JPH08330613A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH08330613A
JPH08330613A JP7137668A JP13766895A JPH08330613A JP H08330613 A JPH08330613 A JP H08330613A JP 7137668 A JP7137668 A JP 7137668A JP 13766895 A JP13766895 A JP 13766895A JP H08330613 A JPH08330613 A JP H08330613A
Authority
JP
Japan
Prior art keywords
selenium
layer
indium
solar cell
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7137668A
Other languages
Japanese (ja)
Other versions
JP3048040B2 (en
Inventor
Takeshi Iketani
剛 池谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP7137668A priority Critical patent/JP3048040B2/en
Priority to US08/651,610 priority patent/US5772431A/en
Publication of JPH08330613A publication Critical patent/JPH08330613A/en
Priority to US09/009,689 priority patent/US6036822A/en
Priority to US09/009,161 priority patent/US6207219B1/en
Application granted granted Critical
Publication of JP3048040B2 publication Critical patent/JP3048040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: To provide a method of obtaining a good Cu-In-Se alloy layer having no peel easily at low cost. CONSTITUTION: In the production process of a thin film solar cell, a No layer and Cu layer are formed on a substrate by the sputtering, and a Se dispersed In layer is formed on the Cu layer in a soln. contg. In ions and dispersed Se colloid by the electrodeposition and heated in a closed vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅−インジウム−セレ
ン三元合金層を有する薄膜太陽電池の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell having a copper-indium-selenium ternary alloy layer.

【0002】[0002]

【従来の技術】太陽電池は、光エネルギーを電気エネル
ギーに変換する装置であり、導電性基板上に、光電変換
性半導体からなる吸収層と光透過性電極層とを順次積層
して構成されるのが普通である。このような光電変換性
半導体層としては、原子の存在比が1:1:2である銅
−インジウム−セレン三元合金(CuInSe2 )の薄
膜が最も優れた光電変換効率を示すものと考えられてい
る。この三元合金の製造方法としては特開昭61−23
7476号公報で知られている方法があった。この方法
は、導電性基板上に銅及びインジウムを順次電着させて
プリカーサーを形成した後、セレン化水素を含んだ不活
性ガスを流しながら加熱処理を行い、銅−インジウム−
セレン三元合金(CuInSe2 )層を形成する方法で
あった。
2. Description of the Related Art A solar cell is a device for converting light energy into electric energy, and is constructed by sequentially laminating an absorbing layer made of a photoelectric conversion semiconductor and a light transmitting electrode layer on a conductive substrate. Is normal. As such a photoelectric conversion semiconductor layer, a thin film of a copper-indium-selenium ternary alloy (CuInSe 2 ) having an atomic abundance ratio of 1: 1: 2 is considered to exhibit the best photoelectric conversion efficiency. ing. As a method for producing this ternary alloy, Japanese Patent Application Laid-Open No. 61-23
There was a method known from Japanese Patent No. 7476. In this method, copper and indium are sequentially electrodeposited on a conductive substrate to form a precursor, and then heat treatment is performed while an inert gas containing hydrogen selenide is flowed to form copper-indium-
It was a method of forming a selenium ternary alloy (CuInSe 2 ) layer.

