JPH08332527A - Two-piece drawing/ironing can excellent in corrosion resistance and flavor loss resistance and its manufacture - Google Patents

Two-piece drawing/ironing can excellent in corrosion resistance and flavor loss resistance and its manufacture

Info

Publication number
JPH08332527A
JPH08332527A JP7172659A JP17265995A JPH08332527A JP H08332527 A JPH08332527 A JP H08332527A JP 7172659 A JP7172659 A JP 7172659A JP 17265995 A JP17265995 A JP 17265995A JP H08332527 A JPH08332527 A JP H08332527A
Authority
JP
Japan
Prior art keywords
tin
ironing
resin
flavor
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7172659A
Other languages
Japanese (ja)
Other versions
JP3575117B2 (en
Inventor
Michiko Tsurumaru
迪子 鶴丸
Kazuhisa Masuda
和久 増田
Masatsune Shibue
正恒 渋江
Zenrou Shirane
然朗 白根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP17265995A priority Critical patent/JP3575117B2/en
Priority to EP19960304119 priority patent/EP0747135B1/en
Priority to DE1996616875 priority patent/DE69616875T2/en
Publication of JPH08332527A publication Critical patent/JPH08332527A/en
Application granted granted Critical
Publication of JP3575117B2 publication Critical patent/JP3575117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To provide a can free from the peeling off of the resin at a flange part, which is excellent in corrosion resistance and flavor loss resistance. CONSTITUTION: In a drawing/ironing can formed by using a tin-plated steel sheet at least on side of which becoming the inside surface of the can s previously covered with thermoplastic resin, the main component of the thermoplastic resin is crystalline polyester resin, the average thickness of a resin layer in the side wall part of the can is 5 to 30μm, the average thickness of a tin film is 0.2 to 2.0g/m<2> , and the effective covering ratio of the tin is 85% or over. A metallic surface of the whole periphery in contact with the thermoplastic resin covering at least a range within 2mm from the tip of a flange is covered by an iron-tin alloy, and the covering ratio of the iron-tin alloy is 0.7 or over. A two-piece drawing/ironing can excellent in corrosion resistance and a flavor preservability whose part of a range within 2mm from the tip of the flange of a can body is heat-treated and formed of an iron-tin alloy layer is provided as well as is manufacture method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフランジ部のポリエステ
ル樹脂被覆の密着性を向上した耐食性と耐フレーバー性
に優れた絞りしごき缶およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a squeezed ironing can with improved adhesion to a polyester resin coating on a flange portion, which is excellent in corrosion resistance and flavor resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】錫メッキ鋼板を用いた2ピース缶は、錫
の被覆率が小さく、鋼面が露出する缶が多数発生する重
大な欠陥があった。錫メッキ鋼板自体の錫被覆率は大き
く、良好であっても成形時に成形工具に接触すると接触
した部分は鋼面が露出し、錫被覆率が低下するのであ
る。殊に絞り加工としごき加工により成形を行うと加工
量が大きいため鋼面の露出が大きくなる問題があった。
そのため絞り、しごき加工後、塗料を缶内面に塗装する
ことが行われているが、このような手段では耐食性と耐
フレーバー性が充分でなくこれらの点の欠陥の発生を防
止できない。また、従来のラミネートしたぶりき絞りし
ごき缶は、絞りしごき加工した後にトリミングし、その
後、熱処理し、更にその後ネック・フランジ加工するた
め、内面フイルムのダメージが比較的大きく、特にネッ
キング率が大きくなった場合に、フランジ部のポリエス
テル樹脂内面フイルムが金属から剥離しやすいという問
題があった。
2. Description of the Related Art A two-piece can using a tin-plated steel plate has a serious defect that the tin coverage is small and a large number of cans having exposed steel surfaces are produced. The tin coverage of the tin-plated steel sheet itself is large, and even if it is good, the steel surface is exposed at the contacted portion when it contacts the forming tool during forming, and the tin coverage is reduced. In particular, when forming by drawing and ironing, there is a problem that the exposed steel surface becomes large because the amount of processing is large.
For this reason, paint is applied to the inner surface of the can after squeezing and ironing, but with such means, the corrosion resistance and flavor resistance are not sufficient and the occurrence of defects at these points cannot be prevented. In addition, the conventional laminated squeezed drawn and ironed cans are squeezed and ironed, then trimmed, then heat-treated, and then neck and flange processed, resulting in relatively large damage to the inner film, and especially a high necking rate. In that case, there is a problem that the polyester resin inner surface film of the flange portion is easily separated from the metal.

【0003】化成処理を行うこともあるが効果が充分で
なく、作業性も悪い問題がある。また、ポリエステル樹
脂をラミネートした金属板を使用し、しごき率を特定の
範囲に規定した、特開昭60−172637号と特開平
2−303634号が提案された。この他、絞り加工温
度をPETフイルムのガラス転移点近傍とした特公平1
−55055号や、表面処理被膜の上にメッキ層を設け
その上にPET被膜を設けてしごき率を特定範囲に規定
した特公平3−33506号もある。しかしながらこれ
等の先行技術はいずれも錫層とPETの接着性が不充分
であり、また耐フレーバー性が充分でなく、耐衝撃強度
も不充分であった。しごき率で特定しても、少い加工量
のしごきでもしごき加工を行うとピンホールが発生し鋼
面の露出が生じるのでしごき率だけではフレーバー性は
向上しない。これ等の先行技術は錫メッキ層もラミネー
ト樹脂層も被覆量で制御しているがこのような単なる量
による制御では被覆層の厚薄を制御出来ないので均一な
膜厚の層とはならず、被覆層にピンホールが存在するた
めに充分な性能が発揮されないと考えられる。
Chemical conversion treatment may be carried out, but the effect is not sufficient and workability is poor. Further, JP-A-60-172637 and JP-A-2-303634, in which a metal plate laminated with a polyester resin is used and the ironing ratio is defined in a specific range, have been proposed. In addition to this, the drawing temperature was set to be near the glass transition point of PET film.
-55055 and JP-B-3-33506 in which a plating layer is provided on a surface-treated coating and a PET coating is provided thereon to regulate the ironing rate within a specific range. However, in all of these prior arts, the adhesion between the tin layer and PET was insufficient, the flavor resistance was insufficient, and the impact strength was also insufficient. Even if specified by the ironing rate, if ironing is performed with a small amount of ironing, pinholes are generated and the steel surface is exposed. Therefore, the ironing rate alone does not improve the flavor. In these prior arts, both the tin-plated layer and the laminated resin layer are controlled by the coating amount, but since the thickness of the coating layer cannot be controlled by such a simple control, a layer having a uniform film thickness cannot be obtained. It is considered that sufficient performance is not exhibited due to the presence of pinholes in the coating layer.

【0004】[0004]

【発明が解決しようとする課題】本発明は金属面とポリ
エステル樹脂被覆層との密着性に優れた缶と、この缶を
高作業性で製造する方法を提供する。
DISCLOSURE OF THE INVENTION The present invention provides a can having excellent adhesion between a metal surface and a polyester resin coating layer, and a method for producing the can with high workability.

【0005】[0005]

【課題を解決した手段】本発明は次の手段により全ての
課題を解決した。本発明は、 「1. 少なくとも缶内面となる片面に予め熱可塑性樹
脂を被覆した錫メッキ鋼板で成形した絞りしごき缶にお
いて、熱可塑性樹脂の主成分が結晶性ポリエステル樹脂
であり、缶側壁部における該樹脂層の平均厚みは5〜3
0μmであり、錫被膜の平均厚みが0.2〜2.0g/
であり、錫の有効被覆率が85%以上であって、フ
ランジ先端から少なくとも2mmの全周の熱可塑性樹脂
の接している金属面が鉄−錫合金で被覆されており、鉄
−錫合金の被覆率が0.7以上であることを特徴とす
る、耐食性とフレーバー性に優れた2ピース絞りしごき
缶。 2. 被覆樹脂の主成分である結晶性ポリエステル樹脂
のTgが55℃以上、固有粘度(IV)が0.65以上
である、1項に記載された耐食性とフレーバー性に優れ
た2ピース絞りしごき缶。 3. 錫の有効被覆率が、錫被膜の厚みが0.1g/m
以上の部分の占める割合を示す値である、1項または
2項に記載された、耐食性とフレーバー性に優れた2ピ
ース絞りしごき缶。 4. 鉄−錫合金の被覆率がフランジ先端から2mmま
での合金錫量Aと表面錫量Bから C=A/(A+B)
の式により求めた値Cである、1項ないし3項のいずれ
か1項に記載された、耐食性とフレーバー性に優れた2
ピース絞りしごき缶。 5. 錫メッキ厚みが0.4〜6.0g/mである錫
メッキ鋼板の缶内側となる面に、結晶性ポリエステル樹
脂を主成分とする結晶化度が5%以下、厚みが15〜9
0μm、破断伸びが100%以上、Tgが55℃以上、
固有粘度(IV)が0.65以上である熱可塑性樹脂被
覆を配置して、1回以上の絞り成形によりカップを作
り、缶体のフランジ先端から少なくとも2mmとなるべ
き部分までを加熱処理しその後必要あれば更に再絞り加
工して次にパンチと入角度が2〜8度のアイアニングダ
イにより、しごき加工を行い、最終しごき工程後直ちに
冷却することにより、缶側壁部における樹脂層の平均厚
みが5〜30μm、錫被膜の平均厚みが0.2〜2.0
g/m、錫の有効被覆率が85%以上であって、フラ
ンジ先端から少なくとも2mmの全周の熱可塑性樹脂の
接している金属面が鉄−錫合金で被覆されており、鉄−
錫合金の被覆率が0.7以上である耐食性とフレーバー
性に優れた2ピース絞りしごき缶の製造方法。 6. 成形時にカップ内面の錫層の温度を232℃を越
えない温度に維持して成形し、最終しごき成形の後急冷
してネッキング部とフランジ部の内面側錫温度を232
℃以下とした、5項に記載された耐食性とフレーバー性
に優れた2ピース絞りしごき缶の製造方法。 7. ポリエステル樹脂を主成分とする熱可塑性樹脂被
覆を絞りしごき加工の工程で配向結晶化させる、5項ま
たは6項に記載された耐食性とフレーバー性に優れた2
ピース絞りしごき缶の製造方法。」に関する。
The present invention has solved all the problems by the following means. The present invention relates to: “1. In a drawn and ironed can formed of a tin-plated steel sheet on which at least one inner surface is coated with a thermoplastic resin in advance, the thermoplastic resin is mainly composed of a crystalline polyester resin, and The average thickness of the resin layer is 5 to 3
The average thickness of the tin coating is 0.2 to 2.0 g /
m 2 and the effective coverage of tin is 85% or more, and the metal surface in contact with the thermoplastic resin of at least 2 mm from the flange tip is covered with the iron-tin alloy. A two-piece squeezed ironing can with excellent corrosion resistance and flavor, characterized by an alloy coverage of 0.7 or more. 2. A two-piece squeezed ironing can excellent in corrosion resistance and flavor described in item 1, wherein the crystalline polyester resin, which is the main component of the coating resin, has a Tg of 55 ° C. or higher and an intrinsic viscosity (IV) of 0.65 or higher. 3. The effective coverage of tin is 0.1g / m when the thickness of the tin coating is
A two-piece squeezed ironing can that is excellent in corrosion resistance and flavor, as described in item 1 or 2, which is a value indicating the proportion of two or more parts. 4. From the amount of alloy tin A and the amount of surface tin B from the flange tip to 2 mm from the flange tip of iron-tin alloy, C = A / (A + B)
Which is the value C obtained by the equation of 2 and is excellent in corrosion resistance and flavor property as described in any one of 1 to 3
Piece squeezed ironing can. 5. The tin-plated steel sheet having a tin-plating thickness of 0.4 to 6.0 g / m 2 has a crystallinity of not more than 5% and a thickness of 15 to 9 on the inner surface of the tin.
0 μm, elongation at break 100% or more, Tg 55 ° C or more,
A thermoplastic resin coating having an intrinsic viscosity (IV) of 0.65 or more is arranged, and a cup is formed by drawing once or more, and heat treatment is performed from a flange tip of a can body to a portion that should be at least 2 mm. If necessary, further redraw, and then perform ironing with a punch and an ironing die with an entry angle of 2 to 8 degrees, and immediately after the final ironing process, cool to obtain the average thickness of the resin layer on the side wall of the can. Is 5 to 30 μm, and the average thickness of the tin coating is 0.2 to 2.0.
g / m 2 , the effective coating rate of tin is 85% or more, and the metal surface in contact with the thermoplastic resin on the entire circumference of at least 2 mm from the flange tip is coated with the iron-tin alloy.
A method for producing a two-piece squeezed ironing can, which has a tin alloy coverage of 0.7 or more and is excellent in corrosion resistance and flavor. 6. At the time of molding, the temperature of the tin layer on the inner surface of the cup was maintained at a temperature not exceeding 232 ° C., and after the final ironing, it was rapidly cooled to set the tin temperature on the inner surface of the necking portion and the flange portion to 232.
A method for producing a two-piece squeezed and ironed can having excellent corrosion resistance and flavor properties as described in item 5, which is kept at ℃ or below. 7. A thermoplastic resin coating containing a polyester resin as a main component is squeezed and oriented and crystallized in the step of ironing, which is excellent in corrosion resistance and flavor as described in 5 or 6.
Manufacturing method of piece squeezing ironing can. Regarding

