to return to the compressor (1) through the accumulator (12). The indoor air blown by the first blower (13a) passes through the first, second, and third evaporators (4a) (4b) (4c) whose fin surface temperature is lower than the dew point temperature of the indoor air. No. 3 from evaporator (4c)
2, The air is blown in series to the first heat generators (4b) and (4a), sequentially cooled, condensed on the fin surface, and dehumidified. The dehumidified indoor air is mixed with the indoor air heated by the condenser (2) in the room to increase the temperature and decrease the relative humidity. The indoor air is gradually dehumidified by the circulation of the indoor air. The first, second and third evaporators (4a) (4b) (4c)
Condensed water that has condensed on the surface of each fin is dropped onto the drain pan (7) and discharged through the drain pipe (8) to the outside of the room.

次に室内湿度が低く、露点検出器(15)で検出される
室内空気の露点温度t15が第1,第2,第3の温度検出器(1
4a)(14b)(14c)の検出温度t14a,14b,14cのうち最も
高い温度よりも所定の温度(例えば5℃)だけ高い温度
以上高くない場合、即ちその蒸発器のフィン表面温度が
室内空気の露点温度よりも高い場合には制御器(16)は
順次、第1の二方弁(10a)、第2の二方弁(10b)を閉
じ、第1,第2,第3の蒸発器(4a)(4b)(4c)からなる
蒸発器の伝熱面積を減少させることにより冷媒の蒸発温
度を低下させ、第3の蒸発器(4c)のフィン表面温度を
室内空気の露点温度よりも低く保ち、このフィン表面へ
の結露により除湿を行なう。
Next, the indoor humidity is low, and the dew point temperature t15 of the indoor air detected by the dew point detector (15) is the first, second, and third temperature detectors (1
4a) (14b) (14c) detected temperature t14a, 14b, 14c is higher than the highest temperature by a predetermined temperature (for example, 5 ℃) or more, that is, if the fin surface temperature of the evaporator is indoor air When the temperature is higher than the dew point temperature of the controller, the controller (16) sequentially closes the first two-way valve (10a) and the second two-way valve (10b), and then the first, second and third evaporators. By reducing the heat transfer area of the evaporator consisting of (4a), (4b) and (4c), the evaporation temperature of the refrigerant is lowered, and the fin surface temperature of the third evaporator (4c) is lower than the dew point temperature of indoor air. Keep it low and dehumidify by dew condensation on the fin surface.

第1,第2の2方弁(10a)(10b)を閉じても第3の温
度検出器(14c)で検出される第3の蒸発器(4c)の冷
媒配管温度t14cが、露点温度検出器(15)で検出される
室内空気の露点温度t15よりも所定の値(例えば5℃)
だけ高い温度以上低くならない場合には、制御器(16)
は第1の送風機(13a)を減速し風量を減少させること
により、冷媒の蒸発温度を低下させ、第3の蒸発器(4
c)のフィン表面温度を露点温度t15よりも低くし、フィ
ン表面への結露により除湿が行なわれるよう制御する。
Even if the first and second two-way valves (10a) and (10b) are closed, the refrigerant pipe temperature t14c of the third evaporator (4c) detected by the third temperature detector (14c) is the dew point temperature detection value. A predetermined value (for example, 5 ° C) from the dew point temperature t15 of the indoor air detected by the device (15)
If the temperature does not drop below the high temperature, the controller (16)
Reduces the evaporation temperature of the refrigerant by decelerating the first blower (13a) to reduce the air volume, and the third evaporator (4
The fin surface temperature in c) is made lower than the dew point temperature t15, and dehumidification is controlled by dew condensation on the fin surface.

なお、第1,第2の二方弁(10a)(10b)の閉塞時にお
ける圧縮機(1)への液バックはアキュームレータ(1
2)によって防止される。
The liquid back to the compressor (1) when the first and second two-way valves (10a) (10b) are closed is stored in the accumulator (1
Prevented by 2).