【0003】しかしこの方法では、導電性基板と生成し
た三元合金層との密着性が悪く、剥がれが生じ、そのた
め太陽電池を作成した場合に特性が悪くなる。また、セ
レン化水素を含んだ不活性ガスを流しながら加熱処理を
行うため、セレン化水素が本来化学量論的に必要な量の
数10倍〜数100倍程度必要である。また、このセレ
ン化水素は極めて毒性が高いためその取り扱い性にも問
題があり、同時に、高価な不活性ガスを用いるためコス
ト高になる等の多くの問題があった。
However, according to this method, the adhesiveness between the conductive substrate and the ternary alloy layer formed is poor and peeling occurs, which results in poor properties when a solar cell is produced. Further, since the heat treatment is carried out while flowing an inert gas containing hydrogen selenide, the amount of hydrogen selenide required is approximately several tens to several hundreds of the stoichiometrically required amount. Further, since hydrogen selenide is extremely toxic, it has a problem in handleability, and at the same time, there are many problems such as an increase in cost because an expensive inert gas is used.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点、即ち、剥がれのない良好な銅−インジウム
−セレン三元合金層を、容易、安全にかつ安価に得るこ
とができる方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is a method of obtaining the above-mentioned problem of the prior art, that is, a good copper-indium-selenium ternary alloy layer without peeling, easily, safely and inexpensively. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明の薄膜太陽電池の
製造方法は、次の4工程、即ち、(1) 基板上にスパッタ
リングによりモリブデン層を形成する工程、(2) 該モリ
ブデン層上にスパッタリングにより銅層を形成する工
程、(3) インジウムイオンを含み、かつ、セレンコロイ
ドを分散させた溶液中で該銅層上にセレン分散インジウ
ム層を電着によって形成し、プリカーサーを完成する工
程、(4) 該プリカーサーをセレンと共に容器に入れ、該
容器を密閉した後、加熱する工程、を有することを特徴
とする。
Means for Solving the Problems The method for manufacturing a thin film solar cell of the present invention comprises the following four steps: (1) a step of forming a molybdenum layer on a substrate by sputtering, and (2) a step of forming the molybdenum layer on the molybdenum layer. A step of forming a copper layer by sputtering, (3) a step of forming a selenium-dispersed indium layer on the copper layer by electrodeposition in a solution containing indium ions, and dispersing a selenium colloid, to complete a precursor, (4) A step of placing the precursor together with selenium in a container, sealing the container, and then heating the container.

【0006】ここで、基板としては、ソーダライムガラ
スを用いると、CuInSe2 とほぼ同様の熱膨張係数
を持つため熱処理時に剥がれの発生が少なくなり、ま
た、このガラス中のアルカリ成分がCuInSe2 の結
晶性を向上させるので、好ましい。モリブデン層は導電
性を有し、太陽電池の構成上電極として必要なものであ
るが、基板との密着性の点でスパッタリングによって形
成されることが必要である。銅層も同様の理由でスパッ
タリングによって形成されることが必要である。
When soda lime glass is used as the substrate, the occurrence of peeling during heat treatment is small because it has a coefficient of thermal expansion similar to that of CuInSe 2, and the alkaline component in this glass is CuInSe 2 . It is preferable because it improves the crystallinity. The molybdenum layer has conductivity and is necessary as an electrode in the structure of the solar cell, but it is necessary to be formed by sputtering in terms of adhesion to the substrate. The copper layer also needs to be formed by sputtering for the same reason.

【0007】インジウムイオン(In2+)を含み、か
つ、セレンコロイドを有する溶液において、インジウム
イオンは、例えば硫酸インジウム等のインジウム塩を水
に溶解することにより得られる。またセレンコロイド
は、例えば、亜セレン酸を硫酸ヒドラジニウムによって
還元して得られる。
In a solution containing indium ions (In 2+ ) and having a selenium colloid, indium ions are obtained by dissolving an indium salt such as indium sulfate in water. The selenium colloid can be obtained, for example, by reducing selenious acid with hydrazinium sulfate.

【0008】ここで得られるセレンコロイド粒子の粒径
は1μm未満であることが好ましい。このコロイド粒子
の粒径が1μmより大きいと溶液中での均一分散が困難
であり、また、電着によって形成されたインジウム層に
均一に分散されなくなる傾向がある。
The particle size of the selenium colloidal particles obtained here is preferably less than 1 μm. When the particle size of the colloidal particles is larger than 1 μm, it is difficult to uniformly disperse the colloidal particles in the solution, and the colloidal particles tend not to be uniformly dispersed in the indium layer formed by electrodeposition.