【0006】[0006]

【作用】本発明の第1の特徴は金属とポリエステル樹脂
被覆との密着性を向上して耐食性を向上したことであ
る。前述のように錫メッキ鋼板を絞りしごき加工を施し
た後ネックフランジ加工するとその加工度が大きい場合
錫メッキ層とポリエステル樹脂被覆の剥離が発生する。
これは錫メッキ層とポリエステル樹脂被覆の密着性が良
好でないためである。ことにフランジ先端から2mm附
近までは、剥離が発生しやすい。本発明は、剥離の発生
する、フランジの先端から少なくとも2mmの全周の金
属面を鉄−錫合金で被覆してポリエステル樹脂被覆の剥
離を防止した。鉄−錫合金は錫メッキ層よりポリエステ
ル樹脂被覆の接着性が良好で剥離を防止する作用が大き
い。
The first feature of the present invention is that the adhesion between the metal and the polyester resin coating is improved to improve the corrosion resistance. As described above, when the tin-plated steel sheet is squeezed and ironed and then neck flange processing is performed, if the degree of processing is large, the tin-plated layer and the polyester resin coating are separated.
This is because the adhesion between the tin-plated layer and the polyester resin coating is not good. In particular, the peeling is likely to occur from the tip of the flange up to about 2 mm. In the present invention, the peeling of the polyester resin coating is prevented by coating the metal surface of the entire circumference of at least 2 mm from the tip of the flange where peeling occurs with the iron-tin alloy. The iron-tin alloy has a better adhesion of the polyester resin coating than the tin-plated layer and has a great effect of preventing peeling.

【0007】鉄−錫合金被覆はフランジ先端から少なく
とも2mmの巾で全周に設けられなければならない。2
mm以内では絞り加工時の剥離を防止できない。またフ
ランジ先端から少なくとも2mmの全周にわたる鉄−錫
合金被覆率は0.70以上でなければ、充分な剥離効果
は奏されない。鉄−錫合金の被覆率Cは、フランジ先端
から2mmの錫メッキ鋼板についてJIS G 330
3 のぶりきの錫付着量試験方法、電解剥離法に準じて
合金錫量Aと表面錫量Bを測定し、C=A/(A+B)
により求めた値である。鉄−錫合金被膜を形成するに
は、絞り成形により得たカップ状態でカップエッジを約
230℃以上に加熱することにより錫メッキ層を合金化
することができる。
The iron-tin alloy coating must be provided on the entire circumference with a width of at least 2 mm from the flange tip. Two
If it is less than mm, peeling during drawing cannot be prevented. Further, unless the iron-tin alloy coating rate over the entire circumference of at least 2 mm from the tip of the flange is 0.70 or more, a sufficient peeling effect is not exhibited. The coverage C of the iron-tin alloy is JIS G 330 for a tin-plated steel plate 2 mm from the flange tip.
According to the tin adhesion amount test method and electrolytic peeling method of 3 tinplate, the alloy tin amount A and the surface tin amount B were measured, and C = A / (A + B)
It is the value obtained by. To form the iron-tin alloy coating, the tin plating layer can be alloyed by heating the cup edge to about 230 ° C. or higher in the cup state obtained by drawing.

【0008】このようにカップエッジ部を合金化してさ
らに絞り、しごき加工を行うことにより本発明の缶が製
造される。また本発明の缶は絞りしごき加工後にフラン
ジとなるべきカップ先端から2mm以上の部分を230
℃以上に加熱することによっても得ることができる。錫
の有効被覆率とは錫層の厚さが0.1g/m以上の部
分の占める割合であり、85%以下になると錫層があっ
てもフィルム下腐食が発生し耐食性が悪化する。本発明
の前記特徴は、熱可塑性樹脂を錫メッキ面に被覆して絞
りしごき加工した缶であって、缶側壁部における樹脂層
の厚さを5〜30μmとし、錫被膜の平均厚みを0.2
〜2.0g/mとし、錫の有効被覆率を85%以上と
することにより、耐食性の著しく向上した缶とする点に
ある。
As described above, the can of the present invention is manufactured by alloying the cup edge portion, further drawing and ironing. Further, the can of the present invention is provided with a portion 2 mm or more from the tip of the cup, which is to be a flange after drawing and ironing.
It can also be obtained by heating to ℃ or more. The effective coverage of tin is the proportion occupied by the portion where the thickness of the tin layer is 0.1 g / m 2 or more, and when it is 85% or less, under-film corrosion occurs and corrosion resistance deteriorates even if there is a tin layer. The feature of the present invention is a can in which a tin-plated surface is coated with a thermoplastic resin and is squeezed and ironed. The thickness of the resin layer on the side wall of the can is 5 to 30 μm, and the average thickness of the tin coating film is 0. Two
It is to be 2.0 g / m 2 and the effective tin coverage is 85% or more, so that the can has significantly improved corrosion resistance.

【0009】何故熱可塑性樹脂を錫メッキ層にラミネー
トして絞りしごき成形加工を行うと錫層に鋼面の露出が
発生しないのかその理由について本発明者は、加工具が
錫メッキ層に直接触れないことと、熱可塑性樹脂が緩衝
材となって樹脂自身も成形加工されながら錫層に加工の
力を伝達するため、錫層に展延の加工力が急激にかから
ず、展延が無理なく行われるためと考えている。したが
ってラミネートする熱可塑性樹脂も加工性の良好なもの
が好ましく結晶性ポリエステル樹脂が適している。
The reason why the steel surface is not exposed in the tin layer when the thermoplastic resin is laminated on the tin-plated layer and drawn and ironed is formed. The reason for this is that the processing tool directly touches the tin-plated layer. Since the thermoplastic resin acts as a cushioning material and transmits the processing force to the tin layer while the resin itself is being molded, the processing force of the spreading is not applied rapidly to the tin layer and the spreading is impossible. I think it will be done without. Therefore, the thermoplastic resin to be laminated is preferably one having good workability, and a crystalline polyester resin is suitable.

【0010】本発明の第2の作用はフレーバー性の良好
なことである。内容物の香気成分が缶内面材料に吸着さ
れると、内容物のフレーバーが変化する。また、缶内面
材料が内容物中に溶出しても内容物のフレーバーが変化
する。このようにフレーバー性は錫メッキ層の鋼板の露
出だけでなく被覆した樹脂によっても発生する。本発明
者の研究によると缶側壁の錫層の上にラミネート層を形
成する熱可塑性樹脂としてTgが55℃以上で固有粘度
(IV)が0.65以上の結晶性ポリエステル樹脂を使
用すると内容物のフレーバー成分の収着量が大きく低下
すること、特にイソフタール酸系の共重合ポリエステル
樹脂が好ましいことがわかった。
The second effect of the present invention is that the flavor property is good. When the aroma component of the contents is adsorbed on the inner surface material of the can, the flavor of the contents changes. Further, even if the material on the inner surface of the can is dissolved in the contents, the flavor of the contents changes. As described above, the flavoring property is caused not only by the exposed steel plate of the tin-plated layer but also by the coated resin. According to the study of the present inventors, when a crystalline polyester resin having a Tg of 55 ° C. or more and an intrinsic viscosity (IV) of 0.65 or more is used as a thermoplastic resin for forming a laminate layer on a tin layer on a side wall of a can, It was found that the sorption amount of the flavor component was significantly reduced, and the isophthalic acid-based copolyester resin was particularly preferable.

【0011】この他、結晶性ポリエステルとしてポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
ポリエチレンナフタレート及びその共重合体、ブレンド
物も使用される。共重合ポリエチレンテレフタレートの
共重合成分は酸成分でもアルコール成分でもよい。該酸
成分としてはイソフタル酸、フタル酸、ナフタレンジカ
ルボン酸等の芳香族二塩基酸、、アジピン酸、アゼライ
ン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカ
ルボン酸、シクロヘキサンジカルボン酸の如き脂環族ジ
カルボン酸等が挙げられ、またアルコール成分としては
ブタンジオール、ヘキサンジオール等の脂肪族ジオー
ル、シクロヘキサンジメタノールの如き脂環族ジオール
等が挙げられる。これらは単独又は二種以上を使用する
ことが出来る。
In addition, as the crystalline polyester, polyethylene terephthalate, polybutylene terephthalate,
Polyethylene naphthalate and its copolymers and blends are also used. The copolymerization component of the copolymerization polyethylene terephthalate may be an acid component or an alcohol component. Examples of the acid component include aromatic dibasic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decanedicarboxylic acid, and alicyclic compounds such as cyclohexanedicarboxylic acid. Examples thereof include dicarboxylic acids, and examples of alcohol components include aliphatic diols such as butanediol and hexanediol, and alicyclic diols such as cyclohexanedimethanol. These may be used alone or in combination of two or more.

【0012】これらの結晶性ポリエステルは単層又は2
層以上の複層として使用できる。勿論フレーバー性には
錫メッキ層から鋼板が露出することによる影響が大き
い。本発明者は鉄の溶出量を少くするため種々研究した
結果、鉄溶出量の少い絞りしごき缶は、錫メッキ鋼板
に、錫メッキ厚みが0.4〜6.0g/mである錫メ
ッキ鋼板の缶内側となる面に、結晶性ポリエステル樹脂
を主成分とする結晶化度が5%以下、厚みが15〜90
μm、破断伸びが100%以上、Tgが55℃以上、固
有粘度(以下IVと表記する)が0.65以上である熱
可塑性樹脂被覆を配置して、1回以上の絞り成形により
カップを作り、缶体のフランジ先端から少くとも2mm
となるべき部分までを加熱処理し、その後必要あれば再
絞り加工して次にパンチと入角度が2〜8度のアイアニ
ングダイにより、しごき加工を行い、最終しごき工程後
直ちに冷却し、缶側壁部における樹脂層の平均厚みが5
〜30μmとなるように成形することにより得ることが
出来ることがわかった。ラミネート樹脂層は、錫メッキ
鋼板の両面に設けても良いが缶となった表側の面は耐
食、耐フレーバー性に直接関係がなく、印刷を行ったり
するので必ずしもラミネート層は必要ではない。
These crystalline polyesters can be used in a single layer or two layers.
It can be used as a multilayer of more than one layer. Of course, the flavor property is greatly affected by the exposure of the steel sheet from the tin-plated layer. As a result of various studies by the present inventors to reduce the amount of iron elution, a squeezed ironing can with a small amount of iron elution is tin-plated steel sheet with tin having a thickness of 0.4 to 6.0 g / m 2. The surface of the plated steel sheet, which is the inside of the can, has a crystallinity of not more than 5% and a thickness of 15 to 90, which is mainly composed of a crystalline polyester resin.
μm, elongation at break 100% or more, Tg 55 ° C. or more, intrinsic viscosity (hereinafter referred to as IV) 0.65 or more thermoplastic resin coating is arranged, and a cup is made by drawing once or more. , At least 2 mm from the flange end of the can body
It heats up to the part that should be, then redraws if necessary, then irons with a punch and an ironing die with an insertion angle of 2 to 8 degrees, cools immediately after the final ironing process, and The average thickness of the resin layer on the side wall is 5
It was found that it can be obtained by molding to have a thickness of up to 30 μm. The laminate resin layer may be provided on both sides of the tin-plated steel sheet, but the front surface of the can is not directly related to corrosion resistance and flavor resistance, and printing is performed. Therefore, the laminate layer is not always necessary.

【0013】本発明の缶は内面の錫メッキ層に樹脂がラ
ミネートされているので化成処理の必要はない。化成処
理を必要としないので作業性を向上させ、使用水を1/
2〜1/3に減少することが出来、廃水処理の負担や廃
水処理廃棄物を減少することが出来る利点がある。錫層
は0.01μm〜0.25μmの薄層であるが充分防食
性を示し、鉄の溶出を防止して優れた耐フレーバー性を
奏する。このような薄層であってしかも有効被覆率が8
5%以上の錫層を形成することは従来出来なかった。
The can of the present invention does not require chemical conversion treatment because the resin is laminated on the tin-plated layer on the inner surface. It does not require chemical conversion treatment, improving workability and reducing the amount of water used to 1 /
It can be reduced to 2 to 1/3, and there is an advantage that the burden of wastewater treatment and wastewater treatment waste can be reduced. Although the tin layer is a thin layer of 0.01 μm to 0.25 μm, it exhibits sufficient anticorrosion properties, prevents elution of iron, and exhibits excellent flavor resistance. It is such a thin layer and has an effective coverage of 8
It has hitherto been impossible to form a tin layer of 5% or more.