第2図はこの発明の他の実施例を示す構成図で、第1
図と異なるところはダクト(17)の内部に並設された第
1,第2,第3の通風路(17a)(17b)(17c)に蒸発器(4
a)(4b)(4c)をそれぞれ配設し送風機(13a)で第1,
第2,第3の通風路(17a)(17b)(17c)を介し蒸発器
(4a)(4b)(4c)に並列に送風するようにした点と、
第1,第2,第3の通風路(17a)(17b)(17c)内にそれ
ぞれ通風路開閉機構(18a)(18b)(18c)を配設し、
第1,第2,第3の蒸発器(4a)(4b)(4c)の冷媒配管温
度を検出する温度検出器(14a)(14b)(14c)と、室
内空気の露点温度を検出する露点温度検出器(15)の両
検出器の検出信号を制御器(16)によって比較し、その
比較値に応じて各蒸発器(4a)(4b)(4c)に直列に接
続された二方弁(10a)(10b)(10c)および送風機(1
3)の送風量を制御すると共に通風路開閉機構(18a)
(18b)(18c)を開閉制御するようにした点である。
FIG. 2 is a block diagram showing another embodiment of the present invention.
The part that differs from the figure is that the lined up inside the duct (17)
The evaporator (4) is installed in the first, second and third ventilation passages (17a) (17b) (17c).
a) (4b) (4c) are installed respectively, and the blower (13a)
A point in which air is blown in parallel to the evaporators (4a) (4b) (4c) via the second and third ventilation paths (17a) (17b) (17c),
The air passage opening / closing mechanisms (18a) (18b) (18c) are arranged in the first, second and third air passages (17a) (17b) (17c),
Temperature detectors (14a) (14b) (14c) that detect the refrigerant piping temperatures of the first, second, and third evaporators (4a) (4b) (4c), and dew points that detect the dew point temperature of indoor air The two-way valve connected in series to each evaporator (4a) (4b) (4c) according to the comparison value by comparing the detection signals of both the temperature detector (15) with the controller (16). (10a) (10b) (10c) and blower (1
3) Ventilation amount control and ventilation passage opening / closing mechanism (18a)
(18b) and (18c) are controlled to open and close.

次に動作について説明する。露点温度検出器(15)で
検出された室内空気の露点温度t15と、第1,第2,第3の
温度検出器(14a)(14b)(14c)で検出された蒸発器
(4a)(4b)(4c)の冷媒配管温度t14a,t14b,t14cとが
制御器(16)で比較され、上記室内空気湿度が高く露点
温度t15が蒸発器(4a)(4b)(4c)の冷媒配管温度(1
4a)(14b)(14c)のうち最も高い温度よりも所定の値
(例えば5℃)以上の高い場合、即ちその蒸発器のフィ
ン表面温度が室内空気の露点温度よりも低い場合には制
御器(16)により第1,第2,第3の二方弁(10a)(10b)
(10c)の全てが開かれる。このとき圧縮機(1)より
吐出された高温高圧のガス冷媒は凝縮機(2)におい
て、第2の送風機(13b)から送風される室内空気と熱
交換され、室内空気を加温すると共に自らは凝縮した
後、第1,第2,第3の二方弁(10a)(10b)(10c)に分
配され、各々第1,第2,第3の絞り装置(3a)(3b)(3
c)で減圧され低温低圧の気液二相冷媒となり、第1,第
2,第3の蒸発器(4a)(4b)(4c)において、第1の送
風機(13a)によって第1,第2,第3の通風路(17a)(17
b)(17c)を介し送風される室内空気と熱交換し、室内
空気より吸熱気化しアキュームレータ(12)を経て圧縮
機(1)へ戻る。そして、上記第1の送風機(13a)に
よって送風される室内空気はこの室内空気の露点温度よ
りも低いフィン表面温度の第1,第2,第3の蒸発器(4a)
(4b)(4c)へ並列に送風され冷却され、フィン表面に
結露し除湿される。この除湿された室内空気は凝縮器
(2)で加温された室内空気と室内において混合され温
度が上昇し相対湿度が低下する。この空気の循環により
室内空気は徐々に除湿される。なお、第1,第2,第3の蒸
発器(4a)(4b)(4c)のフィン表面に結露した結露水
はドレンパン(19a)(19b)(19c)へ滴下し排水管(2
0)を通り室外へ排出される。
Next, the operation will be described. The dew point temperature t15 of the indoor air detected by the dew point temperature detector (15) and the evaporator (4a) (detected by the first, second and third temperature detectors (14a) (14b) (14c) 4b) The refrigerant pipe temperatures t14a, t14b, t14c of (4c) are compared by the controller (16), and the indoor air humidity is high and the dew point temperature t15 is the refrigerant pipe temperature of the evaporators (4a) (4b) (4c). (1
4a) (14b) (14c) If the temperature is higher than the highest temperature by a predetermined value (for example, 5 ° C), that is, if the fin surface temperature of the evaporator is lower than the dew point temperature of indoor air, the controller (16) allows the first, second and third two-way valves (10a) (10b)
All of (10c) are opened. At this time, the high-temperature and high-pressure gas refrigerant discharged from the compressor (1) is heat-exchanged with the indoor air blown from the second blower (13b) in the condenser (2) to heat the indoor air and Is condensed and then distributed to the first, second, and third two-way valves (10a) (10b) (10c), and the first, second, and third expansion devices (3a) (3b) (3
It is decompressed in c) to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
In the second and third evaporators (4a) (4b) (4c), the first blower (13a) causes the first, second and third ventilation passages (17a) (17a)
b) Heat is exchanged with the room air blown through (17c), and the heat is absorbed from the room air to return to the compressor (1) through the accumulator (12). The indoor air blown by the first blower (13a) has a fin surface temperature lower than the dew point temperature of the indoor air, and the first, second, and third evaporators (4a).
(4b) (4c) is blown in parallel and cooled, and the fin surface is condensed and dehumidified. The dehumidified indoor air is mixed with the indoor air heated by the condenser (2) in the room to increase the temperature and decrease the relative humidity. The indoor air is gradually dehumidified by this circulation of air. Condensation water that has condensed on the fin surfaces of the first, second, and third evaporators (4a) (4b) (4c) is dropped onto the drain pans (19a) (19b) (19c) and the drain pipe (2
It is discharged to the outside through the 0).