【0009】銅層とセレンコロイドを分散含有する電着
インジウム層は銅層の上に形成されることが必要であ
る。即ち、導電性基板/銅層/セレン粒子散含有インジ
ウム層の順に成層されることが必要である。これは、セ
レンと導電性基板に含まれているモリブデンとが反応し
て形成される化合物が、吸収層の銅−インジウム−セレ
ン三元合金の生成を阻害し、また、この三元合金の結晶
の発達を妨げる性質を持ち、かつ、最終的に得られる吸
収層を脱落しやすくするためである。
It is necessary that the electrodeposited indium layer containing the copper layer and the selenium colloid dispersed therein is formed on the copper layer. That is, it is necessary to form the conductive substrate / copper layer / indium layer containing selenium particles in this order. This is because the compound formed by the reaction between selenium and molybdenum contained in the conductive substrate inhibits the formation of the copper-indium-selenium ternary alloy in the absorption layer, and also the crystal of this ternary alloy. This is because it has the property of hindering the development of the water and makes it easier to remove the absorption layer that is finally obtained.

【0010】なお、電着条件として、セレンコロイド粒
子を分散含有する電着インジウム層中のインジウム原子
に対するセレン原子の存在量が1/1000以上2/1
以下になるよう定めることが好ましい。
As an electrodeposition condition, the abundance of selenium atoms with respect to indium atoms in the electrodeposited indium layer containing selenium colloidal particles dispersed therein is 1/1000 or more and 2/1.
It is preferable to set it as follows.

【0011】インジウム原子に対するセレン原子の存在
量が1/1000より少ない場合は、熱処理時に膜中か
らのセレン供給が不足して銅−インジウム−セレン三元
合金の生成量が減少しやすく、また、このことを防止す
るため加熱処理中に外部から大量のセレンを供給する
と、三元合金形成時の層の膨張に対応できずにひずみが
生じ、三元合金層に剥がれが生じやすい。
If the amount of selenium atoms to the amount of indium atoms is less than 1/1000, the amount of selenium supplied from the film is insufficient during the heat treatment and the amount of copper-indium-selenium ternary alloy produced tends to decrease. If a large amount of selenium is supplied from the outside during the heat treatment in order to prevent this, strain cannot be dealt with due to the expansion of the layer when the ternary alloy is formed, and the ternary alloy layer is likely to peel off.

【0012】一方、このインジウム原子に対するセレン
の存在量が2/1より多いときには、銅とセレンとが安
定な化合物を形成しやすくなり、このため、銅−インジ
ウム−セレン三元合金の生成量が減少するとともに、こ
の銅とセレンとからなる化合物が生成した銅−インジウ
ム−セレン三元合金の結晶の成長を妨げるため、発達し
た三元合金の結晶が得られにくくなる。
On the other hand, when the abundance of selenium with respect to the indium atom is more than 2/1, copper and selenium are likely to form a stable compound, so that the production amount of the copper-indium-selenium ternary alloy is increased. At the same time, the growth of the copper-indium-selenium ternary alloy crystal produced by the compound of copper and selenium is reduced, and it becomes difficult to obtain the developed ternary alloy crystal.

【0013】上記のようにセレンコロイドを分散含有す
る電着インジウム層が形成されたプリカーサーをイオン
交換水で洗浄後乾燥する。この乾燥は、優れた吸収層を
得るために、窒素ガス中、或いは不活性気体中で行うこ
とが望ましい。
The precursor having the electrodeposited indium layer containing the selenium colloid dispersed therein as described above is washed with ion-exchanged water and dried. This drying is preferably performed in nitrogen gas or an inert gas in order to obtain an excellent absorption layer.