【0014】缶胴部は大きな加工を受けるのでメッキ層
も樹脂層も薄層化する。缶胴部は成形加工による影響が
大きく欠陥を生じ易いのである。ラミネートした熱可塑
性樹脂層は延伸配向し、強度も大きくなり、バリヤ性も
向上する。そして、成形時の錫温度を232℃を越えな
い温度に保って成形することが好ましい。これは錫の融
点が231.9℃であるので、錫の融けない温度に保っ
て成形加工することが錫被膜の均一性を保ち、被覆率の
変化を防ぐのに有効であるからである。
Since the can body is subjected to large processing, both the plating layer and the resin layer are thinned. The body of the can is greatly affected by the molding process and is likely to cause defects. The laminated thermoplastic resin layer is stretched and oriented, the strength is increased, and the barrier property is improved. The tin temperature during molding is preferably maintained at a temperature not exceeding 232 ° C. This is because tin has a melting point of 231.9 ° C., and therefore, it is effective to maintain the tin film at a temperature at which it does not melt so as to maintain the uniformity of the tin film and prevent a change in the coverage.

【0015】本発明の第3の特徴は、絞りしごき加工に
おいてパンチ側のラミネート樹脂の温度を粘着温度以下
に保って成形加工を行うことである。成形加工時缶の外
面は250℃程度まで昇温し、この熱が缶の内面に拡散
するので樹脂層の温度も上昇する。温度が上昇しすぎる
と樹脂層の配向結晶が得られなくなり強度が不足して成
形欠陥を生ずる。また粘着温度以上になるとパンチに粘
着し成形後のストリップアウト不良を発生する。
A third feature of the present invention is that the forming process is carried out by keeping the temperature of the laminating resin on the punch side below the adhesion temperature in the drawing and ironing process. During molding, the outer surface of the can rises to about 250 ° C., and this heat diffuses to the inner surface of the can, so the temperature of the resin layer also rises. If the temperature rises too much, oriented crystals of the resin layer cannot be obtained and the strength is insufficient, causing molding defects. Further, when the temperature is higher than the adhesion temperature, it adheres to the punch and causes stripping failure after molding.

【0016】これを防止するためには加工部を冷却する
とともに加工後直ぐに缶体を外面から冷却剤で冷却し、
粘着温度以下に保つのが有効である。また、最終しごき
後のパンチ抜け性には、ラミネート樹脂の表面状態が大
きく影響している。樹脂表面が細かな凹凸をもっている
場合、しごき加工中に樹脂表面の微小凹凸がパンチ表面
に圧着し、真空状態になるため、成形後パンチから剥離
するのに大きな力を必要とする。このため、カップのス
トリップアウト時、カップのエッジが折れ曲がり、成形
不良となるものである。従ってパンチ抜け性を良化する
ためには、カップエッジ及びパンチ先端からのエアー
が、缶壁とパンチの界面に侵入しやすいように、ラミネ
ート樹脂表面の凹凸が缶高さ方向につながるように筋を
いれて、これらの凹凸が孤立しないようにすることが有
効である。
In order to prevent this, at the same time as cooling the processed portion, the can body is cooled from the outer surface with a coolant immediately after processing,
It is effective to keep the temperature below the sticking temperature. Further, the punch-out property after the final ironing is greatly influenced by the surface condition of the laminate resin. When the resin surface has fine irregularities, minute irregularities on the resin surface are pressed against the punch surface during the ironing process, resulting in a vacuum state, and thus a large force is required to peel from the punch after molding. Therefore, when the cup is stripped out, the edge of the cup is bent, resulting in defective molding. Therefore, in order to improve the punch removal property, the unevenness of the laminate resin surface should be connected in the can height direction so that the air from the cup edge and the punch tip may easily enter the interface between the can wall and the punch. It is effective to insert these to prevent these irregularities from being isolated.

【0017】加工性を良好にするためラミネート樹脂層
の加工温度をTg近傍にすることが好ましい。例えばP
ETであれば冷却剤の温度は50℃程度とすると良い結
果が得られる。カップ成形後、ラミネート樹脂層は一部
配向した状態となり成形性が低下するので温度を80〜
200℃に昇温してアニーリングを行い歪みを除去する
ことが良好な加工を行うのに好ましい。
In order to improve the workability, it is preferable that the processing temperature of the laminated resin layer is near Tg. For example P
In the case of ET, good results are obtained when the temperature of the coolant is about 50 ° C. After the cup molding, the laminate resin layer is partially oriented and the moldability is lowered.
It is preferable to raise the temperature to 200 ° C. and perform annealing to remove the strain for good processing.

【0018】ラミネート樹脂層がパンチと滑り易いので
しごき加工のアイアニングダイの入り角を低くしパンチ
の面圧を大きくすることが成形加工上有効である。被覆
樹脂層がパンチと滑ると波線状の樹脂欠陥となる。アイ
アニングダイの入り角度を2〜8°とすることが好まし
く、特に6°以下とすることが好適である。絞り加工に
よりラミネート層の下の金属表面は粗度が多少増加する
のでパンチ表面の凹凸や異物の存在により絞り加工時に
樹脂欠陥を生じ易い。したがってパンチ表面を平滑に
し、また異物の存在しないようにする必要がある。さら
に本発明によると、錫メッキ鋼板に被覆したポリエステ
ルを主成分とする熱可塑性樹脂層を絞りしごき加工の工
程において配向結晶化することが出来るので、耐食性と
耐フレーバー性が向上する。
Since the laminated resin layer is slippery with the punch, it is effective in forming process to lower the entry angle of the ironing die for ironing and increase the surface pressure of the punch. When the coating resin layer slides on the punch, a wavy resin defect occurs. The entering angle of the ironing die is preferably 2 to 8 °, and particularly preferably 6 ° or less. Since the roughness of the metal surface under the laminate layer increases to some extent by the drawing process, resin defects are likely to occur during the drawing process due to the unevenness of the punch surface and the presence of foreign matter. Therefore, it is necessary to make the surface of the punch smooth and to prevent the presence of foreign matter. Further, according to the present invention, since the thermoplastic resin layer mainly composed of polyester coated on the tin-plated steel plate can be drawn and oriented and crystallized in the step of ironing, the corrosion resistance and the flavor resistance are improved.

【0019】[0019]

【実施例】つぎに実施例と比較例を示して具体的に説明
する。実施例、比較例において、絞りしごき条件と製缶
条件、錫被膜の被覆係数の測定、鉄−錫合金被覆率の測
定、フランジ部剥離の評価、フレーバー性の評価、実缶
保存試験の評価は下記のように行った。
EXAMPLES Next, examples and comparative examples will be specifically described. In Examples and Comparative Examples, drawing and ironing conditions and can making conditions, measurement of coating coefficient of tin coating, measurement of iron-tin alloy coverage, evaluation of flange peeling, evaluation of flavor property, evaluation of actual can storage test were performed. The procedure was as follows.

【0020】1.絞りしごき条件及び製缶条件 実施例10−1及び実施例11−1〜11−4、比較例
11−1〜11−2以外の実施例・比較例は、下記絞り
しごき条件及び製缶条件で行った。金属板厚0.245
mmの片面樹脂被覆鋼板を用い、樹脂被覆面が缶内面に
なるようにして、ブランク径142mmにブランキング
し、1st絞り比1.6でカップを成形後、2nd絞り
比1.3で再絞りし、3工程のしごき成形を行い、缶胴
径65.8mm、缶胴金属厚み80μm、ネック部金属
厚み135μmの絞りしごきカップを成形した。この絞
りしごきカップを缶高さが123mmになるようにトリ
ミングし、洗浄乾燥した後、外面を印刷し200℃で3
0秒加熱後、缶上部を内径57.25mm(206径)
に縮径するとともにフランジを成形し絞りしごき缶を得
た。再絞りと3工程のアイアニングの成形速度は200
cpmである。実施例10−1は、絞りしごき条件が上
記と異なるが、ネック・フランジ条件は同じである。実
施例11−1〜11−4、比較例11−1〜11−2
は、絞りしごき条件は上記と同じであるが、ネック・フ
ランジ条件が上記と異なる。個々の実施例・比較例中に
異なる点のみ明示する。
1. Squeezing and ironing conditions and can-making conditions In Examples 10-1 and Examples 11-1 to 11-4 and Comparative Examples 11-1 to 11-2, examples and comparative examples are as follows. went. Metal plate thickness 0.245
mm single-sided resin-coated steel sheet, with the resin-coated surface facing the inner surface of the can, blanking to a blank diameter of 142 mm, forming a cup with a 1st drawing ratio of 1.6, and then redrawing with a 2nd drawing ratio of 1.3. Then, three-step ironing forming was performed to form a drawn ironing cup having a can body diameter of 65.8 mm, a can body metal thickness of 80 μm, and a neck metal thickness of 135 μm. This squeezing and ironing cup is trimmed to a can height of 123 mm, washed and dried, and then the outer surface is printed and the temperature is set at 200 ° C. for 3 days.
After heating for 0 seconds, the upper part of the can has an inner diameter of 57.25 mm (206 diameter)
The diameter was reduced and the flange was formed and squeezed to obtain an iron can. Molding speed of redrawing and 3 steps of ironing is 200
It is cpm. In Example 10-1, the drawing and ironing conditions are different from the above, but the neck and flange conditions are the same. Examples 11-1 to 11-4, Comparative Examples 11-1 to 11-2
The drawing and ironing conditions are the same as above, but the neck and flange conditions are different from the above. Only the points that differ between the individual examples and comparative examples will be clearly indicated.

【0021】2.カップ加熱条件 第1絞りカップを正立におき、カップの上方に高周波コ
イルを設置し、カップエッジに高周波の磁束がかかるよ
うにする。高周波コイルはカップエッジから3mmの位
置に設置した。高周波の出力を調整し、カップエッジの
温度を制御した。カップエッジの温度は、カップ内面の
樹脂面に、数種の示温塗料を塗布し、変色程度で評価し
た。実施例・比較例での条件は、注記しない限り、処理
時間1.0秒であり、このときのカップエッジの到達温
度は約300℃であった。
2. Cup heating conditions The first diaphragm cup is placed upright and a high frequency coil is installed above the cup so that high frequency magnetic flux is applied to the cup edge. The high frequency coil was installed at a position 3 mm from the cup edge. The high frequency output was adjusted to control the temperature of the cup edge. The temperature of the cup edge was evaluated by discoloring by applying several kinds of temperature-indicating paint to the resin surface on the inner surface of the cup. Unless otherwise noted, the conditions in Examples and Comparative Examples were a treatment time of 1.0 second, and the ultimate temperature of the cup edge at this time was about 300 ° C.

【0022】3.錫被膜の被覆係数の測定 ネック・フランジ部も含む缶壁内面側の樹脂被膜を除去
後、缶内面側壁を円周方向に長さ2.0mmに区切り1
0個所につき下記条件で錫のEPMA線分析を行い、各
場所毎に下記式により錫被膜の被覆係数を求める。こう
して求めた各場所の錫被膜の被覆係数の中で最も小さい
部分の値をもってこの缶の錫被膜の被覆係数とする。測
定法:WDS、検出結晶:PET、加速電圧:10k
v、試料電流:1×10E−8A、ビーム径1.0μ
m、検出X線:SnLα線、タイムコンスタント:1.
0(s)、走査速度:50μm/分、である。 錫被膜被覆係数(%)=(錫量が0.1g/m以上部
の長さ(mm))×100/2.0(mm)
3. Measuring the coating coefficient of tin coating After removing the resin coating on the inner surface of the can wall, including the neck and flange parts, divide the side wall of the inner surface of the can into circumferential lengths of 2.0 mm 1
EPMA line analysis of tin is performed under the following conditions at 0 locations, and the coverage factor of the tin coating is determined for each location by the following formula. The value of the smallest part of the coating coefficient of the tin coating at each location thus obtained is taken as the coating coefficient of the tin coating of this can. Measurement method: WDS, detection crystal: PET, accelerating voltage: 10k
v, sample current: 1 × 10E-8A, beam diameter 1.0 μ
m, detected X-ray: SnLα ray, time constant: 1.
0 (s), scanning speed: 50 μm / min. Tin film coating coefficient (%) = (length of the tin content of 0.1 g / m 2 or more (mm)) × 100 / 2.0 (mm)

【0023】4.鉄−錫合金被覆率の測定 缶体のフランジからネック部の結晶性ポリエステル樹脂
を、例えば1,1,1,3,3,3−ヘキサフルオロ−
2−プロパノールのような溶剤で溶解し、フランジ先端
から2mmまでを切り取り、フランジのエッジと切断面
を樹脂でシールし、熱可塑性樹脂に接していた金属面に
ついて、JIS G3303の“ぶりきの錫付着量試験
方法、電解剥離法”に準じた方法で、合金錫量(A)と
表面錫量(B)を測定する。このとき、電流密度は10
mA/cmで行う。鉄−錫合金被覆率(C)を、下記
式で定義する。 C=A/(A+B) また、熱可塑性樹脂を溶解した後の金属面を走査型電子
顕微鏡で、5000倍以上に拡大した場合、柱状あるい
は粒状の鉄−錫合金が観察され、なめらかな金属錫面と
は明らかに異なり、識別することができる。
4. Measurement of Iron-Tin Alloy Coverage A crystalline polyester resin from the flange of the can to the neck portion of, for example, 1,1,1,3,3,3-hexafluoro-
Dissolve in a solvent such as 2-propanol, cut off up to 2 mm from the tip of the flange, seal the flange edge and cut surface with resin, and regarding the metal surface that was in contact with the thermoplastic resin, JIS G 3303 "tin tin The amount of alloy tin (A) and the amount of surface tin (B) are measured by a method according to the “adhesion amount test method, electrolytic stripping method”. At this time, the current density is 10
Performed at mA / cm 2 . The iron-tin alloy coverage (C) is defined by the following formula. C = A / (A + B) Further, when the metal surface after melting the thermoplastic resin is magnified 5000 times or more with a scanning electron microscope, columnar or granular iron-tin alloy is observed, and smooth metal tin. They are clearly different from faces and can be identified.