次に室内湿度が低く露点温度検出器(15)で検出され
る室内空気の露点温度t15が第1,第2,第3の温度検出器
(14a)(14b)(14c)の検出温度t14a,t14b,t14cのう
ち最も高い温度よりも所定の値だけ高い温度以上高くな
い場合、即ちその蒸発器のフィン表面温度が室内空気の
露点温度よりも高い場合には、制御器(16)は順次第1
の二方弁(10a)、第2の二方弁(10b)を閉じ、第1,第
2,第3の蒸発器(4a)(4b)(4c)からなる蒸発器の伝
熱面積を減少させることにより冷媒の蒸発温度を低下さ
せ、第3の蒸発器(4c)のフィン表面温度を室内空気の
露点温度より低く保ち、このフィン表面への結露により
除湿を行なう。また、これに対応して不要な送風機動力
を節減するため制御器(16)は第1,第2の通風路開閉機
構(18a)(18b)を順次閉じると共に第1の送風機(13
a)を減速して第3の蒸発器(4c)へ供給される風量を
一定に維持する。
Next, the indoor humidity is low and the dew point temperature t15 of the indoor air detected by the dew point temperature detector (15) is the detected temperature t14a of the first, second and third temperature detectors (14a) (14b) (14c). When the temperature is not higher than the highest temperature of t14b and t14c by a predetermined value or more, that is, when the fin surface temperature of the evaporator is higher than the dew point temperature of the room air, the controller (16) sequentially turns 1
Close the two-way valve (10a) and the second two-way valve (10b)
By decreasing the heat transfer area of the evaporator consisting of the second and third evaporators (4a) (4b) (4c), the evaporation temperature of the refrigerant is lowered, and the fin surface temperature of the third evaporator (4c) is reduced. Keep the temperature below the dew point of indoor air, and dehumidify it by condensation on the fin surface. Further, in response to this, the controller (16) sequentially closes the first and second ventilation passage opening / closing mechanisms (18a) and (18b) in order to save unnecessary blower power, and the first blower (13).
A) is decelerated to maintain the air volume supplied to the third evaporator (4c) constant.

また、第1,第2の二方弁(10a)(10b)および第1,第
2の通風路開閉機構を閉じても、第3の温度検出器(14
c)で検出される第3の蒸発器(4c)の冷媒配管温度t14
cが、露点温度検出器(15)で検出される室内空気の露
点温度t15よりも所定の値(例えば5℃)だけ高い温度
以上低くならない場合には、制御器(16)は第1の送風
機(10a)をさらに減速し第3の蒸発器(4c)への送風
量を減少差せることにより冷媒の蒸発温度を低下させ、
第3の蒸発器(4c)のフィン表面温度を露点温度t15よ
り低く保ちフィン表面への結露により除湿が行なわれる
よう制御する。
In addition, even if the first and second two-way valves (10a) (10b) and the first and second ventilation passage opening / closing mechanisms are closed, the third temperature detector (14
Refrigerant pipe temperature t14 of the third evaporator (4c) detected in c)
When c does not become lower than the temperature higher than the dew point temperature t15 of the indoor air detected by the dew point temperature detector (15) by a predetermined value (for example, 5 ° C) or more, the controller (16) uses the first blower. (10a) is further decelerated to reduce the amount of air blown to the third evaporator (4c) to lower the evaporation temperature of the refrigerant,
The fin surface temperature of the third evaporator (4c) is kept lower than the dew point temperature t15, and dehumidification is controlled by dew condensation on the fin surface.