【0014】次いで、このプリカーサーを密閉容器にセ
レン粉末と共に入れて、一旦、系をアルゴンまたは窒素
置換し、その後必要に応じて減圧した後、400〜55
0℃で熱処理を行う。ここで500〜550℃であると
三元合金の結晶の成長が速いので好ましい。この熱処理
により吸収層として銅−インジウム−セレン合金(Cu
InSe2)が形成され、かつ、その結晶が発達する。
Next, this precursor was put in a closed container together with selenium powder, the system was once replaced with argon or nitrogen, and then depressurized if necessary, then 400 to 55.
Heat treatment is performed at 0 ° C. Here, it is preferable that the temperature is 500 to 550 ° C. because the ternary alloy crystals grow rapidly. By this heat treatment, a copper-indium-selenium alloy (Cu
InSe 2 ) is formed and its crystal develops.

【0015】[0015]

【作用】本発明において、スパッタリングによって形成
されたモリブデン層の上に、同じくスパッタリングによ
って銅層を形成し、その後セレン分散インジウム層が形
成されるため、セレンとモリブデンとの化合物の生成が
なく、モリブデン層と銅−インジウム−セレン合金層と
の密着性は良好なものとなる。
In the present invention, since a copper layer is similarly formed by sputtering on the molybdenum layer formed by sputtering and then a selenium-dispersed indium layer is formed, there is no formation of a compound of selenium and molybdenum. Adhesion between the layer and the copper-indium-selenium alloy layer is good.

【0016】コロイド粒子となったセレンはメッキ液中
で安定で沈降せず、そのため、メッキ中に攪拌等の特別
な手段を必要とせずに均一に電着層に分散含有される。
また、粒子が小さいために形成されたセレン分散インジ
ウム層も剥離、脱落等の欠陥も非常に少ないものとな
る。
The selenium, which has become colloidal particles, is stable and does not settle in the plating solution. Therefore, it is uniformly dispersed and contained in the electrodeposition layer without requiring special means such as stirring during plating.
Further, the selenium-dispersed indium layer formed due to the small size of the particles has very few defects such as peeling and falling off.

【0017】また、インジウム層において、セレン粒子
が分散しているため緻密になりすぎず、加熱処理時に三
元合金が形成される場合に伴う層の膨張にも対応できる
ためや剥がれのない三元合金層が形成される。また、セ
レン及び密閉容器を用いて加熱処理を行うため、容易か
つ安全であり、高価な不活性ガスを必要としない。
Further, since the selenium particles are dispersed in the indium layer, the selenium particles do not become too dense and can cope with expansion of the layer accompanying the formation of a ternary alloy during the heat treatment, and the ternary layer does not peel off. An alloy layer is formed. In addition, since heat treatment is performed using selenium and a closed container, it is easy and safe, and expensive inert gas is not required.

【0018】[0018]

【実施例】青色ガラス板上にモリブデン、銅をそれぞれ
スパッタリングにより、2μm、0.3μmの厚さにな
るよう成膜した。
Example Molybdenum and copper were sputtered on a blue glass plate to form films having a thickness of 2 μm and 0.3 μm, respectively.

【0019】セレンコロイド溶液は以下の手順で作製し
た。ゼラチン溶液(4g/ l)4ml、亜セレン酸(0.
1 mol/ l)10ml、硫酸ヒドラジニウム(0.1 mol
/ l)10ml、純水30mlを混合後、40℃で45分間
加熱した後、pHを2に調整してコロイドを安定化させ
て、セレンコロイド溶液とした。ここで、ゼラチンを加
えるのはコロイドの安定のためである。
The selenium colloidal solution was prepared by the following procedure. Gelatin solution (4 g / l) 4 ml, selenious acid (0.
1 ml / l) 10 ml, hydrazinium sulfate (0.1 mol / l)
/ L) 10 ml and 30 ml of pure water were mixed and heated at 40 ° C. for 45 minutes, and then the pH was adjusted to 2 to stabilize the colloid to obtain a selenium colloid solution. Here, gelatin is added to stabilize the colloid.