【0024】5.フランジ部剥離の評価方法 206径あるいは202径までネック加工をし、さらに
フランジ加工をした後、フランジ部の剥離程度を100
0缶調査し、剥離があった場合を×とし、剥離した缶数
で評価した。フランジ部剥離の基準は、缶円周部のいず
れの部分においてもフランジエッジから、0.5mm以
上の剥離があった場合を×とした。あるいは缶ハイト方
向への線状の剥離が一本以上あった場合を×とし、剥離
がなかった場合を○とした。
5. Flange peeling evaluation method After necking up to a diameter of 206 or 202 and further flanging, the degree of peeling of the flange is 100.
0 cans were inspected, and when there was peeling, it was evaluated as x, and the number of peeled cans was evaluated. The standard of the peeling of the flange portion was x when there was peeling of 0.5 mm or more from the flange edge in any portion of the can circumference. Alternatively, the case where there was one or more linear peels in the can height direction was marked with X, and the case where there was no peeling was marked with O.

【0025】6.フレーバー性の評価 内容物の香気成分が缶内面材料に収着されると、内容物
のフレーバーが変化する。また缶内面材料が内容物中に
溶出しても内容物のフレーバーが変化する.フレーバー
保持性を、実缶保存試験での内容物フレーバーの官能試
験、および香気成分収着率で評価した。内容物フレーバ
ー官能試験は、コカコーラライト(日本コカコーラ株式
会社製炭酸飲料)を充填したのち、室温で3か月間保管
し、経時保管なしの液との、官能的な優位差を調べた。
危険率5%での優位差なしを○、危険率5%での優位差
ありを×、と評価した。香気成分収着率測定は、日本食
品工業学会誌 Vol.34、No.5,1987,2
67〜273に記載された方法に準じて行った。すなわ
ちモデル液として、柑橘系フレーバー(ミルセン、αテ
ルピネン、dリモネン、γテルピネン、pシメン、2カ
レンをそれぞれ10ppmになるように混合した)を添
加したモデル溶液(クエン酸1%)を試験缶に充填・巻
締し、20℃10日間保管後、缶内面フイルムから香気
成分を回収・濃縮し、ガスクロマトグラフ分析を行い、
充填前溶液からの分配比(内面フイルム中の量/内容液
中の量)を求めた。香気成分の回収・濃縮・分析方法は
前述文献に準じた。d−リモネンの分配比2%未満を
○、2%以上を×と評価した。
6. Evaluation of flavor property When the aroma component of the content is sorbed on the inner surface material of the can, the flavor of the content changes. In addition, the flavor of the contents changes even if the material on the inner surface of the can dissolves into the contents. The flavor retention was evaluated by the sensory test of the content flavor in the actual can storage test and the aroma component sorption rate. In the content flavor sensory test, after filling with Coca Cola Light (carbonated beverage manufactured by Japan Coca-Cola Co., Ltd.), the contents were stored at room temperature for 3 months, and the sensory superiority difference from the liquid without storage over time was examined.
When the risk rate was 5%, there was no significant difference, and when there was a risk rate of 5%, there was a significant difference. The fragrance component sorption rate was measured by the Japan Food Industry Society Vol. 34, No. 5,1987,2
It was performed according to the method described in 67-273. That is, as a model liquid, a model solution (1% citric acid) to which a citrus flavor (myrcene, α-terpinene, d-limonene, γ-terpinene, p-cymene, and 2 curene were mixed so as to be 10 ppm each) was added to a test can. After filling, winding and storing at 20 ° C for 10 days, the aroma components are collected and concentrated from the film on the inner surface of the can, and gas chromatographic analysis is performed.
The distribution ratio from the pre-filling solution (amount in inner film / amount in content liquid) was determined. The methods for collecting, concentrating, and analyzing the aroma components were in accordance with the above-mentioned document. A distribution ratio of d-limonene of less than 2% was evaluated as ◯, and a distribution ratio of 2% or more was evaluated as x.

【0026】7.実缶保存試験評価 試験缶数100缶に定法によりコカコーライト(炭酸飲
料)を充填し、蓋を巻締めた後、37℃で6ヶ月間保存
した後、開缶し、缶内面のフイルム下腐食(以下UFC
と略表記する)部の発生面積の測定、及び内容物中に溶
出した鉄イオンを原子吸光分光分析法により測定し、平
均溶出量を算出した。UFCは、UFC面積が0〜10
mmを○、10mmを超えるものを×、と評価し
た。
7. Evaluation of actual can storage test 100 cans were filled with Coca-Collite (carbonated drink) by a standard method, the lid was closed, and the product was stored at 37 ° C for 6 months and then opened, and the can inner surface was corroded under film. (Hereinafter UFC
(Abbreviated as)), and the iron ions eluted in the contents were measured by atomic absorption spectrometry, and the average amount of elution was calculated. UFC has a UFC area of 0-10
mm 2 was evaluated as ◯, and those exceeding 10 mm 2 were evaluated as x.

【0027】8.結晶性ポリエステル樹脂の結晶化度の
測定 ラミネート樹脂層である結晶性ポリエステル樹脂の結晶
化度の測定は、SEN−IGAKKAISHI,Vo
l.33、No.10(1977)、780〜788に
記載された方法で行った。すなわちX線回折散乱強度分
布を結晶及び非晶相からの寄与に分離し、Bragg角
に関する積分強度比として算出した。
8. Measurement of Crystallinity of Crystalline Polyester Resin The crystallinity of the crystalline polyester resin that is the laminated resin layer is measured by SEN-IGAKKAISHI, Vo.
l. 33, No. 10 (1977), 780-788. That is, the X-ray diffraction scattering intensity distribution was separated into contributions from the crystalline and amorphous phases, and calculated as an integrated intensity ratio with respect to the Bragg angle.

【0028】9.加工前樹脂のTg、破断伸び(以下E
lと表記する)、IVの測定 ラミネート板の樹脂層を金属板から剥離したのち、常法
でTg、EL(のび)、を測定した。IVは、o−クロ
ロフェノール中で25℃で測定した。
9. Tg of resin before processing, elongation at break (hereinafter E
(notated as 1), and measurement of IV After peeling the resin layer of the laminate plate from the metal plate, Tg and EL (stretch) were measured by a conventional method. IV was measured in o-chlorophenol at 25 ° C.

【0029】10.缶壁内面平均錫被覆厚みと缶壁内面
平均有機樹脂被膜厚みの測定 缶壁内面平均錫被覆厚みは、しごき加工の最も大きい缶
壁部(缶底から30〜80mm部)内面の有機樹脂を剥
離した後、20mmφの円形資料を3ケ作製し、蛍光X
線法で測定して得た測定値を算術平均して得た。缶壁内
面平均有機樹脂被膜厚みは、同様部位の金属を溶解して
有機樹脂を剥離し、任意の点について10個所マイクロ
メーターで測定して得られた測定値を算術平均して得
た。
10. Measurement of the average tin coating thickness on the inside of the can wall and the average organic resin coating on the inside of the can wall The average tin coating thickness on the inside of the can wall is the maximum peeling of the organic resin on the inside of the can wall (30-80 mm from the can bottom). After that, make 3 circular materials of 20mmφ and make fluorescent X
The measurement values obtained by the linear method were arithmetically averaged. The average thickness of the organic resin film on the inner surface of the can wall was obtained by arithmetically averaging the measured values obtained by dissolving the metal at the same site, peeling off the organic resin, and measuring at arbitrary 10 points with a micrometer.

【0030】実施例1−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み90μmの非晶状態の結晶性ポリエ
ステル樹脂(ポリエチレンテレフタレート/イソフタレ
ート系)を熱被覆し、急冷した。この樹脂の被覆後のT
g、EL、IV、結晶化度を表1に示す。この片面樹脂
被覆錫メッキ鋼板を用い、表1に示す条件で絞りしごき
缶を作製した。条件と評価を表1に示す。
EXAMPLE 1-1 A 90 μm thick amorphous crystalline polyester resin (polyethylene terephthalate / isophthalate system) was heat-treated on one side of 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. Coated and quenched. T after coating with this resin
Table 1 shows g, EL, IV and crystallinity. Using this one-sided resin-coated tin-plated steel sheet, a drawn and ironed can was produced under the conditions shown in Table 1. The conditions and evaluation are shown in Table 1.

【0031】実施例1−2、1−3、比較例1−1、1
−2 実施例1−2、1−3、比較例1−1は、錫メッキ鋼板
に被覆した有機樹脂被膜厚みがそれぞれ30μm、15
μm、9μmであること以外は実施例1−1と同様にし
て絞りしごき缶を作製した。比較例1−2は、錫メッキ
鋼板に被覆した有機樹脂被膜厚みが120μmであるこ
と以外は実施例1−1と同様にして絞りしごき缶を作製
した。条件と評価を表1に示す。フランジ成形時にフラ
ンジ部が剥離したためフレーバーと実缶の評価は行わな
かった。
Examples 1-2 and 1-3, Comparative examples 1-1 and 1
-2 In Examples 1-2 and 1-3 and Comparative Example 1-1, the thickness of the organic resin film coated on the tin-plated steel sheet is 30 μm and 15 respectively.
A squeezed ironing can was produced in the same manner as in Example 1-1 except that the thickness was 9 μm and 9 μm. In Comparative Example 1-2, a drawn and ironed can was produced in the same manner as in Example 1-1, except that the thickness of the organic resin film coated on the tin-plated steel sheet was 120 μm. The conditions and evaluation are shown in Table 1. Flange and actual cans were not evaluated because the flange part peeled off during flange molding.

【0032】実施例2−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmの二軸延伸状態の結晶性ポ
リエステル樹脂(ポリエチレンテレフタレート/イソフ
タレート系)を熱被覆し、ラミネート板(成形前)のポ
リエステル樹脂の結晶化度が2%になるように230℃
での保持時間を調整したのちに、急冷した。この樹脂の
被覆後のTg、EL、IV、結晶化度を表1に示す。こ
の片面樹脂被覆錫メッキ鋼板を用い、絞りしごき缶を作
製した。条件と評価を表1に示す。
Example 2-1 A biaxially stretched crystalline polyester resin (polyethylene terephthalate / isophthalate system) having a thickness of 30 μm is provided on one side of 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. Heat coated, 230 ° C so that the crystallinity of the polyester resin on the laminate (before molding) becomes 2%.
After adjusting the holding time at, it was quenched. Table 1 shows Tg, EL, IV and crystallinity after coating with this resin. Using this single-sided resin-coated tin-plated steel sheet, a drawn and ironed can was produced. The conditions and evaluation are shown in Table 1.

【0033】実施例2−2、比較例2−1、2−2 実施例2−2、比較例2−1、2−2は、ラミネート板
(成形前)のポリエステル樹脂の結晶化度がそれぞれ5
%、9%、24%であること以外は実施例2−1と同様
にして絞りしごき缶を作製した。条件と評価を表1に示
す。
Example 2-2, Comparative Examples 2-1 and 2-2 In Example 2-2 and Comparative Examples 2-1, 2-2, the crystallinity of the polyester resin of the laminate plate (before molding) is respectively. 5
%, 9%, and 24%, and a squeezed ironing can was produced in the same manner as in Example 2-1. The conditions and evaluation are shown in Table 1.

【0034】実施例3−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmの非晶状態の結晶性ポリエ
ステル樹脂(ポリエチレンテレフタレート/イソフタレ
ート系)を熱被覆し、急冷した。このときイソフタル酸
の共重合比率を変えることでTgを64℃にしこの鋼板
を用い絞りしごき缶を製造した。条件と評価を表1に示
す。
Example 3-1 A crystalline polyester resin (polyethylene terephthalate / isophthalate system) in an amorphous state having a thickness of 30 μm was heated on one side of 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. Coated and quenched. At this time, the Tg was set to 64 ° C. by changing the copolymerization ratio of isophthalic acid, and an ironing can was manufactured using this steel sheet. The conditions and evaluation are shown in Table 1.