なお、以上の実施例においては第1,第2,第3の蒸発器
(4a)(4b)(4c)および凝縮器(2)に対しそれぞれ
別の第1と第2の送風機(13a)(13b)にて送風するよ
うにしたものについて述べたが、これに限らず送風機を
共用して室内空気を第1,第2,第3の蒸発器(4a)(4b)
(4c)から凝縮器(2)へ送風するようにしても良い。
また室温が上昇すると困る用途においては凝縮器(2)
を室外に設置または凝縮器(2)を通過した空気を室外
へ誘導するようにしても良い。また第1,第2,第3の蒸発
器(4a)(4b)(4c)の容量は同容量のものでなく、容
量の異なるものを用い、室内空気の露点温度の低い低湿
度時に、その容量差に応じ第1,第2,第3の蒸発器に直列
に接続された二方弁を選択的に開閉するようにしても良
く、この場合はより細かな制御が行なえる。さらにま
た、第1,第2,第3の蒸発器(4a)(4b)(4c)へ個別に
第1,第2,第3の送風機を設け、この第1,第2,第3の送風
機の回転数を個別に制御しその送風量を制御するように
しても良い。また以上の実施例においては蒸発器の表面
温度として蒸発器を構成する冷媒配管の表面に感温部を
取付けた温度検出器によって蒸発器の冷媒配管温度を検
出し、この検出信号と、室内空気の露点温度検出器の検
出信号との比較値に応じて複数個の蒸発器にそれぞれ直
列に接続された二方弁を開閉制御するようにしたものに
ついて述べたが、これに限らず例えば蒸発器の表面温度
としてフィン表面温度を検出し、この検出信号と、室内
空気の露点温度検出器の検出信号との比較値に応じて上
記二方弁を開閉制御するようにしても良い。また、蒸発
器の表面温度を検出する温度検出器として赤外線センサ
の熱放射を利用した温度センサを用いても良い。
In the above embodiment, the first, second and third evaporators (4a) (4b) (4c) and the condenser (2) are provided with separate first and second blowers (13a) ( 13b) has been described, but the present invention is not limited to this, and the indoor air is shared by the blower and the first, second, and third evaporators (4a) (4b).
The air may be blown from (4c) to the condenser (2).
Condenser (2) for applications where room temperature rises
May be installed outdoors or the air passing through the condenser (2) may be guided to the outside. Also, the capacities of the first, second, and third evaporators (4a) (4b) (4c) are not the same, but different capacities are used, and when the indoor air has a low dew point temperature and low humidity, The two-way valves connected in series to the first, second and third evaporators may be selectively opened and closed according to the capacity difference, and in this case, finer control can be performed. Furthermore, the first, second, and third blowers are individually provided to the first, second, and third evaporators (4a) (4b) (4c), and the first, second, and third blowers are provided. It is also possible to individually control the number of rotations of the above and to control the amount of blown air. Further, in the above embodiments, the temperature of the evaporator piping is detected by the temperature detector having the temperature sensing part attached to the surface of the refrigerant piping forming the evaporator as the surface temperature of the evaporator. The two-way valve connected in series to each of a plurality of evaporators was controlled to be opened and closed according to the comparison value with the detection signal of the dew point temperature detector, but the invention is not limited to this. The fin surface temperature may be detected as the surface temperature of the, and the two-way valve may be controlled to open / close according to a comparison value between this detection signal and the detection signal of the dew point temperature detector of the room air. Further, a temperature sensor utilizing the heat radiation of the infrared sensor may be used as the temperature detector for detecting the surface temperature of the evaporator.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば、複数個の蒸発器のそ
れぞれの温度を検出し、この検出信号と、室内空気の露
点温度検出器の検出信号との比較値に応じて、上記複数
個の蒸発器にそれぞれ直列に接続された2方弁を開閉制
御すると共に、送風手段による複数個の蒸発器への送風
量を制御しているので、室内空気の湿度が低くなって
も、除湿量の低下が少なく、効率良く除湿が行なえる等
効果がある。
As described above, according to the present invention, the respective temperatures of the plurality of evaporators are detected, and the plurality of the plurality of evaporators are detected according to the comparison value between the detection signal and the detection signal of the dew point temperature detector of the indoor air. Since the two-way valves connected in series to the evaporators are controlled to be opened and closed, and the air blowing amount to the plurality of evaporators is controlled by the air blowing means, even if the humidity of the indoor air becomes low, the dehumidifying amount can be controlled. It is effective in dehumidifying with less deterioration and efficient dehumidification.

また、複数個の蒸発器に並列に送風し、上記検出信号
の比較値に応じて上記複数個の蒸発器にそれぞれ直列に
接続された2方弁を開閉制御すると共に上記複数個の蒸
発器の送風量を制御することにより、低湿度条件でも、
より効率良く除湿が行なえる。
Further, air is blown in parallel to the plurality of evaporators, the two-way valves connected in series to the plurality of evaporators are controlled to open and close according to the comparison value of the detection signals, and the evaporators of the plurality of evaporators are controlled. By controlling the air flow, even in low humidity conditions,
Dehumidification can be performed more efficiently.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す構成図、第2図はこ
の発明の他の実施例を示す構成図、第3図は従来の除湿
装置を示す構成図である。 図において、(1)は圧縮機、(2)は凝縮器、(3a)
(3b)(3c)は第1,第2,第3の絞り装置、(4a)(4b)
(4c)は蒸発器、(10a)(10b)(10c)は第1,第2,第
3の二方弁、(13a)(13b)は第1,第2の送風機、(14
a)(14b)(14c)は温度検出器、(15)は露点温度検
出器、(16)は制御器、(17a)(17b)(17c)は第1,
第2,第3の通風路、(18a)(18b)(18c)は第1,第2,
第3の通風路開閉機構である。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a block diagram showing a conventional dehumidifier. In the figure, (1) is a compressor, (2) is a condenser, and (3a)
(3b) and (3c) are first, second, and third diaphragm devices, and (4a) and (4b)
(4c) is an evaporator, (10a), (10b) and (10c) are first, second and third two-way valves, (13a) and (13b) are first and second blowers, and (14)
a) (14b) (14c) is a temperature detector, (15) is a dew point temperature detector, (16) is a controller, (17a) (17b) (17c) is the first,
The second and third ventilation channels, (18a) (18b) (18c) are the first, second,
It is a third ventilation passage opening / closing mechanism. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二方弁、絞り装置、蒸発器を冷媒配管にて
直列に接続してなる直列接続回路を複数個並列に接続し
てなる冷媒回路と、圧縮機と、凝縮器とを冷媒配管にて
順次接続してなる冷凍サイクルと、上記複数個の蒸発器
に対し直列に室内空気を送風する送風手段と、上記複数
個の蒸発器の温度を検出する温度検出手段と、上記室内
空気の露点温度を検出する露点温度検出手段と、上記両
検出手段の検出信号を比較し、その比較値に応じて上記
複数個の二方弁を開閉制御すると共に上記送風手段によ
る上記複数個の各蒸発器への送風量を制御する制御手段
を備えていることを特徴とする除湿装置。
1. A refrigerant circuit comprising a two-way valve, a throttle device, and an evaporator, which are connected in series by a refrigerant pipe to connect a plurality of series-connected circuits in parallel, a compressor, and a condenser. A refrigeration cycle sequentially connected by pipes, a blowing means for blowing indoor air in series to the plurality of evaporators, a temperature detecting means for detecting the temperature of the plurality of evaporators, and the indoor air Dew point temperature detecting means for detecting the dew point temperature of the, and the detection signals of the both detecting means are compared, and the plurality of two-way valves are controlled to open and close according to the comparison value, and the plurality of each of the plurality of blower means are provided. A dehumidifying device comprising a control means for controlling the amount of air blown to the evaporator.
【請求項2】二方弁、絞り装置、蒸発器を冷媒配管にて
直列に接続してなる直列接続回路を複数個並列に接続し
てなる冷媒回路と、圧縮機と、凝縮器とを冷媒配管にて
順次接続してなる冷凍サイクルと、上記複数個の蒸発器
に対し並列に室内空気を送風する送風手段と、上記蒸発
器の温度を検出する温度検出手段と、上記室内空気の露
点温度を検出する露点温度検出手段と、上記両検出手段
の検出信号を比較し、その比較値に応じて上記二方弁を
開閉制御すると共に上記送風手段による上記複数個の各
蒸発器への送風量を制御する制御手段とを備えているこ
とを特徴とする除湿装置。
2. A refrigerant circuit comprising a plurality of series connection circuits connected in parallel, wherein a two-way valve, a throttle device and an evaporator are connected in series by a refrigerant pipe, a compressor and a condenser. A refrigeration cycle sequentially connected by pipes, a blowing means for blowing indoor air in parallel to the plurality of evaporators, a temperature detecting means for detecting the temperature of the evaporator, and a dew point temperature of the indoor air. Dew point temperature detection means for detecting the, and the detection signals of both the detection means are compared, the two-way valve is controlled to be opened and closed according to the comparison value, and the air blown by the air blower to each of the plurality of evaporators. A dehumidifying device, comprising:
JP2200702A 1990-07-25 1990-07-25 Dehumidifier Expired - Lifetime JPH0833252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200702A JPH0833252B2 (en) 1990-07-25 1990-07-25 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200702A JPH0833252B2 (en) 1990-07-25 1990-07-25 Dehumidifier

Publications (2)

Publication Number Publication Date
JPH0484074A JPH0484074A (en) 1992-03-17
JPH0833252B2 true JPH0833252B2 (en) 1996-03-29

Family

ID=16428813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200702A Expired - Lifetime JPH0833252B2 (en) 1990-07-25 1990-07-25 Dehumidifier

Country Status (1)

Country Link
JP (1) JPH0833252B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728577C2 (en) * 1997-07-04 1999-11-25 Daimler Chrysler Ag Method for controlling the evaporator temperature of an air conditioning system depending on the dew point
JP3454697B2 (en) * 1997-12-22 2003-10-06 東芝キヤリア株式会社 Air conditioner
CN105841378B (en) * 2016-03-25 2018-09-25 海信(山东)空调有限公司 Dehumidifier, dehumidifying machine controller and dehumidifier control method
CN105805971B (en) * 2016-03-25 2019-03-05 海信(山东)空调有限公司 Dehumidifier, dehumidifying machine controller and dehumanization method
JP6614190B2 (en) * 2017-03-27 2019-12-04 三菱重工冷熱株式会社 Air volume control system for direct expansion air conditioner
CN107860738A (en) * 2017-12-26 2018-03-30 吉林大学 A kind of infrared CO of facilities horticulture with intelligent dehumidification function2Sensor and method
CN109059203B (en) * 2018-06-01 2021-04-20 青岛海尔空调电子有限公司 Air conditioning unit control method
FR3101137B1 (en) * 2019-09-19 2022-03-18 Guinault Sa Air conditioning unit for aircraft
CN111426006A (en) * 2020-03-30 2020-07-17 珠海格力电器股份有限公司 Air conditioning system control method and device, air conditioning system and computer equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217189Y2 (en) * 1986-07-10 1990-05-14

Also Published As

Publication number Publication date
JPH0484074A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
US6427454B1 (en) Air conditioner and controller for active dehumidification while using ambient air to prevent overcooling
AU2005230499B2 (en) Air conditioning system
US4333517A (en) Heat exchange method using natural flow of heat exchange medium
US20210341171A1 (en) Energy recovery system and method
JPH04295568A (en) Air-conditioning machine, indoor unit for said air-conditioning machine and operating method of air-conditioning machine
JP6374807B2 (en) Dehumidifying and drying equipment
KR101706840B1 (en) An air conditioning system and a method for controlling the same
JPH0833252B2 (en) Dehumidifier
JPH04113136A (en) Clean room using direct expansion type heat exchanger
US6523359B1 (en) Environmental control device
WO2003104719A1 (en) Dehumidifier/air conditioner
JPH06159820A (en) Air-cooling device for elevator
KR101425472B1 (en) Apparatus for cooling and dehydrating, Control Method and Refrigerant Circulating Method for the Same
JP2651328B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
JP2002243306A (en) Air conditioner
JP4483141B2 (en) Air conditioner
JP2649986B2 (en) Clean room using a direct expansion type heat exchanger
JP2004353893A (en) Air conditioner having variable sensible heat ratio
JP4012892B2 (en) Air conditioner
JPH046442A (en) Control apparatus for constant temperature and constant humidity
JP4020705B2 (en) Heat pump and dehumidifying air conditioner
JPH06257865A (en) Air conditioner
JPH0587417A (en) Dehumidifying device
JPH0611201A (en) Air conditioning apparatus