【0020】このようにして作製したセレンコロイド溶
液のコロイド粒子を走査型電子顕微鏡で調べたところ、
セレンコロイド粒子の粒径は10nm以上100nm以
下であり、長時間放置してもセレン粒子の沈殿が生じる
ことなく、非常に安定であった。
The colloidal particles of the selenium colloidal solution thus prepared were examined by a scanning electron microscope.
The particle size of the selenium colloidal particles was 10 nm or more and 100 nm or less, and the selenium particles did not precipitate even when left standing for a long time and were very stable.

【0021】このセレンコロイド溶液を用いて、セレン
コロイド10mmol/ l、硫酸インジウム50mmol/ l、
硫酸ナトリウム80mmol/ l、クエン酸ナトリウム50
mmol/ lとなるようにメッキ液を調整した。前記薄膜板
に上記メッキ液を用いて参照電極である硫酸第一水銀電
極に対して1.5Vの電圧となるよう、定電圧メッキを
行った。なお、このとき対極としては、白金板を用い
た。
Using this selenium colloid solution, selenium colloid 10 mmol / l, indium sulfate 50 mmol / l,
Sodium sulfate 80 mmol / l, sodium citrate 50
The plating solution was adjusted to be mmol / l. The thin film plate was subjected to constant voltage plating using the above plating solution so that the voltage was 1.5 V with respect to the mercuric sulfate electrode serving as the reference electrode. At this time, a platinum plate was used as the counter electrode.

【0022】ここで、メッキ液は非常に安定であって、
メッキ液中のコロイド粒子は沈降しないため、攪拌は行
わなかった。このとき得られたセレン分散電着インジウ
ム層の厚さは0.7μmであり、セレンコロイド粒子を
分散含有する電着インジウム層中のインジウム原子とセ
レン原子の存在比はエネルギー分散型X線分析装置(以
下「EDX」と云う)による組成分析によれば10:2
であった。なお、このセレン分散電着インジウム層は非
常に均一なものであった。
Here, the plating solution is very stable,
Since the colloidal particles in the plating solution did not settle, stirring was not performed. The thickness of the selenium-dispersed electrodeposited indium layer obtained at this time was 0.7 μm, and the abundance ratio of indium atoms and selenium atoms in the electrodeposited indium layer containing selenium colloid particles dispersed therein was determined by an energy dispersive X-ray analyzer. According to the composition analysis (hereinafter referred to as “EDX”), it is 10: 2.
Met. The selenium-dispersed electrodeposited indium layer was very uniform.

【0023】メッキ後の薄膜板を窒素下で乾燥後、図1
に示す密閉加熱炉を用いて熱処理を行った。即ち図1に
おいて、ベース1に溝があり、そこにOリング1aが一
部突出して収納されており、ベルジャ2はこのOリング
1aを介してベース1上に乗せられているため、ベルジ
ャ2内部を減圧に保つことが可能となっている。なお、
ベース1には弁5を備えた排気管3、及び弁6を備えた
ガス導入管4が付属する。
After the plated thin film plate is dried under nitrogen,
Heat treatment was performed using the closed heating furnace shown in. That is, in FIG. 1, there is a groove in the base 1, and an O-ring 1a is partially projected and housed therein, and the bell jar 2 is placed on the base 1 through this O-ring 1a. It is possible to maintain a reduced pressure. In addition,
An exhaust pipe 3 having a valve 5 and a gas introducing pipe 4 having a valve 6 are attached to the base 1.

【0024】ベース1上には支持具10を介して、プリ
カーサーの加熱処理を行うための空間を有する加熱治具
11が設置されており、またこの加熱治具11を密閉す
るための蓋12があるが、この蓋12は開閉機構13に
よってベルジャ2内部の減圧を保ったまま、外部からハ
ンドル13aを操作することで開閉することが可能とな
っている。
A heating jig 11 having a space for heat treatment of the precursor is installed on the base 1 through a supporting tool 10, and a lid 12 for sealing the heating jig 11 is provided. However, the lid 12 can be opened and closed by operating the handle 13a from the outside while maintaining the decompression inside the bell jar 2 by the opening / closing mechanism 13.

【0025】即ち、ハンドル13aを回転すると、その
回転は、傘歯車13b及び傘歯車13c、プーリー13
d及びベルト13eを経てプーリー13fに伝わる。こ
のプーリー13fが回転するとその内部にあるめねじ
(図示せず)及び蓋操作軸13gのおねじ13hによっ
て、蓋操作軸13gが上下し、それに接続された蓋12
が開閉する。なお、開閉機構13には、締め付け過ぎに
よって加熱治具11や蓋12の破壊を防ぐためのバネに
よる安全機構13iが付属している。
That is, when the handle 13a is rotated, the rotation thereof is caused by the bevel gear 13b, the bevel gear 13c, and the pulley 13.
It is transmitted to the pulley 13f via d and the belt 13e. When this pulley 13f rotates, the lid operating shaft 13g moves up and down by the internal thread (not shown) and the male screw 13h of the lid operating shaft 13g, and the lid 12 connected to it.
Opens and closes. The opening / closing mechanism 13 is provided with a safety mechanism 13i using a spring for preventing the heating jig 11 and the lid 12 from being broken by over-tightening.

【0026】なお、加熱治具11及び蓋12はそれぞれ
炭素製であるが、外部への放熱を減少させるための遮熱
板が付属している。また、それぞれヒーター(図示せ
ず)が内蔵され、熱電対11a及び12aが付属してい
て、ベルジャ2が閉まった状態でも加熱治具11中に収
納されるプリカーサー20の加熱処理を行う温度の測定
ができるようになっている。
Although the heating jig 11 and the lid 12 are made of carbon, they are provided with a heat shield plate for reducing heat radiation to the outside. In addition, each heater has a built-in heater (not shown), thermocouples 11a and 12a are attached, and even if the bell jar 2 is closed, the temperature of the precursor 20 stored in the heating jig 11 is measured. You can do it.

【0027】このような密閉加熱炉の加熱治具11上に
上記プリカーサー20及びセレン粉末(図示せず)を入
れ、ベルジャ2を閉め、弁6を閉じたのち、排気管3に
真空ポンプ(図示せず)を接続してベルジャ2内部を減
圧する。その後、弁5を閉じ、ガス導入管4にアルゴン
ガスボンベ(図示せず)を接続した後、ベルジャ2内部
にアルゴンガスを導入する。この動作を3回繰り返し
て、ベルジャ2内部の空気をアルゴンガスと置換した。
その後、開閉機構13によって、蓋12を閉め、加熱治
具11を密閉する。
The precursor 20 and selenium powder (not shown) are put on the heating jig 11 of such a closed heating furnace, the bell jar 2 is closed, the valve 6 is closed, and then the vacuum pump (see FIG. (Not shown) is connected to reduce the pressure inside the bell jar 2. Then, the valve 5 is closed, an argon gas cylinder (not shown) is connected to the gas introduction pipe 4, and then argon gas is introduced into the bell jar 2. This operation was repeated three times to replace the air inside the bell jar 2 with argon gas.
Then, the lid 12 is closed by the opening / closing mechanism 13 and the heating jig 11 is sealed.

【0028】次いで、加熱治具11及び蓋12に付属す
るヒーターにより、25℃/分の昇温速度で550℃ま
で昇温し、その後60分保持した後、自然冷却させ、薄
膜太陽電池の吸収層を形成した。なお、加熱によって蒸
気となったセレン(セレン化水素よりは遥かに毒性が低
い)が、加熱治具11及び蓋12より多少漏出すること
も考えられるが、この場合においても、ベルジャ2外部
へ漏出することはない。
Then, the heater attached to the heating jig 11 and the lid 12 was used to raise the temperature to 550 ° C. at a temperature rising rate of 25 ° C./minute, and after that, the temperature was maintained for 60 minutes and then naturally cooled to absorb the thin film solar cell. Layers were formed. It is possible that selenium (which is much less toxic than hydrogen selenide) turned into steam by heating leaks out from the heating jig 11 and the lid 12, but in this case also, it leaks out of the bell jar 2. There is nothing to do.

【0029】得られた吸収層の銅原子、インジウム原子
及びセレン原子の存在比は、23.5:24.5:5
2.0とほぼ1:1:2であり、また、X線回折分析を
行ったところ、結晶の大きくかつ配向性の高いカルコパ
イライト型のCuInSe2 であることが確認された。
なお、この吸収層には剥がれ等の欠陥はなかった。
The abundance ratio of copper atoms, indium atoms and selenium atoms in the obtained absorption layer was 23.5: 24.5: 5.
It was 2.0, which was about 1: 1: 2, and X-ray diffraction analysis confirmed that it was a chalcopyrite type CuInSe 2 having large crystals and high orientation.
The absorption layer did not have any defects such as peeling.

【0030】[0030]

【発明の効果】上記のように、本発明によれば、剥がれ
のない優れたCuInSe2 合金結晶薄膜を、安全、容
易に、かつ低コストで製造することができる。
As described above, according to the present invention, an excellent CuInSe 2 alloy crystal thin film without peeling can be manufactured safely, easily and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる密閉加熱炉の例である。FIG. 1 is an example of a closed heating furnace used in the present invention.

【符号の説明】[Explanation of symbols]

1 ベース 1a Oリング 2 ベルジャ 3 排気管 4 ガス導入管 10 支持具 11 加熱治具 11a 熱電対 12 蓋 12a 熱電対 13 開閉機構 13a ハンドル 13i 安全機構 1 base 1a O-ring 2 bell jar 3 exhaust pipe 4 gas introduction pipe 10 support tool 11 heating jig 11a thermocouple 12 lid 12a thermocouple 13 opening / closing mechanism 13a handle 13i safety mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 薄膜太陽電池の製造方法において、次の
4工程、即ち、(1) 基板上にスパッタリングによりモリ
ブデン層を形成する工程、(2) 該モリブデン層上にスパ
ッタリングにより銅層を形成する工程、(3) インジウム
イオンを含み、かつ、セレンコロイドを分散させた溶液
中で該銅層上にセレン分散インジウム層を電着によって
形成し、プリカーサーを完成する工程、(4) 該プリカー
サーをセレンと共に容器に入れ、該容器を密閉した後、
加熱する工程、を有することを特徴とする薄膜太陽電池
の製造方法。
1. A method for manufacturing a thin-film solar cell, which comprises the following four steps: (1) a step of forming a molybdenum layer on a substrate by sputtering, and (2) a step of forming a copper layer on the molybdenum layer by sputtering. Step (3) a step of forming a selenium-dispersed indium layer on the copper layer by electrodeposition in a solution containing indium ions and having a selenium colloid dispersed therein, and completing the precursor, (4) the precursor is selenium. Put in a container with, after sealing the container,
A method of manufacturing a thin-film solar cell, comprising the step of heating.
JP7137668A 1995-05-22 1995-06-05 Manufacturing method of thin film solar cell Expired - Fee Related JP3048040B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7137668A JP3048040B2 (en) 1995-06-05 1995-06-05 Manufacturing method of thin film solar cell
US08/651,610 US5772431A (en) 1995-05-22 1996-05-22 Thin-film solar cell manufacturing apparatus and manufacturing method
US09/009,689 US6036822A (en) 1995-05-22 1998-01-20 Thin-film solar cell manufacturing apparatus and manufacturing method
US09/009,161 US6207219B1 (en) 1995-05-22 1998-01-20 Method for manufacturing thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137668A JP3048040B2 (en) 1995-06-05 1995-06-05 Manufacturing method of thin film solar cell

Publications (2)

Publication Number Publication Date
JPH08330613A true JPH08330613A (en) 1996-12-13
JP3048040B2 JP3048040B2 (en) 2000-06-05

Family

ID=15204030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137668A Expired - Fee Related JP3048040B2 (en) 1995-05-22 1995-06-05 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP3048040B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153690A1 (en) * 2007-05-22 2008-12-18 Miasole High rate sputtering apparatus and method
JP2012077321A (en) * 2010-09-30 2012-04-19 Sumitomo Heavy Ind Ltd Method of manufacturing film deposition substrate, film deposition substrate, and film deposition device
JP2013536986A (en) * 2010-09-02 2013-09-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Methods for electrodeposition of gallium and gallium alloy films and related photovoltaic structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153690A1 (en) * 2007-05-22 2008-12-18 Miasole High rate sputtering apparatus and method
JP2013536986A (en) * 2010-09-02 2013-09-26 インターナショナル・ビジネス・マシーンズ・コーポレーション Methods for electrodeposition of gallium and gallium alloy films and related photovoltaic structures
JP2012077321A (en) * 2010-09-30 2012-04-19 Sumitomo Heavy Ind Ltd Method of manufacturing film deposition substrate, film deposition substrate, and film deposition device

Also Published As

Publication number Publication date
JP3048040B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
Jin et al. In situ growth of [hk1]‐oriented Sb2S3 for solution‐processed planar heterojunction solar cell with 6.4% efficiency
US6036822A (en) Thin-film solar cell manufacturing apparatus and manufacturing method
Tao et al. 7.1% efficient co-electroplated Cu 2 ZnSnS 4 thin film solar cells with sputtered CdS buffer layers
JP4864705B2 (en) Quaternary or higher I-III-VI alloy semiconductor film
Basol et al. Deposition of CuInSe/sub 2/films by a two-stage process utilizing E-beam evaporation
Mkawi et al. Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation
CN106783541B (en) A kind of selenizing germanous polycrystal film and the solar battery containing the film and preparation method thereof
Franckevičius et al. Efficiency improvement of superstrate CZTSSe solar cells processed by spray pyrolysis approach
CN113372012A (en) Metal element doped inorganic lead-free CsSnI3Method for perovskite stabilization
Englund et al. Cu2ZnSn (S, Se) 4 from annealing of compound co-sputtered precursors–Recent results and open questions
Ozga et al. Ultra-fast growth of copper oxide (II) thin films using hydrothermal method
CN110993357B (en) CdS1-xSexPreparation method of alloy quantum dot sensitized photoanode
Deng et al. Improving the crystal growth of a Cs 0.24 FA 0.76 PbI 3− x Br x perovskite in a vapor–solid reaction process using strontium iodide
JPH1012635A (en) Method and apparatus for forming i-iii-vi2 thin film layer
CN110660914B (en) Chemical method for synthesizing iodine bismuth copper ternary compound semiconductor photoelectric film material by low-temperature in-situ control
Chaudhari et al. Fabrication of high-quality kesterite Cu2ZnSnS4 thin films deposited by an optimized sol–gel sulphurization technique for solar cells
JP3048040B2 (en) Manufacturing method of thin film solar cell
JP2000087234A (en) Device for producing compound film and production of compound film
JPH09321326A (en) Manufacturing cis thin film solar cell and forming copper-indium-selenium alloy
Peng et al. Negative-pressure sulfurization of antimony sulfide thin films for generating a record open-circuit voltage of 805 mV in solar cell applications
Choudhari et al. Effect of stacking sequence on the structural ordering and phase formation in the sequentially deposited copper zinc tin sulfide thin films
CN109904256A (en) A kind of copper-zinc-tin-sulfur film preparation method
Sebastian et al. Formation of CuInSe2 thin films by selenization, employing CVTG, of electroless deposited Cu In alloy
JP3013974B2 (en) Manufacturing method of thin film solar cell
CN113571406B (en) Method for preparing selenium antimony sulfide film by liquid phase selenization

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000222

LAPS Cancellation because of no payment of annual fees