【0035】実施例3−2、比較例3−1、3−2 実施例3−2、比較例3−1、3−2は、ポリエステル
樹脂のTgがそれぞれ58℃(イソフタル酸共重合)、
54℃(セバシン酸共重合)、48℃(アジピン酸共重
合)であること以外は実施例3−1と同様にして絞りし
ごき缶を作製した。条件と評価を表1に示す。比較例3
−3は、錫メッキ鋼板の片面(内面側)に3μm厚さの
熱硬化樹脂を塗布したのち乾燥焼付(半硬化状態)し、
その上に30μmの非晶状態の結晶性ポリエステル樹脂
を熱被覆し、急冷すること以外は実施例3−1と同様に
して絞りしごき缶を製缶した。条件と評価を表1に示
す。比較例3−4は、熱被覆する樹脂が熱結晶性のない
ポリエステル樹脂(ポリエチレンテレフタレート/イソ
フタレート系)であること以外は実施例3−1と同様に
して絞りしごき缶を製缶した。条件と評価を表1に示
す。
Example 3-2, Comparative Examples 3-1, 3-2 In Example 3-2, Comparative Examples 3-1, 3-2, the Tg of the polyester resin was 58 ° C. (isophthalic acid copolymerization),
A squeezed ironing can was produced in the same manner as in Example 3-1 except that the temperatures were 54 ° C. (sebacic acid copolymerization) and 48 ° C. (adipic acid copolymerization). The conditions and evaluation are shown in Table 1. Comparative Example 3
For -3, one side (inner side) of the tin-plated steel sheet was coated with a thermosetting resin having a thickness of 3 μm, and then dried and baked (semi-cured state),
A squeezed ironing can was manufactured in the same manner as in Example 3-1 except that a crystalline polyester resin in an amorphous state having a thickness of 30 μm was thermally coated thereon and quenched. The conditions and evaluation are shown in Table 1. In Comparative Example 3-4, a squeezed ironing can was manufactured in the same manner as in Example 3-1 except that the resin to be thermally coated was a polyester resin (polyethylene terephthalate / isophthalate system) having no thermal crystallinity. The conditions and evaluation are shown in Table 1.

【0036】実施例4−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmの非晶状態の結晶性ポリエ
ステル樹脂(ポリエチレンテレフタレート/イソフタレ
ート系)を熱被覆し、急冷した。この樹脂は共重合比率
を変えて破断伸びが285%になるようにした。この片
面樹脂被覆錫メッキ鋼板を用い、絞りしごき缶を作製し
た。条件と評価を表1に示す。
Example 4-1 An amorphous crystalline polyester resin (polyethylene terephthalate / isophthalate type) having a thickness of 30 μm was heated on one side of 0.245 mm thick, temper 4, E2.8 / 2.8 tin plate. Coated and quenched. This resin was made to have a breaking elongation of 285% by changing the copolymerization ratio. Using this single-sided resin-coated tin-plated steel sheet, a drawn and ironed can was produced. The conditions and evaluation are shown in Table 1.

【0037】実施例4−2、比較例4−1 実施例4−2、比較例4−1は、ポリエステル樹脂の破
断伸びがそれぞれ133%、3%であること以外は実施
例4−1と同様にして絞りしごき缶を作製した。条件と
評価を表1に示す。
Example 4-2, Comparative Example 4-1 Example 4-2 and Comparative Example 4-1 were the same as Example 4-1 except that the breaking elongation of the polyester resin was 133% and 3%, respectively. A squeezed ironing can was produced in the same manner. The conditions and evaluation are shown in Table 1.

【0038】実施例5−1 0.245mm厚み、テンパー4、E2.8/2.8ぶ
りきの片面に、厚み30μmのIVが約1.0の二軸延
伸状態の結晶性ポリエステル樹脂(ポリエチレンテレフ
タレート/イソフタレート系)を熱被覆し、ラミネート
板(成形前)のポリエステル樹脂の結晶化度が5%にな
るように230℃に保持したのち、急冷した。この片面
樹脂被覆錫メッキ鋼板を用い、絞りしごき缶を作製し
た。条件と評価を表1に示す。
Example 5-1 Biaxially stretched crystalline polyester resin (polyethylene) having a thickness of 30 μm and an IV of about 1.0 on one side of 0.245 mm thick, temper 4, E2.8 / 2.8 tinplate. A terephthalate / isophthalate system) was heat-coated, and the laminated plate (before molding) was kept at 230 ° C. so that the crystallinity of the polyester resin was 5%, followed by rapid cooling. Using this single-sided resin-coated tin-plated steel sheet, a drawn and ironed can was produced. The conditions and evaluation are shown in Table 1.

【0039】実施例5−2、比較例5−1、5−2 実施例5−2、比較例5−1、5−2は、ラミネート後
のポリエステル樹脂のIVがそれぞれ0.68、0.6
3、0.56であること以外は実施例5−1と同様にし
て絞りしごき缶を作製した。条件と評価を表1に示す。
Example 5-2, Comparative Examples 5-1 and 5-2 In Example 5-2 and Comparative Examples 5-1 and 5-2, the IV of the polyester resin after lamination was 0.68, 0. 6
A drawn and ironed can was produced in the same manner as in Example 5-1 except that the values were 3, 0.56. The conditions and evaluation are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】(註) 表中のA〜Sは次の意味の略号で
ある。 A: イソフタル酸共重合PET B: セバシン酸共重合PET C: アジピン酸共重合PET D: 熱硬化樹脂(接着層)+イソフタル酸共重合PE
T E: 熱結晶性のないイソフタル酸共重合PET F: 缶内面平均有機樹脂被膜(μm) G: 缶内面平均錫被覆厚み(g/m) H: 缶内面錫有効被覆率(0.1g/m以上の部分
の割合) J: 加工前樹脂のTg(℃) K: 加工前樹脂のIV(dl/g) L: 加工前樹脂のEL(%) M: 加工前樹脂の結晶化度(%) N: 最終しごき直前の冷却 O: アイアニングダイ入角度(度) P: 腐食性評価 Q: フレーバー性評価 R: 香気成分収着 S: フレーバー官能試験 UFC: 膜下腐蝕 径: ネック後缶口部径呼称 率: 鉄−錫合金被覆率 評: フランジ部剥離評価 なお比較例1−2は成形、製缶状態が不良でフランジが
剥離した。またパンチ抜け性が悪く連続成形不能であっ
た。
(Note) A to S in the table are abbreviations having the following meanings. A: Isophthalic acid copolymerized PET B: Sebacic acid copolymerized PET C: Adipic acid copolymerized PET D: Thermosetting resin (adhesive layer) + isophthalic acid copolymerized PE
T E: isophthalic acid copolymerized PET having no thermal crystallinity F: can inner surface average organic resin coating (μm) G: can inner surface average tin coating thickness (g / m 2 ) H: can inner surface tin effective coverage (0.1 g / Proportion of m 2 or more) J: Tg (° C.) of resin before processing K: IV (dl / g) of resin before processing L: EL (%) of resin before processing M: Crystallinity of resin before processing (%) N: Cooling just before final ironing O: Ironing die entry angle (degrees) P: Corrosion evaluation Q: Flavor evaluation R: Aroma component sorption S: Flavor sensory test UFC: Submembrane corrosion Diameter: After neck Nominal diameter designation rate: Iron-tin alloy coating rate Evaluation: Flange peeling evaluation In Comparative Example 1-2, the flange was peeled off due to poor molding and can making conditions. In addition, punchability was poor and continuous molding was impossible.

【0042】比較例6−1、6−2 比較例6−1、6−2は、0.245mm厚み、テンパ
ー4、D6.0/2.8ぶりき、E2.8/2.8ぶり
きを、2.8側を外面側にして、有機樹脂被覆のない状
態で絞りしごき加工し、洗浄・乾燥したのちに、ビニル
オルガノゾル系の樹脂をスプレー塗装し、焼付硬化を行
い、絞りしごき缶を製缶し、缶壁内面平均錫被覆厚みの
測定、錫被膜の被覆係数の測定、フランジ部剥離評価、
フレーバー性の評価、実缶保存試験評価を行った。鉄−
錫合金の被覆率の測定は行わなかった。その結果、缶壁
内面平均錫被覆厚みはそれぞれ2.0g/m、0.9
g/mであり、缶壁内面錫被覆率はそれぞれ81%、
77%であり、フランジ部剥離缶数は0であり、実缶保
存試験でのFe溶出量はそれぞれ2.7ppm、6.5
ppmであり、UFC評価はそれぞれ×、×であり、フ
レーバー官能試験評価はそれぞれ×、×であった。また
実缶保管試験ではそれぞれ100缶中、5缶、9缶に蓋
巻締部からの穿孔漏洩があった。
Comparative Examples 6-1 and 6-2 Comparative Examples 6-1 and 6-2 are 0.245 mm thick, temper 4, D6.0 / 2.8 tint, E2.8 / 2.8 tint. With the 2.8 side as the outer surface, squeeze and squeeze without an organic resin coating, wash and dry, then spray-paint a vinyl organosol-based resin, bake cure, and squeeze ironing can Cans were made, the average tin coating thickness on the inside of the can wall was measured, the coating coefficient of the tin coating was measured, and the flange peeling was evaluated.
The flavor property was evaluated and the actual can storage test was evaluated. Iron-
The tin alloy coverage was not measured. As a result, the average tin coating thickness on the inner surface of the can wall was 2.0 g / m 2 and 0.9, respectively.
g / m 2 , tin coverage on the inner surface of the can wall is 81%,
77%, the number of peeled cans on the flange was 0, and the Fe elution amounts in the actual can storage test were 2.7 ppm and 6.5, respectively.
ppm, the UFC rating was x, x, and the flavor sensory test rating was x, x, respectively. Further, in the actual can storage test, 5 out of 100 cans and 9 cans were leaked by perforations from the lid-wound portion.

【0043】実施例7−1 0.245mm厚み、テンパー4、D6.0/2.8の
ぶりきの6.0側(内面側)に、厚み30μmの非晶状
態の結晶性ポリエステル樹脂(ポリエチレンテレフタレ
ート/イソフタレート系)を熱被覆し、急冷した。この
片面樹脂被覆錫メッキ鋼板を用い、絞りしごき缶を作製
した。条件と評価を表2に示す。
Example 7-1 A crystalline polyester resin (polyethylene) having a thickness of 30 μm in an amorphous state was formed on the 6.0 side (inner side) of a tin plate having a thickness of 0.245 mm, temper 4 and D6.0 / 2.8. (Terephthalate / isophthalate system) was heat coated and quenched. Using this single-sided resin-coated tin-plated steel sheet, a drawn and ironed can was produced. The conditions and evaluation are shown in Table 2.

【0044】実施例7−2、7−3、比較例7−1、7
−2 実施例7−2はD4.5/2.8ぶりき(4.5が内面
側)、実施例7−3、比較例7−1、7−2は、軟鋼板
片面(内面側)の錫メッキ量がそれぞれ0.6g/
、0.3g/m、0.0g/mであり他面(外
面側)の錫メッキ量がいずれも2.8となるように錫メ
ッキを行い、それ以外は実施例7−1と同様にして絞り
しごき缶を作製した。条件と評価を表2に示す。
Examples 7-2 and 7-3, Comparative Examples 7-1 and 7
-2 Example 7-2 is D4.5 / 2.8 tint (4.5 is the inner surface side), and Example 7-3 and Comparative Examples 7-1 and 7-2 are mild steel plate one surface (inner surface side). The tin plating amount of each is 0.6 g /
m 2, subjected to tin plating so tin plating amount of 0.3 g / m 2, the other surface was 0.0 g / m 2 (outer surface side) is 2.8 Both, the embodiment otherwise Example 7 A squeezed ironing can was produced in the same manner as in 1. The conditions and evaluation are shown in Table 2.

【0045】比較例8 比較例8は、最終しごき後の冷却を行わないこと以外は
実施例1−2と同様にして絞りしごき缶を作製した。し
ごき成形後のパンチ抜けが悪く、成形カップが得られな
かった。
Comparative Example 8 In Comparative Example 8, a squeezed ironing can was produced in the same manner as in Example 1-2 except that cooling was not performed after the final ironing. The punch did not come out well after the ironing and the molding cup could not be obtained.

【0046】実施例9−1 1st、2nd、3rdとも入角2°のアイアニングダ
イ(以下IDと略)を用いた以外は実施例1−2と同様
にして、絞りしごき缶を作製した。条件と評価を表2に
示す。
Example 9-1 A squeezed and ironed can was produced in the same manner as in Example 1-2 except that the 1st, 2nd, and 3rd all had an inning angle of 2 °. The conditions and evaluation are shown in Table 2.

【0047】実施例9−2、9−3、比較例9−1、9
−2 実施例9−2、9−3、比較例9−1、9−2は、ID
入角がそれぞれ6°、8°、10°、12°であること
以外は実施例9−1と同様にして絞りしごき缶を作製し
た。条件と評価を表2に示す。
Examples 9-2 and 9-3, Comparative Examples 9-1 and 9
-2 Examples 9-2, 9-3, Comparative Examples 9-1, 9-2 are ID
A squeezed ironing can was produced in the same manner as in Example 9-1 except that the entry angles were 6 °, 8 °, 10 °, and 12 °, respectively. The conditions and evaluation are shown in Table 2.

【0048】実施例10−1 0.245mm厚み、テンパー1、E2.8/2.8ぶ
りきの片面に、厚み30μmの非晶状態の結晶性ポリエ
ステル樹脂(ポリエチレンテレフタレート/イソフタレ
ート系)を熱被覆し、急冷した。この樹脂の被覆後のT
g、El、IV、結晶化度を表1に示す。この片面樹脂
被覆錫メッキ鋼板を用い、樹脂被覆面が缶内面になるよ
うにして、ブランク径142mmにブランキングし、絞
り比2.1でカップを成形後、3工程のしごき成形を行
い、缶胴径65.8mm、缶胴金属厚み80μm、ネッ
ク部金属厚み135μmの絞りしごきカップを成形し
た。このとき第1絞りカップのカップエッジを高周波で
加熱処理した。この絞りしごきカップを、缶高さが12
3mmになるようにトリミングし、洗浄乾燥した後、外
面を印刷し200℃で30秒加熱後、缶上部を内径5
7.25mmに縮径するとともにフランジを成形し絞り
しごき缶を得た。成形の条件を表2に示す。このように
して得た絞りしごき缶について、平均錫被覆厚み、有機
樹脂被膜厚み、錫被膜の被覆係数の測定、鉄−錫合金の
被覆率の測定、製缶状態の肉眼観察、フレーバー性の評
価、実缶保存試験評価を行った。その結果を表2に示
す。
Example 10-1 A crystalline polyester resin (polyethylene terephthalate / isophthalate system) having a thickness of 30 μm in an amorphous state was heated on one side of 0.245 mm thick, temper 1, E2.8 / 2.8 tinplate. Coated and quenched. T after coating with this resin
Table 1 shows g, El, IV and crystallinity. Using this single-sided resin-coated tin-plated steel sheet, the resin-coated surface is the inner surface of the can, blanking to a blank diameter of 142 mm, forming a cup with a drawing ratio of 2.1, and then performing three-step ironing forming A drawn and ironed cup having a body diameter of 65.8 mm, a can body metal thickness of 80 μm, and a neck portion metal thickness of 135 μm was formed. At this time, the cup edge of the first squeezing cup was heat-treated at a high frequency. This squeezed ironing cup has a can height of 12
After trimming to 3 mm, washing and drying, the outer surface is printed and heated at 200 ° C for 30 seconds, then the top of the can has an inner diameter of 5
While reducing the diameter to 7.25 mm, a flange was formed and drawn to obtain an iron can. Table 2 shows the molding conditions. With respect to the drawn and ironed can thus obtained, the average tin coating thickness, the organic resin coating thickness, the measurement of the coating coefficient of the tin coating, the measurement of the iron-tin alloy coverage, the visual observation of the canned state, and the evaluation of the flavor property Then, the storage test of real cans was evaluated. The results are shown in Table 2.

【0049】実施例11−1 第1絞りカップを、カップエッジ到達温度約300℃で
1.0秒間高周波加熱処理したことと、缶上部を内径5
2.40mm(202径)まで縮径したこと以外は、実
施例1−2と同様にして絞りしごき缶を作成した。条件
及び評価結果を表2に示す。
Example 11-1 The first squeezing cup was subjected to high-frequency heat treatment for 1.0 second at a temperature reaching the cup edge of about 300 ° C., and the upper part of the can had an inner diameter of 5
An squeezed iron can was prepared in the same manner as in Example 1-2 except that the diameter was reduced to 2.40 mm (202 diameter). The conditions and evaluation results are shown in Table 2.

【0050】実施例11−2 第1絞りカップを、カップエッジ到達温度約320℃で
1.0秒間高周波加熱処理したこと以外は、実施例11
−1と同様にして絞りしごき缶を作成した。条件及び評
価結果を表2に示す。
Example 11-2 Example 11-2, except that the first squeezing cup was subjected to high-frequency heat treatment for 1.0 second at a temperature reaching the cup edge of about 320 ° C.
A squeezed ironing can was prepared in the same manner as in -1. The conditions and evaluation results are shown in Table 2.

【0051】実施例11−3 缶内面になるべきぶりきの錫メッキ量が、6.0g/m
であること以外は、実施例11−1と同様にして絞り
しごき缶を作成した。条件及び評価結果を表2に示す。
Example 11-3 The tin plating amount of the tin plate on the inner surface of the can was 6.0 g / m.
A squeezed ironed can was prepared in the same manner as in Example 11-1 except that the number was 2 . The conditions and evaluation results are shown in Table 2.

【0052】実施例11−4 缶内面になるべきぶりきの錫メッキ量が、0.6g/m
であること以外は、実施例11−1と同様にして絞り
しごき缶を作成した。条件及び評価結果を表2に示す。
Example 11-4 The tin plating amount of tinplate on the inner surface of a can was 0.6 g / m.
A squeezed ironed can was prepared in the same manner as in Example 11-1 except that the number was 2 . The conditions and evaluation results are shown in Table 2.

【0053】比較例11−1 第1絞りカップを、カップエッジ到達温度約240℃で
1.0秒間高周波加熱処理したこと以外は、実施例11
−1と同様にして絞りしごき缶を作成した。条件及び評
価結果を表2に示す。
Comparative Example 11-1 Example 11 was repeated, except that the first squeezing cup was subjected to high-frequency heat treatment for 1.0 second at the temperature reached to the cup edge of about 240 ° C.
A squeezed ironing can was prepared in the same manner as in -1. The conditions and evaluation results are shown in Table 2.

【0054】比較例11−2 カップでの加熱処理がないこと以外は、実施例11−1
と同様にして絞りしごき缶を作成した。条件及び評価結
果を表2に示す。
Comparative Example 11-2 Example 11-1 except that there is no heat treatment in the cup.
Squeezing and ironing cans were made in the same manner as. The conditions and evaluation results are shown in Table 2.

【0055】実施例1−1〜1−3、3−1、3−2、
7−1〜7−3、10−1、11−1〜11−4から、
絞りしごき缶が缶内面となる面に予め熱可塑性樹脂を熱
被覆した錫メッキ鋼板から成形されており、缶胴内面の
熱可塑性樹脂の主成分が結晶性ポリエステル樹脂であ
り、缶側壁部における熱可塑性樹脂層の平均厚みが5〜
30μmであり、缶壁内面平均錫被覆厚みが0.2〜
2.0g/mであり、錫の有効被覆率が85%以上で
あり、フランジ先端から少くとも2mmの全周の熱可塑
性樹脂の接している金属面が鉄−錫合金で被覆されてお
り、鉄−錫合金の被覆率が0.7以上である場合、耐食
性(Fe溶出、UFC、穿孔腐食性)とフレーバー性
(耐香気成分収着性、耐異臭成分溶出性)に優れること
が分かる。
Examples 1-1 to 1-3, 3-1, 3-2,
From 7-1 to 7-3, 10-1, 11-1 to 11-4,
The squeezed and ironed can is formed from a tin-plated steel sheet on which the inner surface of the can is previously coated with a thermoplastic resin.The main component of the thermoplastic resin on the inner surface of the can is crystalline polyester resin. The average thickness of the plastic resin layer is 5 to
The average tin coating thickness on the inner surface of the can wall is 0.2 to 30 μm.
2.0 g / m 2 , the effective coverage of tin is 85% or more, and at least 2 mm from the flange tip, the metal surface in contact with the thermoplastic resin is coated with the iron-tin alloy. When the coverage of the iron-tin alloy is 0.7 or more, it can be seen that the corrosion resistance (Fe elution, UFC, perforation corrosion resistance) and flavor (fragrance component sorption resistance, offensive odor component elution resistance) are excellent. .

【0056】比較例6−1、6−2から、絞りしごき缶
が有機被膜のない錫メッキ鋼板から成形されたのち、ス
プレー塗装されることにより有機被膜を形成された場
合、錫の有効被覆率が85%を下回り、耐食性とフレー
バー性が劣ることが分かる。
From Comparative Examples 6-1 and 6-2, when the drawn and ironed can was formed from a tin-plated steel sheet without an organic coating and then spray-painted to form an organic coating, the effective tin coverage was Is less than 85%, which means that the corrosion resistance and flavor are inferior.

【0057】比較例3−3から、絞りしごき缶が、缶内
面となる面に予め熱硬化性樹脂を被覆しその上に熱可塑
性樹脂を被覆した錫メッキ鋼板から成形された場合、錫
の有効被覆率が85%を下回り、耐食性とフレーバー性
が劣ることが分かる。
From Comparative Example 3-3, when the drawn and ironed can is formed from a tin-plated steel sheet whose inner surface is coated with a thermosetting resin in advance, and a thermoplastic resin is coated thereon, the effectiveness of tin is improved. It can be seen that the coverage is less than 85% and the corrosion resistance and flavor are inferior.

【0058】比較例3−4から、缶胴内面の熱可塑性樹
脂の主成分が非晶性(熱結晶性のない)ポリエステル樹
脂の場合、錫の有効被覆率が85%を下回り、耐食性と
フレーバー性が劣ることが分かる。
From Comparative Example 3-4, when the main component of the thermoplastic resin on the inner surface of the can body is an amorphous (non-thermocrystalline) polyester resin, the effective tin coverage is less than 85%, and the corrosion resistance and flavor are reduced. It turns out that the sex is inferior.

【0059】比較例1−1から、缶側壁部における熱可
塑性樹脂の平均厚みが5μmを下回る場合、錫の有効被
覆率が85%を下回り、耐食性とフレーバー性が劣るこ
とが分かる。
From Comparative Example 1-1, it can be seen that when the average thickness of the thermoplastic resin on the side wall of the can is less than 5 μm, the effective coverage of tin is less than 85%, and the corrosion resistance and flavor are inferior.

【0060】比較例1−2から、缶側壁部における熱可
塑性樹脂の平均厚みが30μmを上回る場合、フランジ
部に有機樹脂と金属の間で剥離が起こり、製缶出来ない
ことが分かる。
From Comparative Example 1-2, it can be seen that when the average thickness of the thermoplastic resin on the side wall of the can exceeds 30 μm, peeling occurs between the organic resin and the metal on the flange and the can cannot be manufactured.

【0061】比較例7−1、7−2から、缶壁内面平均
錫被覆厚みが0.2g/mを下回る場合、錫の有効被
覆率が85%を下回り、耐食性とフレーバー性が劣るこ
とが分かる。
From Comparative Examples 7-1 and 7-2, when the average tin coating thickness on the inner surface of the can wall is less than 0.2 g / m 2 , the effective tin coverage is less than 85% and the corrosion resistance and flavor are poor. I understand.

【0062】比較例1−1、2−1、2−2、3−1〜
3−4、4−1、5−1、5−2、6−1、6−2、7
−1、7−2、9−1、9−2、11−1、11−2か
ら、錫の有効被覆率が85%を下回ると、耐食性とフレ
ーバー性が劣ることが分かる。比較例11−1から、カ
ップエッジの高周波処理温度が低い場合、鉄−錫合金の
被覆率が0.7を下回り、フランジ剥離となりパックテ
ストに供するに値する缶は製缶できないことが分かる。
比較例11−2から、カップでの加熱処理がない場合、
鉄−錫合金の被覆率が0.7を下回り、フランジ剥離と
なりパックテストに供するに値する缶は製缶できないこ
とが分かる。比較例11−1、11−2から、鉄−錫合
金の被覆率が0.7を下回ると、フランジ剥離となり、
製缶できないことが分かる。
Comparative Examples 1-1, 2-1, 2-2, 3-1 to
3-4, 4-1, 5-1, 5-2, 6-1, 6-2, 7
From -1, 7-2, 9-1, 9-2, 11-1, 11-2, it is understood that when the effective coverage of tin is less than 85%, the corrosion resistance and the flavor property are inferior. From Comparative Example 11-1, it can be seen that when the high-frequency treatment temperature of the cup edge is low, the coverage of the iron-tin alloy is less than 0.7, flange peeling occurs, and a can that is worthy of being subjected to the pack test cannot be manufactured.
From Comparative Example 11-2, when there is no heat treatment in the cup,
It can be seen that the iron-tin alloy coverage is less than 0.7, resulting in flange peeling, and a can worthy of the pack test cannot be manufactured. From Comparative Examples 11-1 and 11-2, when the coverage of the iron-tin alloy is less than 0.7, flange peeling occurs,
You can see that it cannot be made.

【0063】比較例8から、最終しごき後に冷却しない
場合、パンチ抜け性が劣り、連続成形できないことが分
かる。
From Comparative Example 8, it can be seen that if cooling is not carried out after the final ironing, punchability is poor and continuous molding cannot be performed.

【0064】実施例2−1、2−2、3−1、3−2、
4−1、4−2、5−1、5−2、9−1〜9−3、1
1−1〜11−4、比較例2−1、2−2、3−1、3
−2、4−1、5−1、5−2、8、9−1、9−2、
11−1、11−2から、缶胴内面の熱可塑性樹脂の主
成分である結晶性ポリエステル樹脂のTgが55℃以
上、IVが0.65以上で、成形加工前樹脂の結晶化度
が5%以下であり、Elが100%以上であり、1回以
上の絞り成形によりカップを作り、缶体のフランジ先端
より少くとも2mmとなるべき部分までを加熱処理しそ
の後必要あれば更に再絞り加工し、アイアニングダイの
入角度が2〜8度であり、最終しごき工程後直ちに冷却
して製造することにより、絞りしごき缶が缶内面となる
面に予め熱可塑性樹脂を熱被覆した錫メッキ鋼板から成
形されており、缶胴内面の熱可塑性樹脂の主成分が結晶
性ポリエステル樹脂であり、缶側壁部における熱可塑性
樹脂層の平均厚みが5〜30μmであり、缶壁内面平均
錫被覆厚みが0.2〜2.0g/mであり、錫の有効
被覆率が85%を以上であって、フランジ先端から少な
くとも2mmの全周の、熱可塑性樹脂に接している金属
面が鉄−錫合金で被覆されている、耐食性とフレーバー
性に優れた絞りしごき缶を製造することが分かる。
Examples 2-1, 2-2, 3-1, 3-2,
4-1, 4-2, 5-1, 5-2, 9-1 to 9-3, 1
1-1 to 11-4, Comparative Examples 2-1, 2-2, 3-1, 3
-2, 4-1, 5-1, 5-2, 8, 9-1, 9-2,
From 11-1 and 11-2, the Tg of the crystalline polyester resin which is the main component of the thermoplastic resin on the inner surface of the can body is 55 ° C. or higher, the IV is 0.65 or higher, and the crystallinity of the resin before molding is 5 % Or less, El is 100% or more, a cup is made by drawing once or more, and heat treatment is performed up to a portion that should be at least 2 mm from the flange tip of the can body, and then redrawing is performed if necessary. A tinned steel sheet having an ironing die with an entering angle of 2 to 8 degrees and having been cooled and manufactured immediately after the final ironing step, so that the surface of the drawn and ironed can becomes the inner surface of the can with a thermoplastic resin pre-heat coated. , The main component of the thermoplastic resin on the inner surface of the can body is a crystalline polyester resin, the average thickness of the thermoplastic resin layer on the side wall of the can is 5 to 30 μm, and the average tin coating thickness on the inner surface of the can wall is 0.2 It was 2.0 g / m 2, the effective coverage of the tin is not more than 85%, of the total circumference of at least 2mm from the flange tip metal surface in contact with the thermoplastic resin iron - is coated with a tin alloy It can be seen that a squeezed ironing can having excellent corrosion resistance and flavor is manufactured.

【0065】[0065]

【表2】 [Table 2]

【0066】(註) 表中のA〜Sは次の意味の略号で
ある。 A: イソフタル酸共重合PET B: セバシン酸共重合PET C: アジピン酸共重合PET D: 熱硬化樹脂(接着層)+イソフタル酸共重合PE
T E: 熱結晶性のないイソフタル酸共重合PET F: 缶内面平均有機樹脂被膜(μm) G: 缶内面平均錫被覆厚み(g/m) H: 缶内面錫有効被覆率(0.1g/m以上の部分
の割合) J: 加工前樹脂のTg(℃) K: 加工前樹脂のIV(dl/g) L: 加工前樹脂のEL(%) M: 加工前樹脂の結晶化度(%) N: 最終しごき直前の冷却 O: アイアニングダイ入角度(度) P: 腐食性評価 Q: フレーバー性評価 R: 香気成分収着 S: フレーバー官能試験 UFC: 膜下腐蝕 径: ネック後缶口部径呼称 率: 鉄−錫合金被覆率 評: フランジ部剥離評価 なお、比較例11−1、11−2は成形、製缶状態が不
良でフランジが剥離した。比較例8はネックフランジ部
が剥離した。パンチ抜け性が悪く連続成形不能であっ
た。
(Note) A to S in the table are abbreviations having the following meanings. A: Isophthalic acid copolymerized PET B: Sebacic acid copolymerized PET C: Adipic acid copolymerized PET D: Thermosetting resin (adhesive layer) + isophthalic acid copolymerized PE
T E: isophthalic acid copolymerized PET having no thermal crystallinity F: can inner surface average organic resin coating (μm) G: can inner surface average tin coating thickness (g / m 2 ) H: can inner surface tin effective coverage (0.1 g / Proportion of m 2 or more) J: Tg (° C.) of resin before processing K: IV (dl / g) of resin before processing L: EL (%) of resin before processing M: Crystallinity of resin before processing (%) N: Cooling just before final ironing O: Ironing die entry angle (degrees) P: Corrosion evaluation Q: Flavor evaluation R: Aroma component sorption S: Flavor sensory test UFC: Submembrane corrosion Diameter: After neck Nominal diameter designation rate: Iron-tin alloy coating rate Evaluation: Flange peeling evaluation In Comparative Examples 11-1 and 11-2, the molded and canned state was poor and the flange peeled. In Comparative Example 8, the neck flange portion was peeled off. Punch removal was poor and continuous molding was impossible.

【0067】[0067]

【発明の効果】本発明は従来知られていない、錫メッキ
層が0.2g/m〜2.0g/mの薄層であって、
その表面に熱可塑性樹脂の5〜30μmの同時加工され
たラミネート層を設けた錫の有効被覆率が85%以上で
あって、フランジ先端から少くとも2mmの全周の熱可
塑性樹脂の接している金属面が鉄−錫合金で被覆されて
おり、鉄−錫合金の被覆率が0.7以上の絞りしごき缶
であって耐食性と耐フレーバー性に非常に優れた効果を
奏する。
According to the present invention is not known in the prior art, the tin-plating layer is a thin layer of 0.2g / m 2 ~2.0g / m 2 ,
Provided on the surface thereof is a laminated layer of thermoplastic resin having a thickness of 5 to 30 μm. The effective coverage of tin is 85% or more, and the thermoplastic resin is in contact with the entire circumference of at least 2 mm from the flange tip. The metal surface is coated with an iron-tin alloy, and the iron-tin alloy has a coating ratio of 0.7 or more, and is a drawn and ironed can, which is very effective in corrosion resistance and flavor resistance.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年9月29日[Submission date] September 29, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】2.カップ加熱条件 第1絞りカップを正立におき、カップの上方に高周波
導加熱コイルを設置し、カップエッジに高周波の磁束が
かかるようにする。高周波誘導加熱コイルはカップエッ
ジから3mmの位置に設置した。高周波の出力を調整
し、カップエッジの温度を制御した。カップエッジの温
度は、カップ内面の樹脂面に、数種の示温塗料を塗布
し、変色程度で評価した。実施例・比較例での条件は、
注記しない限り、処理時間1.0秒であり、このときの
カップエッジの到達温度は約300℃であった。
2. Cup heating conditions Place the first squeezing cup upright and place a high frequency induction above the cup.
Install a heating coil so that high-frequency magnetic flux is applied to the cup edge. The high frequency induction heating coil was installed at a position 3 mm from the cup edge. The high frequency output was adjusted to control the temperature of the cup edge. The temperature of the cup edge was evaluated by discoloring by applying several kinds of temperature-indicating paint to the resin surface on the inner surface of the cup. The conditions in Examples and Comparative Examples are
Unless otherwise noted, the processing time was 1.0 second, and the temperature reached by the cup edge at this time was about 300 ° C.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0048】実施例10−1 0.245mm厚み、テンパー1、E2.8/2.8ぶ
りきの片面に、厚み30μmの非晶状態の結晶性ポリエ
ステル樹脂(ポリエチレンテレフタレート/イソフタレ
ート系)を熱被覆し、急冷した。この樹脂の被覆後のT
g、El、IV、結晶化度を表1に示す。この片面樹脂
被覆錫メッキ鋼板を用い、樹脂被覆面が缶内面になるよ
うにして、ブランク径142mmにブランキングし、絞
り比2.1でカップを成形後、3工程のしごき成形を行
い、缶胴径65.8mm、缶胴金属厚み80μm、ネッ
ク部金属厚み135μmの絞りしごきカップを成形し
た。このとき第1絞りカップのカップエッジを高周波
加熱処理した。この絞りしごきカップを、缶高さが1
23mmになるようにトリミングし、洗浄乾燥した後、
外面を印刷し200℃で30秒加熱後、缶上部を内径5
7.25mmに縮径するとともにフランジを成形し絞り
しごき缶を得た。成形の条件を表2に示す。このように
して得た絞りしごき缶について、平均錫被覆厚み、有機
樹脂被膜厚み、錫被膜の被覆係数の測定、鉄−錫合金の
被覆率の測定、製缶状態の肉眼観察、フレーバー性の評
価、実缶保存試験評価を行った。その結果を表2に示
す。
Example 10-1 A crystalline polyester resin (polyethylene terephthalate / isophthalate system) having a thickness of 30 μm in an amorphous state was heated on one side of 0.245 mm thick, temper 1, E2.8 / 2.8 tinplate. Coated and quenched. T after coating with this resin
Table 1 shows g, El, IV and crystallinity. Using this single-sided resin-coated tin-plated steel sheet, the resin-coated surface is the inner surface of the can, blanking to a blank diameter of 142 mm, forming a cup with a drawing ratio of 2.1, and then performing three-step ironing forming A drawn and ironed cup having a body diameter of 65.8 mm, a can body metal thickness of 80 μm, and a neck portion metal thickness of 135 μm was formed. At this time, the cup edge of the first squeeze cup is induced by high frequency.
Conducted heat treatment. This squeezed ironing cup has a can height of 1
After trimming to 23 mm, washing and drying,
After printing the outer surface and heating at 200 ℃ for 30 seconds, the top of the can has an inner diameter of 5
While reducing the diameter to 7.25 mm, a flange was formed and drawn to obtain an iron can. Table 2 shows the molding conditions. With respect to the drawn and ironed can thus obtained, the average tin coating thickness, the organic resin coating thickness, the measurement of the coating coefficient of the tin coating, the measurement of the iron-tin alloy coverage, the visual observation of the canned state, and the evaluation of the flavor property Then, the storage test of real cans was evaluated. The results are shown in Table 2.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0049[Correction target item name] 0049

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0049】実施例11−1 第1絞りカップを、カップエッジ到達温度約300℃で
1.0秒間高周波誘導加熱処理したことと、缶上部を内
径52.40mm(202径)まで縮径したこと以外
は、実施例1−2と同様にして絞りしごき缶を作成し
た。条件及び評価結果を表2に示す。
Example 11-1 The first squeezing cup was subjected to high-frequency induction heating at a temperature reaching the cup edge of about 300 ° C. for 1.0 second, and the upper part of the can was reduced in diameter to 52.40 mm (202 diameter). Except for this, a squeezed ironed can was prepared in the same manner as in Example 1-2. The conditions and evaluation results are shown in Table 2.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0050[Correction target item name] 0050

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0050】実施例11−2 第1絞りカップを、カップエッジ到達温度約320℃で
1.0秒間高周波誘導加熱処理したこと以外は、実施例
11−1と同様にして絞りしごき缶を作成した。条件及
び評価結果を表2に示す。
Example 11-2 A squeezed and ironed can was prepared in the same manner as in Example 11-1 except that the first squeezing cup was subjected to high-frequency induction heating treatment at the cup edge reaching temperature of about 320 ° C. for 1.0 second. . The conditions and evaluation results are shown in Table 2.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0053[Correction target item name] 0053

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0053】比較例11−1 第1絞りカップを、カップエッジ到達温度約240℃で
1.0秒間高周波誘導加熱処理したこと以外は、実施例
11−1と同様にして絞りしごき缶を作成した。条件及
び評価結果を表2に示す。
Comparative Example 11-1 A squeezed and ironed can was prepared in the same manner as in Example 11-1 except that the first squeezing cup was subjected to the high frequency induction heating treatment at the cup edge reaching temperature of about 240 ° C. for 1.0 second. . The conditions and evaluation results are shown in Table 2.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0062[Correction target item name] 0062

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0062】比較例1−1、2−1、2−2、3−1〜
3−4、4−1、5−1、5−2、6−1、6−2、7
−1、7−2、9−1、9−2、11−1、11−2か
ら、錫の有効被覆率が85%を下回ると、耐食性とフレ
ーバー性が劣ることが分かる。比較例11−1から、カ
ップエッジの高周波誘導加熱処理温度が低い場合、鉄−
錫合金の被覆率が0.7を下回り、フランジ剥離となり
パックテストに供するに値する缶は製缶できないことが
分かる。比較例11−2から、カップでの加熱処理がな
い場合、鉄−錫合金の被覆率が0.7を下回り、フラン
ジ剥離となりパックテストに供するに値する缶は製缶で
きないことが分かる。比較例11−1、11−2から、
鉄−錫合金の被覆率が0.7を下回ると、フランジ剥離
となり、製缶できないことが分かる。
Comparative Examples 1-1, 2-1, 2-2, 3-1 to
3-4, 4-1, 5-1, 5-2, 6-1, 6-2, 7
From -1, 7-2, 9-1, 9-2, 11-1, 11-2, it is understood that when the effective coverage of tin is less than 85%, the corrosion resistance and the flavor property are inferior. From Comparative Example 11-1, when the high-frequency induction heat treatment temperature of the cup edge is low, iron-
It can be seen that the tin alloy coverage is less than 0.7, resulting in flaking of the flange, and a can worthy of the pack test cannot be manufactured. From Comparative Example 11-2, it can be seen that, without heat treatment in the cup, the iron-tin alloy coverage was less than 0.7, resulting in flange peeling, and a can worthy of the pack test cannot be manufactured. From Comparative Examples 11-1 and 11-2,
It can be seen that if the iron-tin alloy coverage is less than 0.7, flange peeling occurs and the can cannot be manufactured.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも缶内面となる片面に予め熱可
塑性樹脂を被覆した錫メッキ鋼板で成形した絞りしごき
缶において、熱可塑性樹脂の主成分が結晶性ポリエステ
ル樹脂であり、缶側壁部における該樹脂層の平均厚みは
5〜30μmであり、錫被膜の平均厚みが0.2〜2.
0g/mであり、錫の有効被覆率が85%以上であっ
て、フランジ先端から少なくとも2mmの全周の熱可塑
性樹脂の接している金属面が鉄−錫合金で被覆されてお
り、鉄−錫合金の被覆率が0.7以上であることを特徴
とする、耐食性とフレーバー性に優れた2ピース絞りし
ごき缶。
1. A drawn and ironed can formed by using a tin-plated steel sheet coated with a thermoplastic resin in advance on at least one inner surface of the can, wherein the main component of the thermoplastic resin is a crystalline polyester resin, and the resin on the side wall of the can is used. The layer has an average thickness of 5 to 30 μm, and the tin coating has an average thickness of 0.2 to 2.
It is 0 g / m 2 , the effective coverage of tin is 85% or more, and the metal surface in contact with the thermoplastic resin at least 2 mm from the flange tip is in contact with the iron-tin alloy. A two-piece squeezed ironing can with excellent corrosion resistance and flavor, characterized by a tin alloy coverage of 0.7 or more.
【請求項2】 被覆樹脂の主成分である結晶性ポリエス
テル樹脂のTgが55℃以上、固有粘度(IV)が0.
65以上である、請求項1に記載された耐食性とフレー
バー性に優れた2ピース絞りしごき缶。
2. The crystalline polyester resin, which is the main component of the coating resin, has a Tg of 55 ° C. or higher and an intrinsic viscosity (IV) of 0.
A two-piece squeezed ironing can having a corrosion resistance and a flavor property according to claim 1, which is 65 or more.
【請求項3】 錫の有効被覆率が、錫被膜の厚みが0.
1g/m以上の部分の占める割合を示す値である、請
求項1または2に記載された、耐食性とフレーバー性に
優れた2ピース絞りしごき缶。
3. The effective coverage of tin is 0.
The two-piece squeezed and ironed can having excellent corrosion resistance and flavor properties according to claim 1 or 2, which is a value indicating the proportion occupied by a portion of 1 g / m 2 or more.
【請求項4】 鉄−錫合金の被覆率がフランジ先端から
2mmまでの合金錫量Aと表面錫量Bから C=A/
(A+B)の式により求めた値Cである、請求項1ない
し3のいずれか1項に記載された、耐食性とフレーバー
性に優れた2ピース絞りしごき缶。
4. From the amount of alloy tin A and the amount of surface tin B from the flange tip to 2 mm, the coating ratio of iron-tin alloy is C = A /
A two-piece squeezed and ironed can having excellent corrosion resistance and flavor properties according to any one of claims 1 to 3, which has a value C determined by the formula (A + B).
【請求項5】 錫メッキ厚みが0.4〜6.0g/m
である錫メッキ鋼板の缶内側となる面に、結晶性ポリエ
ステル樹脂を主成分とする結晶化度が5%以下、厚みが
15〜90μm、破断伸びが100%以上、Tgが55
℃以上、固有粘度(IV)が0.65以上である熱可塑
性樹脂被覆を配置して、1回以上の絞り成形によりカッ
プを作り、缶体のフランジ先端から少なくとも2mmと
なるべき部分までを加熱処理しその後必要あれば更に再
絞り加工して次にパンチと入角度が2〜8度のアイアニ
ングダイにより、しごき加工を行い、最終しごき工程後
直ちに冷却することにより、缶側壁部における樹脂層の
平均厚みが5〜30μm、錫被膜の平均厚みが0.2〜
2.0g/m、錫の有効被覆率が85%以上であっ
て、フランジ先端から少なくとも2mmの全周の熱可塑
性樹脂の接している金属面が鉄−錫合金で被覆されてお
り、鉄−錫合金の被覆率が0.7以上である耐食性とフ
レーバー性に優れた2ピース絞りしごき缶の製造方法。
5. The tin plating thickness is 0.4 to 6.0 g / m 2.
On the surface of the tin-plated steel sheet that is the inside of the can, the crystallinity of the crystalline polyester resin is 5% or less, the thickness is 15 to 90 μm, the elongation at break is 100% or more, and the Tg is 55.
A thermoplastic resin coating with an intrinsic viscosity (IV) of 0.65 or more is placed, and a cup is made by drawing once or more, and the portion from the tip of the flange of the can to at least 2 mm is heated. The resin layer on the side wall of the can can be treated and then redrawn if necessary, and then ironed by a punch and an ironing die with an insertion angle of 2 to 8 degrees, and immediately cooled after the final ironing step. Has an average thickness of 5 to 30 μm, and the tin coating has an average thickness of 0.2 to
2.0 g / m 2 , the effective coverage ratio of tin is 85% or more, and the metal surface in contact with the thermoplastic resin of at least 2 mm from the flange tip is covered with the iron-tin alloy. A method for producing a two-piece squeezed ironing can having a tin alloy coverage of 0.7 or more and excellent corrosion resistance and flavor.
【請求項6】 成形時にカップ内面の錫層の温度を23
2℃を越えない温度に維持して成形し、最終しごき成形
の後急冷してネッキング部とフランジ部の内面側錫温度
を232℃以下とした、請求項5に記載された耐食性と
フレーバー性に優れた2ピース絞りしごき缶の製造方
法。
6. The temperature of the tin layer on the inner surface of the cup is set to 23 during molding.
The corrosion resistance and the flavor property according to claim 5, wherein the temperature is maintained at a temperature not exceeding 2 ° C, the final ironing is followed by rapid cooling to reduce the tin temperature on the inner surface side of the necking portion and the flange portion to 232 ° C or less. An excellent method of manufacturing a two-piece squeezed ironing can.
【請求項7】 ポリエステル樹脂を主成分とする熱可塑
性樹脂被覆を絞りしごき加工の工程で配向結晶化させ
る、請求項5または6に記載された耐食性とフレーバー
性に優れた2ピース絞りしごき缶の製造方法。
7. A two-piece squeezed and ironed can excellent in corrosion resistance and flavor according to claim 5 or 6, wherein the thermoplastic resin coating containing a polyester resin as a main component is squeezed and oriented and crystallized in the step of ironing. Production method.
JP17265995A 1995-06-06 1995-06-06 Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance and method for producing the same Expired - Fee Related JP3575117B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17265995A JP3575117B2 (en) 1995-06-06 1995-06-06 Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance and method for producing the same
EP19960304119 EP0747135B1 (en) 1995-06-06 1996-06-05 Drawn and wall-ironed can body having excellent corrosion resistance and flavor retention and production method thereof
DE1996616875 DE69616875T2 (en) 1995-06-06 1996-06-05 Drawn and rolled cans with excellent corrosion resistance and aroma retention and manufacturing processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17265995A JP3575117B2 (en) 1995-06-06 1995-06-06 Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08332527A true JPH08332527A (en) 1996-12-17
JP3575117B2 JP3575117B2 (en) 2004-10-13

Family

ID=15946003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17265995A Expired - Fee Related JP3575117B2 (en) 1995-06-06 1995-06-06 Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance and method for producing the same

Country Status (3)

Country Link
EP (1) EP0747135B1 (en)
JP (1) JP3575117B2 (en)
DE (1) DE69616875T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402255B1 (en) * 1998-12-29 2004-02-05 주식회사 포스코 How to make a two-piece can for beverages with excellent corrosion resistance
KR100815770B1 (en) * 2001-12-12 2008-03-20 주식회사 포스코 Manufacturing of steel 2-piece Drawing and Ironing Can with better strippability
JP2019513582A (en) * 2016-04-04 2019-05-30 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Method for producing polymer-coated metal band and polymer-coated metal band produced by the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2323803B (en) * 1997-04-04 2001-09-19 British Steel Plc A method of producing metal cans

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172637A (en) * 1984-02-14 1985-09-06 東洋製罐株式会社 Drawing wiping can
JPH085158B2 (en) * 1988-01-28 1996-01-24 新日本製鐵株式会社 Laminated steel sheet for cans with excellent workability and corrosion resistance
CA1337042C (en) * 1988-10-19 1995-09-19 Kenzo Matsui Polyester resin film laminated steel sheet for drawn and ironed can and method for production thereof
KR930011749B1 (en) * 1989-11-15 1993-12-20 신닛뽄세이테쓰 가부시키가이샤 Resin coated steel for draw wiping can and draw wiping can
JP3489167B2 (en) * 1993-12-13 2004-01-19 東洋製罐株式会社 Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance, and method for producing the same
JP2707965B2 (en) * 1993-12-22 1998-02-04 東洋製罐株式会社 2-piece can with excellent impact resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402255B1 (en) * 1998-12-29 2004-02-05 주식회사 포스코 How to make a two-piece can for beverages with excellent corrosion resistance
KR100815770B1 (en) * 2001-12-12 2008-03-20 주식회사 포스코 Manufacturing of steel 2-piece Drawing and Ironing Can with better strippability
JP2019513582A (en) * 2016-04-04 2019-05-30 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Method for producing polymer-coated metal band and polymer-coated metal band produced by the method

Also Published As

Publication number Publication date
JP3575117B2 (en) 2004-10-13
EP0747135A1 (en) 1996-12-11
DE69616875D1 (en) 2001-12-20
DE69616875T2 (en) 2002-04-11
EP0747135B1 (en) 2001-11-14

Similar Documents

Publication Publication Date Title
JPH07507525A (en) laminated metal plate
JP2004148324A (en) Method for manufacturing shear spun can made of resin coated metal
JP4631111B2 (en) Aluminum can materials, cans and can lids
DE3925141C2 (en) Process for the production of objects, in particular cans from surface-treated steel sheet
JP3575117B2 (en) Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance and method for producing the same
JP3489167B2 (en) Two-piece drawn ironing can with excellent corrosion resistance and flavor resistance, and method for producing the same
JP2707965B2 (en) 2-piece can with excellent impact resistance
JPH0598465A (en) Manufacture of thinned resin coated tinned steel sheet for deep drawing excellent in working corrosion resistance
JP4103974B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP2803854B2 (en) Composite steel sheet excellent in formability of drawn and ironed cans
JPH0631362A (en) Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JP4056210B2 (en) Resin film laminated plated steel sheet, can using the same, and method for producing resin film laminated plated steel sheet
JP3826450B2 (en) Method for producing film-coated metal plate for can manufacturing process and method for producing printing can
JPH0780277B2 (en) Polyester resin-coated metal sheet excellent in workability and method for producing the same
JP3672734B2 (en) Surface treatment method of steel plate, surface-treated steel plate, and thermoplastic resin-coated steel plate using surface-treated steel plate
JP2000153843A (en) Two-piece can body and its manufacture
JPH1044354A (en) Polyester film, laminate metal plate, its manufacture and metal container
JP4235794B2 (en) Inner resin coated aluminum squeezed iron can
JP3034811B2 (en) Thermoplastic polyester resin coated surface treated steel sheet and method for producing the same
JP3282994B2 (en) Surface treatment method of steel sheet, surface treated steel sheet, and thermoplastic resin coated steel sheet using the surface treated steel sheet
JP2001162718A (en) Method for manufacturing resin coated aluminum panel excellent in adhesion and processability
JPH06102464B2 (en) Squeezing or squeezing from laminated material-ironing can and its manufacturing method
JP2011255605A (en) Laminated metal sheet for container
JPH05200961A (en) Production of polyethylene resin coated metal plate excellent in hot water resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees