JPH08330054A - Flat heater element and manufacture thereof - Google Patents

Flat heater element and manufacture thereof

Info

Publication number
JPH08330054A
JPH08330054A JP15554695A JP15554695A JPH08330054A JP H08330054 A JPH08330054 A JP H08330054A JP 15554695 A JP15554695 A JP 15554695A JP 15554695 A JP15554695 A JP 15554695A JP H08330054 A JPH08330054 A JP H08330054A
Authority
JP
Japan
Prior art keywords
yarn
heating element
cotton
electrode
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15554695A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagai
良典 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO SANGYO TRADING
TAISEI HOME ENG KK
Shinko Industries Co Ltd
Original Assignee
SHINKO SANGYO TRADING
TAISEI HOME ENG KK
Shinko Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO SANGYO TRADING, TAISEI HOME ENG KK, Shinko Industries Co Ltd filed Critical SHINKO SANGYO TRADING
Priority to JP15554695A priority Critical patent/JPH08330054A/en
Publication of JPH08330054A publication Critical patent/JPH08330054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PURPOSE: To provide a thin and flexible flat heater element excellent in homogeneity and durability by weaving a composite yarn mixedly twisted with a metal single yarn and a cotton single yarn into the substrate fabric of electrode sections continued from the substrate fabric of a heating section woven with a cotton yarn. CONSTITUTION: Electrode sections are formed at both end sections, and a heater section is formed between them on a substrate fabric to form a flat heater element. The substrate fabric of the heater section is woven with a cotton yarn. The substrate fabric of the electrode sections is woven with a composite yarn mixedly twisted with a metal single yarn and a cotton single yarn into the substrate fabric continued from the substrate fabric of the heater section, and it is formed to nearly the same thickness and flexibility as those of the substrate fabric of the heater section. The whole substrate fabric separately woven into the electrode sections at both ends and the heater section in the middle is coated with a conductive paint, and power connecting lines are provided on the electrode sections to form a flat heater element. The flat heater element is sealed in a soft vinyl chloride sheet with a heat sealer as required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は改良された面状発熱体に
関し、より詳しくは、電極部と発熱部との接合性に優
れ、高い耐久性を有する薄型で可撓性、柔軟性のある面
状発熱体に関し、特に、改良された電極部からなり、面
状発熱体の面上に不均一及び/又は繰り返しの荷重が加
えられた条件下でも、該発熱部の全面に電力が長期間に
亘って均等に分配されうる面状発熱体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sheet heating element, and more specifically, it is thin, flexible and pliable with high durability and excellent bondability between an electrode section and a heating section. With respect to a planar heating element, in particular, even if the surface of the planar heating element is subjected to non-uniform and / or repetitive load on the surface of the planar heating element, electric power is applied to the entire surface of the heating element for a long period of time. The present invention relates to a sheet heating element that can be evenly distributed over the entire surface.

【0002】[0002]

【従来の技術】電極部と、導電性材料をバインダー中に
均一に分散してなる導電性塗料を発熱体とする発熱部と
からなる面状発熱体は種々提案されている。例えば特開
昭63−184670号公報には、柔軟性を有する面状
発熱体と、この面状発熱体の片方の面に一体的に設けら
れた柔軟性を有する断熱体とを具備する融雪シートが記
載されており、また、特開昭62−21948号公報に
は、固着後に柔軟性、伸縮性、可撓性を有する合成樹脂
材料をバインダーとし、これに導電性付与物質を混合し
て調製した組成物を用い、編織物や不織物などの表面
に、適度に発熱するように設計した薄膜を形成して発熱
部とし、次いで、同発熱部の両端に前記と同種のバイン
ダーを用いた高導電性組成物により、適度の電力を供給
できるように設計した帯状の薄膜を形成して電極部とし
たフレキシブル面状発熱体が記載されている。
2. Description of the Related Art Various sheet heating elements including an electrode portion and a heating portion having a conductive coating material obtained by uniformly dispersing a conductive material in a binder as a heating element have been proposed. For example, Japanese Patent Application Laid-Open No. 63-184670 discloses a snow melting sheet having a flexible sheet heating element and a flexible heat insulator integrally provided on one surface of the sheet heating element. In JP-A-62-21948, a synthetic resin material having flexibility, stretchability and flexibility after fixation is used as a binder, and a conductivity-imparting substance is mixed with the binder. Using the composition described above, a thin film designed to generate heat appropriately is formed on the surface of a knitted woven fabric, a non-woven fabric, or the like to form a heating portion, and then the same kind of binder as described above is used at both ends of the heating portion. A flexible sheet heating element is described in which a conductive thin film is used to form a strip-shaped thin film designed to be capable of supplying an appropriate amount of electric power.

【0003】このようなフレキシブル面状発熱体は、屋
根や道路の融雪用、毛布やカーペット等用、農業用、住
居暖房用、家電製品における除霜用、鏡の防曇用、血行
改善用や治療用、複写機やプリンタのトナー像定着用、
或いは調理用等として幅広く使われており、電極部及び
発熱部の材質、構造、耐熱温度も用途や使用目的により
千差万別であるが、いずれにしても、耐屈折性に優れ、
発熱効率が高く、温度分布が均一で過酷な条件下でも長
期間信頼して使用可能なフレキシブル面状発熱体に対し
ては不断のニーズが存在し、而して、これに答えるため
の多くの努力が行われてきた。特に、電極部と発熱部と
はその役割が違うため、それぞれについて多くの技術が
提案されており、また両者の接合関係についても多くの
提案がなされている。
Such flexible sheet heating elements are used for melting snow on roofs and roads, for blankets and carpets, for agriculture, for heating homes, for defrosting home appliances, for defrosting mirrors, and for improving blood circulation. For treatment, for fixing toner images on copiers and printers,
Alternatively, it is widely used for cooking, etc., and the material, structure, and heat resistant temperature of the electrode part and the heat generating part vary depending on the application and purpose of use, but in any case, it has excellent refraction resistance,
There is a constant need for flexible planar heating elements that have high heat generation efficiency, uniform temperature distribution, and can be used reliably for a long period of time even under harsh conditions. Efforts have been made. In particular, since the electrode part and the heat generating part have different roles, many techniques have been proposed for each, and many proposals have also been made for the bonding relationship between the two.

【0004】すなわち電極部については、例えば或る場
合には導電性ペーストを塗布したもの(特開昭50−1
04445号公報、特開昭57−113579号公報、
特開昭57−113576号公報、特表昭57−501
308号公報、実開昭64−2390号公報等)が提案
されており、また或る場合には帯状金属を下地布帛に貼
付け又は縫い付け又はビス止めした電極部(特開昭55
−144682号公報、特開昭55−146892号公
報、特開昭57−143285号公報、特開昭58−5
986号公報等)が提案されている。製造法について
も、特開昭47−44427号公報には、炭素繊維との
混抄紙からなる面状発熱体の電極部となすべき両側に導
電性塗料を塗布した後、混抄紙の紙パルプが炭化するま
で加熱及び加圧して一体化して電極部を形成することに
より、銅テープを使用せずとも済む面状発熱体の製造方
法が記載されており、特開平55−144682号公報
には、ナイロンシート上に蒸着した金属層上に削塑の発
熱体パターンのための遮蔽板を置き、レーザー光照射が
該発熱体パターン部を残してその金属の領域の金属蒸着
剤を蒸発することにより電極パターンを作ることが記載
されているが、概して、前者のタイプのものは耐久性が
かなり劣り、後者のタイプのものは可撓性、柔軟性に欠
ける。
That is, the electrode portion is coated with a conductive paste in some cases (Japanese Patent Laid-Open No. 50-1 / 1975).
No. 04445, JP-A-57-113579,
JP-A-57-113576, JP-A-57-501
No. 308, Japanese Utility Model Application Laid-Open No. 64-2390, etc.), and in some cases, an electrode portion in which a belt-shaped metal is attached to, or sewn on, or screwed to a base fabric (Japanese Patent Laid-Open No. 55-55).
-144682, JP-A-55-146892, JP-A-57-143285, and JP-A-58-5.
No. 986, etc.) has been proposed. Regarding the manufacturing method, Japanese Patent Laid-Open No. 47-44427 discloses a method for producing a paper pulp of mixed paper after applying a conductive paint to both sides of the sheet-like heating element made of the mixed paper with carbon fiber to be the electrode part. By heating and pressurizing until carbonized to integrally form an electrode portion, a method for producing a planar heating element that does not require the use of a copper tape is described, and JP-A-55-144682 discloses. An electrode is formed by placing a shielding plate for a plastic heating element pattern on a metal layer vapor-deposited on a nylon sheet, and irradiating a laser beam to vaporize the metal vapor deposition agent in the metal region leaving the heating element pattern portion. Although making a pattern is described, generally, the former type is considerably less durable and the latter type is less flexible.

【0005】そのため、金属糸を縦糸又は横糸とし、他
の繊維を横糸又は縦糸として編組したものや、縦糸と横
糸の双方を金属糸として編組したものが提案されてい
る。例えば、特開昭47−19169号公報には、目の
細かい銅製織物よりなり加熱導体層によく固着されてい
てそしてそれにより非常に低い接触抵抗を与える電極が
好都合である旨記載されている。特開昭48−5451
9号公報には、導線を経糸とし、グラス糸を緯糸として
経緯間隔を粗にしてテープを構成し、このテープをグラ
フトカーボンを塗布したグラス布の面状板の所定位置に
当接し、テープ上からメタリコンを溶射してテープを面
状板に固定せしめて面熱板用電極とすることが記載され
ている。
Therefore, it has been proposed that the metal yarn is a warp or weft and the other fiber is braided as a weft or a warp, or both the warp and the weft are braided as a metal yarn. For example, JP-A-47-19169 describes the advantage of electrodes which consist of a fine-grained copper woven fabric and which are well adhered to the heating conductor layer and thereby give a very low contact resistance. JP-A-48-5451
No. 9 discloses that a tape is formed by using a conductive wire as a warp thread, a glass thread as a weft thread, and roughening the warp and weft intervals. The tape is brought into contact with a predetermined position of a surface plate of a glass cloth coated with graft carbon. It is described that the metallicon is thermally sprayed and the tape is fixed to the planar plate to form the surface heating plate electrode.

【0006】実開昭62−66195号公報には、抵抗
発熱層の長手方向両側縁部に抵抗発熱層に密着させて取
り付けた電極線が、可撓性を有する銅箔又は極細銅線を
編組した銅編組線で形成されているために、カーボンヒ
ータの運搬中又は敷設作業中或は使用中に電極線に作用
する引張力や刃物等で比較的簡単に欠損しこれを知らず
に通電すると抵抗発熱層に過電流が流れ抵抗発熱層が局
部的に異常発熱する等の危険を避けるため、銅編組線の
部分に金属保護体を設けることが記載されている。実開
昭62−66196号公報には、可撓性、作業性、薄さ
を考慮しての極細銅線を用いた銅編組線の場合の機械的
強度を補うため銅編組線中に補強線を編み込むことが記
載されている。
In Japanese Utility Model Laid-Open No. 62-66195, electrode wires attached to both sides of the resistance heating layer in the longitudinal direction in close contact with the resistance heating layer are braided copper foil or ultrafine copper wire having flexibility. Since it is formed of a copper braided wire, the tensile force acting on the electrode wire during the transportation of the carbon heater, the laying work, or the use of the electrode wire makes it relatively easy to break the wire, and the resistance will be applied without knowing this. It is described that a metal protector is provided on the copper braided wire in order to avoid the risk that an overcurrent flows in the heat generating layer and the resistance heat generating layer locally generates abnormal heat. Japanese Utility Model Laid-Open No. 62-66196 discloses a reinforcing wire in a copper braided wire in order to supplement the mechanical strength in the case of a copper braided wire using an ultrafine copper wire in consideration of flexibility, workability and thinness. It is described to weave.

【0007】実開昭62−66197号公報には、可撓
性、作業性、薄さを考慮して用いた極細銅線が切断して
電流路が遮断されることにより他の部分に過大電流が集
中し局部過熱になることを防ぐため、銅編組線相互間に
予めバイパス線を設けておくことが記載されている。実
開昭62−77894号公報には、電極線を、細銅線か
ら成る編組線により接続することにより面状発熱体の特
性低下を引き起こすことなく折り曲げ可能とすることが
記載されている。実開昭62−92591号公報には、
ゴム、プラスチックにカーボンを混入してなる抵抗発熱
層を設けた絶縁シートの長手方向両側縁部に、上記電力
供給線を配設したカーボンヒータにおいて、上記電力供
給線の内側に該電力供給線にラップさせ、抵抗発熱発熱
層の発熱量を任意調整するための電力副供給線を設ける
ことが記載されている。
In Japanese Utility Model Laid-Open No. 62-66197, an extra-fine copper wire used in consideration of flexibility, workability and thinness is cut to cut off a current path, so that an excessive current flows to other portions. It is described that a bypass wire is provided in advance between the copper braided wires in order to prevent local concentration and local overheating. Japanese Utility Model Application Laid-Open No. 62-77894 describes that the electrode wire is connected by a braided wire made of fine copper wire so that it can be bent without deteriorating the characteristics of the planar heating element. In Japanese Utility Model Publication No. 62-92591,
In a carbon heater in which the above-mentioned power supply line is provided at both longitudinal edges of an insulating sheet provided with a resistance heating layer formed by mixing carbon into rubber or plastic, the power supply line is provided inside the power supply line. It is described that a power sub-supply line for wrapping and for arbitrarily adjusting the heat generation amount of the resistance heat generation layer is provided.

【0008】実開昭62−178492号公報には、綿
布等の含浸性のある面状発熱体用の織布の両側縁に電極
線、例えば5乃至8本の金属細線を撚った撚り線の12
本位の電極線を使用し、縦糸或は横糸と繻子織状に織り
込んで全面にカーボン塗料等の導電性塗料を塗布し、そ
の上に絶縁性シートを被着させて面状発熱体とするこ
と、及び、電極線を編組線として複数本をベニス織とし
この織布の縦糸方向の両側に電極線2を織り込むことが
記載されている。実開昭63−139788号公報には
銅線等の複数の針金線を交織した粗織状の織布に導電性
接着剤を塗布して塩化ビニルフィルムを片面に貼り合わ
せた導電性シートを織布側を対面して積層して面状発熱
隊体の電極部を形成することが記載されている。
In Japanese Utility Model Laid-Open No. 62-178492, an electrode wire, for example, a twisted wire in which 5 to 8 thin metal wires are twisted on both edges of a woven cloth for impregnating planar heating element such as cotton cloth, is disclosed. Of 12
Using standard electrode wire, weave in warp or weft and satin weave, apply conductive paint such as carbon paint to the whole surface, and apply an insulating sheet on it to make a sheet heating element. It is also described that the electrode wire is a braided wire, and a plurality of pieces are made of Venetian weave, and the electrode wire 2 is woven on both sides of the woven cloth in the warp direction. Japanese Utility Model Laid-Open No. 63-139788 discloses a conductive sheet in which a vinyl chloride film is attached to one side by applying a conductive adhesive to a woven cloth of a coarse woven structure in which a plurality of wire wires such as copper wires are interwoven. It is described that the cloth sides are laminated facing each other to form the electrode portion of the sheet heating element.

【0009】特開昭63−168990号公報には、発
熱体用の導電糸が絶縁糸に対し交互又は数本置きに配設
され、さらにテープ状の温度センサが絶縁糸に挾まれ、
かつ広い間隔で複数本配列される経糸群と、前記経糸群
に織り込ませた多数の絶縁糸中に、複数本の誘電糸を隣
り合わせて前記経糸群に織り込ませてなる電極を有して
いて、この電極が経糸群の両端部において互いに接近し
た狭い間隔の2列ずつに、または一方の端部が狭い間隔
の2列、他方の端部が単列に配設されて形成される経糸
群とからなるようにすることが記載されている。実開昭
64−2390号公報には、予めニッケル、銅、亜鉛等
の導電部材を蒸着するか、また織物に導電部材蒸着もし
くは化学メッキして構成した糸とポリエステル、ポリア
ミド、芳香族ポリアミド等を素材とする有機繊維糸とを
サテイン、ツイル、平織等の種々の織物組織として用い
て電極部を作成することが記載されている。実開平2−
140790号公報には、発熱体層に対し電極を配設し
てなる面状発熱体において、電極が金属の糸状導電体か
ら作成した糸状電極もしくは布状導電体から作成した布
状電極によって形成されている面状発熱体が記載されて
いる。
In Japanese Patent Laid-Open No. 63-168990, conductive yarns for heating elements are arranged alternately or every several yarns with respect to the insulating yarns, and a tape-shaped temperature sensor is sandwiched between the insulating yarns.
And a plurality of warp yarns arranged at wide intervals, and a large number of insulating yarns woven into the warp yarns, and an electrode formed by weaving a plurality of dielectric yarns side by side into the warp yarns, A warp group formed by arranging the electrodes in two rows closely spaced from each other at both ends of the warp group, or two rows having one end closely spaced and the other end arranged in a single row; It is described to be composed of. Japanese Utility Model Application Laid-Open No. Sho 64-2390 discloses a thread and polyester, polyamide, aromatic polyamide or the like which are formed by vapor-depositing a conductive member such as nickel, copper or zinc in advance, or by vapor-depositing a conductive member or chemical plating on a fabric. It is described that an organic fiber yarn as a raw material is used as various woven fabric structures such as satin, twill and plain weave to prepare an electrode part. Actual Kaihei 2-
JP-A-140790 discloses that in a planar heating element in which an electrode is arranged on a heating element layer, the electrode is formed by a thread-shaped electrode made of a metal thread-shaped conductor or a cloth-shaped electrode made of a cloth-shaped conductor. A planar heating element is described.

【0010】特開昭63−6767号公報には、繊維状
発熱体を抄紙して得られる面状発熱体において、該繊維
状発熱体が電極線に対し、交互する方向に配向すること
が記載されている。特開平5−283151号公報に
は、炭素繊維をシート状に抄込んでなる面状発熱体の後
加工としてヒーター作成及びユニット作成の工程におけ
る引裂強度の不足によるシート破れの不良発生をなく
し、後加工での生産効率を向上させるため、面状発熱体
の紙層構成を2層以上とし、そのいずれかの層間には補
強用ネットを抄込み、該補強用ネットが層間で上下両方
の紙層と接着が良好となるように、各層に熱溶融型バイ
ンダー繊維とその他合成繊維、無機繊維、セルロース繊
維を配合することが記載されている。
Japanese Unexamined Patent Publication (Kokai) No. 63-6767 describes that in a sheet heating element obtained by paper-making a fibrous heating element, the fibrous heating elements are oriented in alternating directions with respect to the electrode wires. Has been done. Japanese Unexamined Patent Publication (Kokai) No. 5-283151 discloses a sheet heating method in which sheet-like carbon fiber is post-processed to eliminate the occurrence of sheet breakage due to insufficient tear strength in the steps of heater production and unit production. In order to improve the production efficiency in processing, the sheet heating element of the sheet heating element is composed of two or more layers, and a reinforcing net is inserted between any one of the layers, and the reinforcing net is located between the upper and lower paper layers. It is described that each layer is blended with a hot-melt binder fiber and other synthetic fibers, inorganic fibers, and cellulose fibers so that the adhesion will be good.

【0011】これら従来技術から、面状発熱体の電極部
における最大の問題は、電極部と発熱部との電気的接触
をいかに確保するかのなじみ性、かつその電気的接触を
いかに安定に保つかの耐久性にあり、織布形成加工の際
のシャットル打込張力変動や、昇温時の熱膨脹の差によ
って生じる電気的接触不良、あるいは発熱部の過度の屈
曲、または外部よりの加圧力変化による電気的接触不良
の発生等をいかに防止するかが重要、かつ解決が困難な
課題であることが理解される。事実、板状金属を用いた
電極や金属糸を縦糸及び/又は横糸として編組して作成
した電極部は強度不充分かつ柔軟性に欠け、このような
問題を解消するものではない。
From these prior arts, the biggest problem in the electrode portion of the planar heating element is the familiarity of how to secure the electrical contact between the electrode portion and the heating portion, and how stable the electrical contact is maintained. It has excellent durability, electrical contact failure caused by shuttle driving tension fluctuation during fabric forming processing, difference in thermal expansion at the time of temperature rise, excessive bending of heat generating part, or change of applied pressure from the outside. It is understood that how to prevent the occurrence of electrical contact failure due to the problem is an important and difficult problem to solve. In fact, an electrode made of a plate-shaped metal or an electrode portion formed by braiding metal threads as warp threads and / or weft threads has insufficient strength and lacks flexibility, and such problems cannot be solved.

【0012】一方、可撓性面状発熱体の発熱部として
は、(1)エッチング加工により耐蝕性アルミ合金箔又
は銅箔に発熱回路を形成し、または導電性塗料の塗布或
いは金属の蒸着により発熱回路を形成し耐熱プラスチッ
クフィルムを積層したもの、(2)耐熱樹脂フィルム等
を基板として、これに細径の金属抵抗線又は耐熱性繊維
外周に導電性塗料を塗着してなる発熱線をミシン掛け又
は織り込み等の方法で付設し場合によりこれらの上に別
のフィルムを接着したもの、(3)耐熱プラスチックフ
ィルム又はガラス織布等の織布を基板として、炭素粉末
系導電剤を付着させ、これに絶縁被覆を積層したもの、
(4)炭素繊維を耐熱性樹脂中に埋設したもの、又は炭
素繊維をもつ織布を形成したもの等種々のもの等が挙げ
られ、いずれのものも一長一短あるが、電極の場合と同
様に、耐久性、均一加熱性、耐折曲強度等の諸要求を満
足するものは市販されてない。
On the other hand, as the heat generating portion of the flexible sheet heating element, (1) a heat generating circuit is formed on a corrosion-resistant aluminum alloy foil or copper foil by etching, or a conductive paint is applied or metal is vapor-deposited. A heat-resistant plastic film laminated to form a heat-generating circuit, and (2) a heat-resistant resin film or the like as a substrate, and a heat-generating wire formed by coating a thin metal resistance wire or a heat-resistant fiber with a conductive paint Attached by a method such as sewing or weaving and optionally adhering another film on them, (3) Heat resistant plastic film or woven fabric such as glass woven fabric is used as a substrate and carbon powder type conductive agent is attached , Which is laminated with insulation coating,
(4) Various materials such as one in which carbon fibers are embedded in a heat resistant resin, one in which a woven cloth having carbon fibers is formed, and the like are mentioned. Each of them has advantages and disadvantages, but like the case of the electrode, There is no commercially available product that satisfies various requirements such as durability, uniform heating property, and bending resistance.

【0013】特に、電極部と発熱部とはその役割の違い
に起因して、要求される材質特性、構造、柔軟性や強度
が異なることが多く、そのために性質の異なる両者が接
合部において相互に強固に接合せず、折曲するとこの部
分で材料の疲労脆化を来たし電気的接触不良や破断を生
じ易いという欠点がある。
In particular, the electrode part and the heat generating part often differ in required material characteristics, structure, flexibility and strength due to the difference in their roles. However, there is a drawback in that, if the material is not firmly joined to the steel sheet and is bent, fatigue embrittlement of the material occurs at this portion, and electrical contact failure or breakage easily occurs.

【0014】例えば図1に示されるように、電極部の機
能を充分なものとするため、太く、厚く、丈夫な材料を
採用し、一方、発熱部はより薄手の下地不帛を採用する
と、電極部と発熱部との接合部に段差を生じ、この状態
で導電性塗料を含浸塗布する場合には、この段差部分に
導電性塗料のタマリができ、これをそのまま乾燥する
と、この導電性塗料のタマリの部分は硬く、かつ脆いも
のになって、面状発熱体を折り曲げた場合にこの部分か
ら劣化、破断を生じる。更に重要なことはタマリの部分
において、過大な熱が発生するために加熱、スパーク、
火災の原因となることである。
For example, as shown in FIG. 1, in order to make the electrode part have a sufficient function, a thick, thick, and tough material is adopted, while a heat generating part is made of a thinner base material. When a step is created at the joint between the electrode part and the heat generating part and the conductive paint is impregnated and applied in this state, the step of the conductive paint is created in the step, and if this is dried as it is, the conductive paint The part of the outline becomes hard and brittle, and when the sheet heating element is bent, deterioration and breakage occur from this part. More importantly, in the tamari part, heating, sparking,
It is a cause of fire.

【0015】また、金属は概して剛性が大きく、かつ表
面が滑り易いため、糸状金属と他の例えば合繊糸を平織
りした場合にも、図2に示されるように、少しの偏奇し
た力の印加により「ズレ」を生じて織目に変形を生じ易
く、また、合繊糸束の芯に圏周させた場合には、図2に
示されるように、「ズレ」や断線を生じる傾向が強い。
In addition, since metal is generally high in rigidity and the surface is slippery, even when a filament metal and other, for example, synthetic yarn are plain woven, as shown in FIG. 2, a slight eccentric force is applied. "Misalignment" is likely to occur and the texture is apt to be deformed, and when the core of the synthetic fiber bundle is circled, "misalignment" or disconnection is likely to occur as shown in FIG.

【0016】[0016]

【発明が解決しようとする課題】本発明の目的は、上記
のような従来技術における問題点を改善し、電極部と発
熱部との接合性に優れ、高い耐久性を有する薄型で可撓
性、柔軟性のある面状発熱体、特に、改良された電極部
とからなり、面状発熱体の面上に不均一及び/又は繰り
返しの荷重の加えられた条件下でも、該発熱部の全面に
電力が長期間に亘って均等に分配されうる面状発熱体を
提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to improve the problems in the prior art as described above, to provide excellent bonding between the electrode portion and the heat generating portion, and to provide a thin and flexible material having high durability. , A flexible sheet heating element, particularly, an improved electrode section, and the entire surface of the sheet heating element even under a condition where a non-uniform and / or repeated load is applied to the surface of the sheet heating element. Another object of the present invention is to provide a sheet heating element in which electric power can be evenly distributed over a long period of time.

【0017】[0017]

【課題を解決するための手段】このような本発明の目的
は、両端部に帯状の電極部と、該両電極部の間に発熱部
を有する面状発熱体において、前記電極部と前記発熱部
とが1枚の下地布帛の上に形成されており、前記発熱部
の下地布帛は綿糸で編組されており、前記電極部の下地
布帛は、前記発熱部の下地布帛から連続する綿糸に金属
単合糸と綿単合糸とを混撚してなる複合糸を織り込み、
かつ、前記発熱部の下地布帛とほぼ同程度の厚さ及びほ
ぼ同程度の柔軟性を有することを特徴とする面状発熱体
により達成される。更に本発明の面状発熱体は、両端部
に付設した帯状の電極部と、該両電極部の間に付設した
発熱部からなる面状発熱体の製造方法において、前記電
極部と前記発熱部を1枚の下地布帛の上に形成し、前記
発熱部の下地布帛は綿糸を編組し、前記電極部の下地布
帛は、前記発熱部の下地布帛から連続する綿糸に金属単
合糸と綿単合糸とを混撚してなる複合糸を織り込み、か
つ、前記発熱部の下地布帛とほぼ同程度の厚さ及びほぼ
同程度の柔軟性を有するように編組する工程と、前記下
地布帛の全面を導電性塗料で被覆する工程と、電極部に
電源接続線を付設する工程とを含むことによって製造さ
れる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a planar heating element having strip-shaped electrode parts at both ends and a heating part between the electrode parts, and the electrode part and the heat generating part. Part is formed on one base fabric, the base fabric of the heat generating part is braided with a cotton thread, and the base fabric of the electrode part is a cotton yarn continuous from the base fabric of the heat generating part to a metal. Weaving a composite yarn made by mixing and twisting single composite yarn and cotton single composite yarn,
In addition, the planar heating element is characterized in that it has substantially the same thickness and approximately the same flexibility as the base fabric of the heating section. Further, in the sheet heating element of the present invention, in the method for manufacturing a sheet heating element comprising strip-shaped electrode portions attached to both ends and a heating portion attached between the two electrode portions, the electrode portion and the heating portion are provided. Is formed on one base cloth, and the base cloth of the heat generating portion is braided with cotton yarn, and the base cloth of the electrode portion is a continuous cotton thread from the base cloth of the heat generating portion to a metal single yarn and a cotton single yarn. A process of weaving a composite yarn obtained by mixing and twisting a composite yarn, and braiding so as to have substantially the same thickness and approximately the same flexibility as the base fabric of the heat generating portion, and the entire surface of the base fabric. It is manufactured by including a step of coating with a conductive paint and a step of attaching a power source connecting wire to the electrode portion.

【0018】本発明者らは、電極部と発熱部との接合性
に優れ、高い耐久性を有する薄型で可撓性、柔軟性のあ
る面状発熱体、特に、改良された電極部からなり、面状
発熱体の面上に不均一及び/又は繰り返しの荷重が加え
られた条件下でも、該発熱部の全面に電力が長期間に亘
って均等に分配されうる面状発熱体について長年研究を
続けその成果の一部を既に公表している(実開平3−8
4584号公報)が、その後、面状発熱体の電極部の構
造、材料、製造法等、面状発熱体の性能、特に耐久性及
び信頼性に影響を与え得るすべての要因について鋭意基
本的な検討を行って、今般、本発明に到達した。
The inventors of the present invention are composed of a thin, flexible, and flexible sheet heating element having excellent bonding property between the electrode portion and the heat generating portion and having high durability, and particularly, an improved electrode portion. , Long-term research on a sheet heating element in which electric power can be evenly distributed over the entire surface of the sheet heating element for a long period of time even under the condition that a non-uniform and / or repeated load is applied on the surface of the sheet heating element. And some of the results have already been announced (Shinkaihei 3-8
No. 4584), thereafter, all the factors that can affect the performance of the planar heating element, particularly durability and reliability, such as the structure, material, and manufacturing method of the electrode portion of the planar heating element, are fundamentally studied. The present invention has now been arrived at through examination.

【0019】すなわち、電極部と発熱部とがその役割の
違いに起因して、要求される材質特性、構造、柔軟性や
強度が異なる場合には、性質の異なる両者が接合部にお
いて相互に強固に接合せず、折曲するとこの部分で材料
の疲労脆化を来たし電気的接触不良や破断を生じ易いと
いう欠点がある。かような問題を、導電性塗料の塗布に
よって補償せんとするのではなく、より基本的に、面状
発熱体の下地布帛において解消することにより、導電性
塗料の塗布工程に過度な負担を負わせることなく、問題
の解決を図ろうとの立場から鋭意検討を進めた。
That is, when the electrode portion and the heat generating portion have different required material characteristics, structure, flexibility and strength due to the difference in their roles, the two having different properties are firmly bonded to each other at the joint portion. If not bent and bent, the material is subject to fatigue embrittlement at this portion, and there is a drawback that electrical contact failure or breakage easily occurs. Such a problem is not compensated by the application of the conductive paint, but more fundamentally, it is solved in the base fabric of the sheet heating element, which imposes an excessive burden on the application process of the conductive paint. Without making it possible, we eagerly studied from the standpoint of trying to solve the problem.

【0020】而して、金属糸又は帯状金属からなる縦糸
(又は横糸)を用い他方の横糸(又は縦糸)と編組して
なる布帛を使用して面状発熱体用の電極部を製造する
と、発熱部との接合性、耐久性が充分でなく屈折強度に
欠け物理的強度がなく、かつ不均一な発熱面を生じ易い
こと、これは、金属糸が剛性が高くて他の繊維と馴染み
難く、さほど伸縮できず、滑り易い等の性質があるた
め、導電性塗料の塗工その他の処理や完成後の敷設作業
や使用中に、編組された布帛自体の組織が歪み易いこと
に一因があること、金属糸と他の材料からなる糸との撚
糸であっても、他の材料が綿以外の合繊、化繊の場合に
は所期の目的達成がより難しいこと、この改善のために
過剰な界面活性剤を添加したり極小粒径の導電性粒子を
使用するとかえって発熱部におけるPTC特性(後述)
を損なうこと、綿糸を用いた場合であっても綿糸を芯に
してその周囲に金属糸を圏設した場合には所期の目的を
達成できないこと、金属糸と綿糸とを撚合する場合に
も、両者の太さや撚数の程度の違いにより結果が違って
くること等々、多くの知見に基いて本発明の面状発熱体
及びその製造方法を完成した。以下、本発明を詳細に説
明する。
When a warp (or weft) made of a metal thread or a strip-shaped metal is braided with the other weft (or warp) to fabricate an electrode portion for a sheet heating element, Bonding with the heat generating part, durability is not enough, lacking in refractive strength, lacking physical strength, and easily generating an uneven heat generating surface. This is because the metal yarn has high rigidity and is hard to blend with other fibers. Because it does not expand or contract so much and it is slippery, it is partly because the structure of the braided fabric itself is easily distorted during the coating and other treatment of the conductive paint and the laying work and use after completion. However, even if it is a twisted yarn of a metal yarn and a yarn made of another material, if the other material is a synthetic fiber other than cotton or a synthetic fiber, it is more difficult to achieve the intended purpose. It is rather possible to add a surface active agent or use conductive particles with an extremely small particle size. PTC characteristics in section (described later)
In case of using a cotton thread as a core and arranging a metal thread around it, even if a cotton thread is used, the intended purpose cannot be achieved. However, the planar heating element and the method for producing the same according to the present invention have been completed based on many findings such as the difference in the results depending on the thickness and the number of twists of the two. Hereinafter, the present invention will be described in detail.

【0021】先に記述したように、本発明の面状発熱体
は、一体化した下地布帛上の両端に設けた帯状の電極部
と、その電極部の間に発熱部を有し、下地布帛の全面に
導電性塗料が被覆されているタイプのものである。本発
明の面状発熱体においては、下地布帛の材料として綿糸
を使用する。本発明者らは種々の材料を検討した結果、
綿材料が高分子材料例えば熱可塑性高分子材料に比較し
て耐熱性が高いばかりでなく、他の例えば金属糸となじ
み易いことを知見した。ここでいう耐熱性とは、耐燃焼
性ばかりでなく以下に説明するように加熱による伸縮等
の耐諸物性変化を意味する。
As described above, the sheet heating element of the present invention has strip-shaped electrode portions provided at both ends on the integrated base cloth and the heat generating portions between the electrode portions, and the base cloth is formed. Is of a type in which a conductive paint is coated on the entire surface. In the sheet heating element of the present invention, cotton yarn is used as the material of the base cloth. The present inventors have studied various materials,
It was found that the cotton material not only has high heat resistance as compared with a polymer material such as a thermoplastic polymer material, but is also easily compatible with other metal threads, for example. The heat resistance as referred to herein means not only the combustion resistance but also a change in various physical resistance such as expansion and contraction due to heating as described below.

【0022】従来の面状発熱体は、下地布帛等として何
故か綿材料を用いてないため金属糸となじみ難いばかり
でなく、それ自体が経時的劣化を生じ、それが原因とな
って温度上昇を生じ、使用者に火傷をさせたり、発火す
る場合がある。これは発熱層が面状であるため、その一
部が何らかの刺激により劣化した場合、その部分の電気
抵抗値が上昇し、そこを通るべき電流が他に迂回し、そ
の電流が流れ込んでいく部分は、発熱量を増大させるこ
とになる結果である。そして、劣化部分が増えるに従っ
て、正常部分に流れ込む電流が増加して温度を押し上
げ、その温度が高分子材料の発火点に到達すると燃焼す
ることになる。このような異常発熱は、主に面状発熱体
に使用する高分子材料の経時的劣化に起因する。キリヒ
ホフの定常電流則により他のバイパス経路の数が多けれ
ば多い程、経路1つ当り分担する過剰電流量は少なくて
済むから、経時的劣化は加速的に進行し勝ちである。従
来、面状発熱体に可撓性を付与するため下地布帛及びバ
インダーの双方に高分子材料として熱可塑性のものが用
いられる。したがって、その粘弾性、特に粘性のため、
長期に亘って外力が印加され続けると変形しその結果導
電性塗料中の導電材料相互間のオーミックコンタクト状
態を物理的に破断することになる。これは、面状発熱体
の局部的な過熱をもたらす。加熱下で外力が継続的に加
えられる場合にはそのような変形は著しく促進される。
Since the conventional sheet heating element does not use a cotton material for some reason as a base cloth and the like, it is difficult to fit in with the metal thread, and it itself deteriorates with time, which causes a temperature rise. It may cause a burn or a fire to the user. This is because the heating layer is planar, so if a part of it deteriorates due to some kind of stimulus, the electric resistance value of that part rises, the current that should pass therethrough diverges to the other part, and that current flows in. The result is that the calorific value is increased. Then, as the deteriorated portion increases, the current flowing into the normal portion increases and raises the temperature, and when the temperature reaches the ignition point of the polymer material, combustion occurs. Such abnormal heat generation is mainly due to deterioration over time of the polymer material used for the planar heating element. According to Kirichhoff's steady-state current rule, the larger the number of other bypass paths, the smaller the amount of excess current shared by each path, and therefore the deterioration over time tends to accelerate. Conventionally, a thermoplastic material is used as a polymer material for both the base cloth and the binder in order to impart flexibility to the sheet heating element. Therefore, because of its viscoelasticity, especially viscosity,
If an external force is continuously applied for a long period of time, it deforms and, as a result, the ohmic contact state between the conductive materials in the conductive coating material is physically broken. This leads to localized overheating of the sheet heating element. Such deformation is significantly promoted when an external force is continuously applied under heating.

【0023】また、バインダーとして使用する熱可塑性
高分子は、その組織が球晶状態から無定形状態に変化す
るガラス転移点(Tg)に加熱されると体積が急膨脹し
てその中に包含される導電材料粒子相互間のオーミック
コンタクト状態を物理的に破断する特性、即ち、面状発
熱体における抵抗の正温度特性(所謂PTC特性;即
ち、ある加熱された温度(T)における抵抗(Rt)と
常温における抵抗(Ro)との間に、{Rt>>Ro/e
xp(−△E/kT)(ここで△Eはエンタルピー変化量、k
はボルツマン定数)}の関係が成立する特性、実務上は
[Rt>>Ro{(1+α(T−To)}(ここでαは通常
金属の温度抵抗係数、即ち約4.0×10-2/℃)]の
関係が成立する特性が所望される等、経時的劣化を生じ
易い材料が採用され易い。かかる面状発熱体の欠点を解
消するために、用いられる高分子材料に耐熱性を向上さ
せたり、難燃性を付与することなどが考えられるが、こ
れらはいずれも根本的な解決方法とはなり得ない。
When the structure of the thermoplastic polymer used as the binder is heated to the glass transition point (Tg) at which its structure changes from the spherulite state to the amorphous state, the volume thereof expands rapidly and is contained therein. The characteristic that physically breaks the ohmic contact between the conductive material particles, that is, the positive temperature characteristic of the resistance in the planar heating element (so-called PTC characteristic; that is, the resistance (Rt) at a certain heating temperature (T)). And the resistance at room temperature (Ro), {Rt >> Ro / e
xp (-ΔE / kT) (where ΔE is the enthalpy change, k
Is a Boltzmann constant)}, and in practice, [Rt >> Ro {(1 + α (T-To)} (where α is the temperature resistance coefficient of a normal metal, that is, about 4.0 × 10 -2). / C)] is desired, and a material that easily deteriorates with time is desired, such as the characteristics that are satisfied. It may be improved or imparted with flame retardancy, but none of these can be a fundamental solution.

【0024】本発明の面状発熱体においては、先に述べ
たように、電極部及び発熱部を有する下地布帛自体とし
て全面ほぼ均一な物理的諸特性となるように下地不帛が
予め作成され、かつ電気的特性は双方の部分においてそ
れぞれ異なる所期の性質を呈するものが使用される。す
なわち本発明の面状発熱体は、具体的には、両端部に帯
状の電極部と、該両電極部の間に発熱部を有する面状発
熱体において、前記電極部と前記発熱部とが1枚の下地
布帛の上に形成されており、前記発熱部の下地布帛は綿
糸で編組されており、前記電極部の下地布帛は、前記発
熱部の下地布帛から連続する綿糸に金属単合糸と綿単合
糸とを混撚してなる複合糸が織り込こまれており、か
つ、前記電極部における下地布帛が、前記発熱部におけ
る金属単合糸と綿単合糸とを混撚してなる複合糸が織り
込こまれた後の下地布帛とほぼ同程度の厚さ及びほぼ同
程度の柔軟性を有することを特徴とするものであるが、
ここで留意すべき点は、導電糸として金属単合糸と綿単
合糸とを混撚してなる複合糸を用いることであり、複合
糸の代わりに金属単合糸を用いた場合には、金属単合糸
が綿単合糸又は綿糸と電気的性質が異なるばかりでな
く、物理的特性が異なるという点にある。具体的には、
両材料は、密度が異なり、かつ弾力性も異なる。而して
何らの工夫、調節なく金属単合糸を撚り込んだ混合糸は
先に記述したような滑り易さ等の問題を生じる他、金属
のバネ(弾性)力により嵩高になり勝ちである。また密
度も高くなり勝ちである。かような難点は本発明におい
ては克服されている。
In the sheet heating element of the present invention, as described above, the base cloth is prepared in advance so that the base cloth itself having the electrode part and the heat generating part has substantially uniform physical characteristics. The electrical characteristics of the two parts are different from each other, and exhibit different desired properties. That is, the planar heating element of the present invention is specifically a planar heating element having strip-shaped electrode portions at both ends and a heating portion between the electrode portions, wherein the electrode portion and the heating portion are It is formed on one base fabric, the base fabric of the heat generating part is braided with cotton yarn, and the base fabric of the electrode part is a continuous metal yarn from a cotton yarn continuous from the base fabric of the heat generating part. A composite yarn obtained by mixing and twisting a cotton single yarn and a cotton single yarn is woven, and the base fabric in the electrode portion is formed by mixing and twisting the metal single yarn and the cotton single yarn in the heat generating portion. It is characterized in that it has approximately the same thickness and approximately the same flexibility as the base fabric after the composite yarn is woven,
The point to be noted here is to use a composite yarn obtained by mixing and twisting a metal single composite yarn and a cotton single composite yarn as the conductive yarn, and when the metal single composite yarn is used instead of the composite yarn, The metal single-plied yarn is different from the cotton single-plied yarn or the cotton yarn in the electrical property as well as in the physical property. In particular,
Both materials have different densities and elasticity. Thus, the mixed yarn in which the single metal composite yarn is twisted without any adjustment or adjustment causes problems such as the slipperiness described above, and tends to become bulky due to the spring (elasticity) force of the metal. . It also tends to be denser. Such difficulties are overcome in the present invention.

【0025】本発明において、電極部と発熱部の下地布
帛は、基本的に綿糸で編組されたものであり、この下地
布帛の電極部には、金属単合糸の複数本と綿単合糸の複
数本とを混撚してなる複合糸が、縦糸又は横糸として必
要な本数織り込まれ、電極部を形成する。この下地布帛
は、糸の太さが10〜50番手、縦糸密度、横糸密度共
1インチ当り50〜200本であり、且つ組織点が平方
インチ当り50〜5000点である織布からなる。糸の
番手がより小さい(糸が太い)ものを用いた場合には織
目に凹凸が発生しこの凹凸のために導電性塗料が必要以
上に厚くかつ不均一に塗布されることになり、また、よ
り大きい(糸が細い)場合には、耐屈折性等の物理的強
度に欠け、導電性材料とバインダーとの付着量が過少の
面状発熱体等を作製することになる。また、糸の織り込
み密度としては縦糸、横糸とも1インチ当り30本から
80本程度が望ましいが、使用する糸の太さによっても
異なる。即ち、1平方メートル当り80〜130gの塗
布量となるよう、また導電性塗料が発熱面側に存在し裏
側の非発熱面に多量に達しないよう、糸の太さと密度を
選定することにより、発熱部と電極部とが略同程度の厚
さ及びほぼ同程度の柔軟性のものとすることができる。
In the present invention, the base cloth of the electrode section and the heat generating section is basically braided with cotton yarn, and the electrode section of the base cloth has a plurality of metal single-bonded threads and a single cotton composite thread. The necessary number of composite yarns obtained by mixing and twisting a plurality of the above are woven as warp yarns or weft yarns to form an electrode portion. This base fabric is made of a woven fabric having a yarn thickness of 10 to 50, a warp density and a weft density of 50 to 200 per inch, and a design point of 50 to 5000 points per square inch. When a yarn with a smaller yarn count (thicker yarn) is used, unevenness occurs in the weave, and this unevenness causes the conductive paint to be applied thicker than necessary and unevenly. If it is larger (the thread is thin), the physical strength such as refraction resistance is lacked, and the sheet heating element or the like in which the amount of the conductive material and the binder attached is too small is produced. The weaving density of the threads is preferably about 30 to 80 threads per inch for both the warp threads and the weft threads, but it varies depending on the thickness of the threads used. That is, by selecting the thickness and density of the yarn so that the coating amount is 80 to 130 g per square meter, and the conductive paint is present on the heating surface side and does not reach a large amount on the back non-heating surface, The portion and the electrode portion may have approximately the same thickness and approximately the same flexibility.

【0026】更に同じ太さ、同じ密度で比較した場合、
組織点の少ない方が織布は柔軟性に富むので、これを用
いて製造した面状発熱体は可撓性に優れたものになる。
したがって、三原組織で分類すれば、平織よりは朱子
織、斜文織等の方が可撓性に優れた面状発熱体を得るこ
とができるが、本発明においては平織によっても充分な
柔軟性を得ることができる。これに対して、図3に示さ
れるような単金属線や金属糸を採用する場合には、柔軟
性に欠けるばかりでなく、下地布帛を構成する縦糸、経
糸の織目ズレを生じる。
Further, when compared with the same thickness and the same density,
Since the woven cloth having a smaller number of texture points is more flexible, the sheet heating element manufactured using the woven cloth has excellent flexibility.
Therefore, when classified by the Mihara structure, a satin weave, a twill weave, or the like can provide a planar heating element having higher flexibility than a plain weave, but in the present invention, a plain weave has sufficient flexibility. Can be obtained. On the other hand, when the single metal wire or the metal yarn as shown in FIG. 3 is adopted, not only the flexibility is lacked but also the warp yarn and the warp yarn constituting the base fabric are deviated.

【0027】また、例えば導電性塗料を塗布する際に下
地布帛の表裏となるべきところには該導電性塗料が充分
設けられ、裏面側には該導電性塗料がメルトスルー(後
述)もしないように、下地布帛の表裏両面に露出する経
糸の織り込みモードを調整することができる。発明にお
いてはこのような下地布帛を製造する過程で、帯状の電
極部に、金属単合糸の複数本と綿単合糸の複数本とを混
撚してなる複合糸を、縦糸又は横糸として必要な本数織
り込む。織り込み幅すなわち帯状の電極部の幅は、両電
極間の距離、発熱部の厚さ(平方メートル当り発熱量)
にもよるが、下地布帛が平織である場合、通常は約3mm
乃至約30mmであり、望ましくは約5mm乃至約25mmで
あり、好ましくは7mm乃至約15mmであり、その必要な
織込み本数は2〜20本、好ましくは7〜15本であ
る。
Further, for example, when the conductive paint is applied, the conductive paint is sufficiently provided on the front and back sides of the base fabric, and the conductive paint does not melt through (to be described later) on the back surface side. In addition, the weaving mode of the warp exposed on both the front and back surfaces of the base fabric can be adjusted. In the invention, in the process of manufacturing such a base cloth, a composite yarn formed by mixing and twisting a plurality of metal single-bonded yarns and a plurality of cotton single-bonded yarns is required as a warp or a weft in the strip-shaped electrode portion. Weave in a certain number. The weaving width, that is, the width of the strip-shaped electrode part, is the distance between both electrodes, the thickness of the heat generating part (heat generation amount per square meter)
However, if the base fabric is plain weave, it is usually about 3 mm.
To about 30 mm, desirably about 5 mm to about 25 mm, preferably 7 mm to about 15 mm, and the required number of weaves is 2 to 20, preferably 7 to 15.

【0028】さて、本発明においては特定の複合糸を用
いる点で大きな特長があることは先に説明したとおりで
ある。ここで、本発明者らは、図2に示されるような従
来の合繊糸の芯の周囲にスパイラル状に巻き付けられた
金属糸からなる電極用複合糸における「ズル(ズレ)」
及び断線を避ける手段として、合繊糸に代えて綿糸を使
用し、かつ、金属糸と綿糸とのいずれもほぼ同程度の剛
性のものになるようにして一方から他方の周囲にスパイ
ラル状に巻き付けられることを防止し、双方が、図4に
例示されるように、相互に撚り合わされたものを使用す
ることを見い出した。また剛性、かつ異なる両材料のそ
のような相互撚合わせを達成し、かつ良好な導電性を得
るためには、銅糸及びアルミニウム糸の場合には、ほぼ
同程度の太さの綿糸と本数比を3〜9本:1〜3以内が
限界であり、銅線及びステンレス線の場合には1〜8
本:1〜3本、最も良好な結果は、例えば銅線の場合に
は直径が0.007mmの銅単合糸6本と20番手の綿
単合糸2本のときに達成されることを知見した。
As described above, the present invention has a great advantage in using a specific composite yarn. Here, the inventors of the present invention have referred to as “sliding” in the composite yarn for electrodes, which is made of a metal yarn spirally wound around the core of a conventional synthetic fiber as shown in FIG.
And as a means for avoiding wire breakage, a cotton thread is used instead of the synthetic fiber thread, and both the metal thread and the cotton thread are spirally wound around one side so that they have substantially the same rigidity. We have found that both use twisted ones, as illustrated in FIG. In addition, in order to achieve rigidity and such mutual twisting of both different materials, and to obtain good conductivity, in the case of copper threads and aluminum threads, a cotton thread of approximately the same thickness and a number ratio are used. 3 to 9: within 1 to 3 is the limit, and in the case of copper wire and stainless wire, 1 to 8
Book: 1 to 3, the best result is achieved, for example, in the case of a copper wire, 6 single copper composite yarns having a diameter of 0.007 mm and 2 cotton single composite yarns of 20 count. I found out.

【0029】複合糸の内部は、金属単合糸と綿単合糸と
は撚り合わされて緩やかなスパイラル状の3次元構造の
構造をとるが、この緩やかな3次元構造における金属単
合糸は相手の綿単合糸に支えられてさほど形崩れせずに
下地布帛に織り込まれる。一方、綿単合糸は導電性塗料
とのなじみ性が大きい。斯して複合糸の内部組織に導電
性塗料を浸透させ、乾燥後には導電性塗料を間隙のある
複合糸構造中にしっかりと握持して両電極間により多く
の電流経路を確保し、かつその柔軟性を保持する。更
に、電極部の表面に不均一及び/又は繰り返しの荷重が
加わった場合に、金属単合系の断線を生じにくい。した
がって、本発明の面状発熱体における導電性塗料は、発
熱部の下地布帛及び電極部の複合糸が織り込まれた下地
布帛の材料自体の内部及び材料の外周に配設され、強固
に保持されることになり、必ずしも下地布帛の空隙部分
(網目部分)を埋めるように孔部のない均一層を形成し
ているもののみではない。すなわち、樹脂フィルム例え
ばポリイミドフィルム上に導電性塗料を全面に均一に塗
布してなる面状発熱体とは異なる。無論、下地布帛の空
隙部分(網目部分)まで埋め尽くす程度に導電性塗料を
充分塗布しその結果恰も均一厚の導電層が配設されたよ
うな外観を呈する面状発熱体となる場合も多いが、内部
組織は相違している。これにより、後程説明する保護シ
ートのラミネート加工時に生じがちなメルトスルーとい
う不都合を回避することができる。
In the inside of the composite yarn, the metal single composite yarn and the cotton single composite yarn are twisted together to have a structure of a gentle spiral three-dimensional structure. The metal single composite yarn in this gentle three-dimensional structure is a partner. It is woven into the base fabric without being distorted so much by being supported by the cotton union yarn. On the other hand, the cotton single-bonded yarn is highly compatible with the conductive paint. Thus, the conductive coating is allowed to penetrate into the internal structure of the composite thread, and after drying, the conductive coating is firmly held in the composite thread structure with a gap to secure more current paths between both electrodes, and Retains its flexibility. Furthermore, when a non-uniform and / or repetitive load is applied to the surface of the electrode portion, it is less likely that the metal single bond system will be disconnected. Therefore, the conductive paint in the sheet heating element of the present invention is disposed inside and on the outer periphery of the material itself of the base cloth of the heat generating portion and the base cloth in which the composite yarn of the electrode portion is woven, and is firmly held. Therefore, it is not always the case that a uniform layer having no holes is formed so as to fill the voids (mesh) of the base fabric. That is, it is different from the planar heating element obtained by uniformly coating the entire surface of a resin film, for example, a polyimide film with a conductive paint. Of course, in many cases, a conductive coating material is applied enough to completely fill the voids (mesh portion) of the base fabric, and as a result, a sheet heating element often appears as if a conductive layer with a uniform thickness is provided. However, the internal organization is different. This makes it possible to avoid the inconvenience of melt-through that tends to occur when laminating the protective sheet, which will be described later.

【0030】本発明において用いられる複合糸は、電極
部となる部分の柔軟性を確保しかつ必要な強度を確保す
るため、番手数の小さな綿単合糸と金属単合糸を少ない
インチ間撚数で撚合したものが好ましい。例えば具体的
には、複合糸として、0.001〜0.1mm径の銅及
び/又はアルミニウム単合糸3本〜9本と10〜50番
手の綿単合糸1本〜3本からなる撚糸や、0.001〜
0.1mm径の鋼及び/又はステンレス鋼単合糸1本〜
8本と10〜50番手の綿単合糸1本〜3本からなる撚
糸が使用できる。綿単合糸のインチ間撚数(T1)と番
手(N1)との間に、T1≦K1√N1(ただし、K1
は撚係数で、1.5〜5.0である)の関係があり、複
合糸のインチ間撚数T2と番手N2との間に、T2≦K
2√N2(ただし、K2は撚係数で、0.01〜3.0
である)の関係がある場合にはより好ましく使用され
る。より太い複合糸又はより細い複合糸は電極部の下地
不帛の厚さを発熱部の厚さと大幅に違うものにする。而
して、面状発熱体への導電性塗料の所望量塗布を困難に
し、かつ下地布帛に導電性塗料と塗布した場合に、電極
部と発熱部の境界部分に導電性塗料のタマリを生ずる。
これは局部的な発熱の原因となる。また、インチ間撚数
がより大きい場合には、電極部となる部分の柔軟性を確
保できないばかりでなく、導電性塗料が下地布帛中へ充
分に浸透しない。
In the composite yarn used in the present invention, in order to secure the flexibility of the portion which becomes the electrode portion and the required strength, the cotton single composite yarn having a small number of counts and the metal single composite yarn are twisted with a small inter-inch twist. Those twisted by the number are preferable. For example, specifically, as the composite yarn, a twisted yarn composed of 3 to 9 single copper and / or aluminum single composite yarns having a diameter of 0.001 to 0.1 mm and 1 to 3 single cotton single composite yarns of 10 to 50 count. Or 0.001
One 0.1 mm diameter steel and / or stainless steel single yarn
Twisted yarns composed of 8 yarns and 1 to 3 cotton union yarns of 10 to 50 count can be used. Between the number of twists per inch (T1) and the count (N1) of the cotton single-bonded yarn, T1 ≦ K1√N1 (however, K1
Is a twist coefficient, which is 1.5 to 5.0), and T2 ≦ K between the number of twists per inch T2 of the composite yarn and the count N2.
2√N2 (However, K2 is the twist coefficient, 0.01-3.0
Is more preferably used. Thicker composite threads or thinner composite threads make the thickness of the base fabric of the electrode portion significantly different from the thickness of the heat generating portion. Thus, it becomes difficult to apply a desired amount of the conductive coating material to the planar heating element, and when the base material is coated with the conductive coating material, a lump of the conductive coating material occurs at the boundary between the electrode portion and the heat generating portion. .
This causes local heat generation. Further, when the number of twists between inches is larger, not only the flexibility of the portion which becomes the electrode portion cannot be secured, but also the conductive coating does not sufficiently penetrate into the base fabric.

【0031】本発明においては、市販の導電性塗料(市
販品としては例えば藤倉化成製、FA303のような粘
度250センチポイズ(常温)の銀ペーストを挙げるこ
とができる)を使用することができるが、また自ら調製
した導電性塗料を使用することもできる。
In the present invention, a commercially available conductive paint (a commercially available product, for example, a Fuji paste manufactured by Fujikura Kasei, a silver paste having a viscosity of 250 centipoise (normal temperature) such as FA303) can be used. It is also possible to use a conductive paint prepared by itself.

【0032】ここで、導電性材料としては、カーボンブ
ラック、黒鉛;銅粉、ステンレス粉等の金属粒子;カー
ボン短繊維、ステンレス短繊維、真鍮短繊維等の導電性
繊維;酸化錫、酸化亜鉛等の金属酸化物粒子;導電性ウ
ィスカーなどが挙げられ、なかでもカーボンブラックが
好ましい。導電性粒子の場合は15μm〜60μmの粒
径であることが好ましい。より大きな導電性粒子は導電
性塗料の所望量塗布及び均一塗布を困難にし、より小さ
な導電性粒子は導電性塗料における所謂PTC特性を阻
害する。好ましいカーボンブラックは通常約20Ω/c
m以下の表面抵抗及び10m2以下のグラム当り表面積
を有する。
Here, as the conductive material, carbon black, graphite; metal particles such as copper powder and stainless powder; conductive fibers such as carbon short fiber, stainless short fiber and brass short fiber; tin oxide, zinc oxide, etc. Examples of the metal oxide particles include conductive whiskers, and among them, carbon black is preferable. In the case of conductive particles, the particle size is preferably 15 to 60 μm. Larger conductive particles make it difficult to apply the desired amount and uniform application of the conductive paint, and smaller conductive particles hinder the so-called PTC characteristics of the conductive paint. The preferred carbon black is usually about 20 Ω / c
It has a surface resistance of less than or equal to m and a surface area per gram of less than or equal to 10 m 2 .

【0033】また、バインダーとしてはポリカーボネー
ト(ビスフェノールAタイプ、ビスフェノールZタイ
プ)、メタクリル酸樹脂、ポリ塩化ビニル、ポリ酢酸ビ
ニル樹脂、ポリスチレン樹脂、ポリウレタン樹脂、塩化
ビニル−エチレン共重合体、フェノール樹脂、アクリル
樹脂、ポリエステル樹脂、エポキシ樹脂、塩化ビニル−
酢酸ビニル共重合体、塩化ビニル−エチレン共重合体、
塩化ビニル−プロピレン共重合体、塩化ビニル−スチレ
ン共重合体、塩化ビニル−ブタジエン共重合体、ポリ塩
化ビニリデン樹脂、塩化ビニリデン共重合体、塩化ビニ
ル−アクリル酸エステル共重合体、塩化ビニル−マレイ
ン酸エステル共重合体、塩化ビニル−メタクリル酸エス
テル共重合体、塩化ビニル−アクリロニトリル共重合
体、塩化ビニル−塩化ビニリデン−酢酸ビニル三元共重
合体、ポリビニルブチラール樹脂、ポリビニルカルバゾ
ール樹脂、シリコン樹脂、シリコン変成樹脂等を用いる
ことができ、また、これらを混練して使用することがで
きる。特に、ポリ塩化ビニル、塩化ビニル−エチレン共
重合体を好ましく使用することができる。これらのバイ
ンダー樹脂は、好ましくは面状発熱体の上限発熱温度を
考慮したTg(ガラス転移点)となるような量比に混練
して使用することができる。
As the binder, polycarbonate (bisphenol A type, bisphenol Z type), methacrylic acid resin, polyvinyl chloride, polyvinyl acetate resin, polystyrene resin, polyurethane resin, vinyl chloride-ethylene copolymer, phenol resin, acrylic resin Resin, polyester resin, epoxy resin, vinyl chloride-
Vinyl acetate copolymer, vinyl chloride-ethylene copolymer,
Vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-butadiene copolymer, polyvinylidene chloride resin, vinylidene chloride copolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid Ester copolymer, vinyl chloride-methacrylic acid ester copolymer, vinyl chloride-acrylonitrile copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, polyvinyl butyral resin, polyvinylcarbazole resin, silicone resin, silicon modification Resins and the like can be used, and these can be kneaded and used. In particular, polyvinyl chloride and vinyl chloride-ethylene copolymer can be preferably used. These binder resins can be preferably kneaded and used in an amount ratio such that the binder resin has a Tg (glass transition point) in consideration of the upper limit heat generation temperature of the sheet heating element.

【0034】導電性塗料は、バインダー100重量部に
対して導電性材料10〜1000重量部、例えば好まし
くは通常可塑性樹脂100重量部に対してカーボンブラ
ック30〜70重量部をN,N’−ジメチルホルムアミ
ド、アセトン、メチルエチルケトン、キシレン、クロロ
ホルム、1、2−ジクロロエタン、ジクロロメタン、モ
ノクロルベンゼン、テトラヒドロフラン、ジオキサン、
メタノール、エタノール、イソプロパノール、酢酸エチ
ル、酢酸ブチル、ジメチルスルホキシド、トリクレン等
の溶剤の適当量中で混合して調製する。しかし、溶剤中
での混合の前に、導電性材料例えばカーボンブラック、
黒鉛、金属粒子、金属メッキ粒子などをバインダーとヘ
ンシェルミキサー、バンバリーミキサーなどの混合機、
ニーダー、押出機、ロールミル、ニーダ、インタミック
スなどの混練機で混練することが好ましい。そしてこの
混練過程で溶剤を使用することができ、また、必要な可
塑剤、例えばジブチルホスフェート、ジオクチルホスフ
ェート、ジヘプチルホスフェート等のリン酸系可塑剤、
ジブチルフタレート、ジオクチルフタレート、ジヘプチ
ルフタレート等のフタル酸系可塑剤、グリコールオリゴ
マー、ポリエステル系可塑剤例えばトリメリット酸エス
テル、フェニルスルホン酸アルキルアミド、2−エチル
ヘキサノールアルキルエステル、ジヘキシルアジペー
ト、ジオクチルアジペート、ポリエチレングリコールモ
ノアルキルエーテルアジピン酸エステル等々の可塑剤を
添加して可撓性を付与することができる。
The conductive coating material is composed of 10 to 1000 parts by weight of the conductive material with respect to 100 parts by weight of the binder, for example, preferably 30 to 70 parts by weight of carbon black with respect to 100 parts by weight of the normal plastic resin, N, N'-dimethyl. Formamide, acetone, methyl ethyl ketone, xylene, chloroform, 1,2-dichloroethane, dichloromethane, monochlorobenzene, tetrahydrofuran, dioxane,
It is prepared by mixing in an appropriate amount of a solvent such as methanol, ethanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, trichlene. However, before mixing in a solvent, a conductive material such as carbon black,
Mixer for graphite, metal particles, metal plated particles, etc. with binder and Henschel mixer, Banbury mixer, etc.
It is preferable to knead with a kneader, an extruder, a roll mill, a kneader, an intermix, or the like. And a solvent can be used in this kneading process, and necessary plasticizers, for example, dibutyl phosphate, dioctyl phosphate, phosphate plasticizers such as diheptyl phosphate,
Phthalates such as dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, glycol oligomers, polyesters such as trimellitic acid ester, phenylsulfonic acid alkylamide, 2-ethylhexanol alkyl ester, dihexyl adipate, dioctyl adipate, polyethylene Flexibility can be imparted by adding a plasticizer such as glycol monoalkyl ether adipate.

【0035】この可塑剤に関し、従来の面状発熱体にお
いては、折り曲げ用途に供するためには、一般にはバイ
ンダー、例えば軟質ポリ塩化ビニル樹脂100重量部当
り80重量部のような多量の可塑剤を含有させるが、発
熱体を高温度にて長期間に亘って使用すると導電性塗料
中の可塑剤がバインダーに移行してバインダーが膨潤す
るために導電性が低下したり下地布帛との接着強度が低
下することがあり、面状発熱体の安定性能の維持に問題
があった。可塑剤含有率を下げれば上記の様な難点は改
善されるが、それによって柔軟性が低下し、折り曲げに
よる繰り返し疲労によって導電性塗料の被膜が破壊する
という新たな問題を伴い勝ちであった。また多量の可塑
剤の使用は、導電性塗料の被膜の好ましいPTC特性を
損なう等、温度制御困難な場合が多い。これに反して、
本発明の面状発熱体の場合には可塑剤添加量は極めて少
量で済む。例えばポリ塩化ビニル樹脂中に、塩ビ100
重量部当り1〜5部で充分であり、それ故、長期間の使
用においても可撓性が変化せず更には抵抗値の変化もな
い面状発熱体が提供される。同様な事由で、可塑剤の多
量添加を避けることができ、而して好ましいPTC特性
を損なうことなく所望の面状発熱体を作成することがで
きる。
With respect to this plasticizer, in the conventional sheet heating element, in order to be used for bending, a binder, for example, a large amount of plasticizer such as 80 parts by weight per 100 parts by weight of the soft polyvinyl chloride resin is generally used. However, if the heating element is used at a high temperature for a long period of time, the plasticizer in the conductive paint migrates to the binder and the binder swells, resulting in a decrease in conductivity and a decrease in adhesive strength with the underlying fabric. However, there was a problem in maintaining the stable performance of the sheet heating element. If the content of the plasticizer is reduced, the above-mentioned problems are solved, but the flexibility is lowered thereby, and there is a new problem that the coating film of the conductive paint is broken by repeated fatigue due to bending, which is a win. Further, the use of a large amount of plasticizer often makes temperature control difficult, such as impairing the preferable PTC characteristics of the coating film of the conductive paint. On the contrary,
In the case of the sheet heating element of the present invention, the addition amount of the plasticizer can be extremely small. For example, in polyvinyl chloride resin, vinyl chloride 100
1 to 5 parts by weight is sufficient per part by weight, and therefore, a planar heating element which does not change in flexibility and does not change in resistance value even after long-term use is provided. For the same reason, it is possible to avoid adding a large amount of plasticizer, and thus it is possible to produce a desired planar heating element without impairing the preferable PTC characteristics.

【0036】調製した導電性塗料は常温で1000〜1
0000cpの粘度で、電極部となる部分に複合糸を織
り込んだ下地布帛に塗布される。塗布は、ロールコータ
法、ラバードクター法、ワイヤーバーコータ法、エアー
ナイフコータ法、デイップコータ法、スクリーン印刷法
(捺染法)例えばシルクスクリーン印刷法、グラビア印
刷法、スプレー法、ガンスプレー法、回転遠心板法(振
り切り法)及びこれら方法の組合せ等従来公知の方法に
よって行うことができる。
The prepared conductive paint has a temperature of 1000 to 1 at room temperature.
It has a viscosity of 0000 cp and is applied to a base fabric in which a composite thread is woven in a portion which will be an electrode portion. The coating is performed by a roll coater method, a rubber doctor method, a wire bar coater method, an air knife coater method, a dip coater method, a screen printing method (a printing method), for example, a silk screen printing method, a gravure printing method, a spray method, a gun spray method, a rotary centrifugal method. It can be carried out by a conventionally known method such as a plate method (shaking off method) or a combination of these methods.

【0037】導電性塗料の塗布量、厚さは、面状発熱体
の所望出力、面状発熱体の両電極間距離にもよる(面状
発熱体における両電極間の電流量は、両電極間距離に反
比例し面状発熱体の塗料厚の2乗に比例する)が、柔軟
性などの点から約700μm以下、好ましくは約500
μm乃至約30μm,即ち、乾燥重量で2g/m2〜2
00g/m2である。約700μmを越える厚さのもの
になると、発熱量(温度)、可撓性、耐屈折強度の点で
問題が出てくる。また、樹脂フィルム例えばポリイミド
フィルム上に単に導電層を全面均一に塗布してなる面状
発熱体の場合のように約20μmの薄さとすることは適
当でない。塗布された導電性塗料は100℃〜210
℃、好ましくは160℃〜180℃の温度で5分〜60
分、好ましくは10分〜20分乾燥、熱処理される。
The amount and thickness of the conductive paint applied depend on the desired output of the sheet heating element and the distance between both electrodes of the sheet heating element (the amount of current between the two electrodes of the sheet heating element is Is inversely proportional to the distance and proportional to the square of the coating thickness of the sheet heating element), but is not more than about 700 μm, preferably about 500 from the viewpoint of flexibility.
μm to about 30 μm, that is, 2 g / m 2 to 2 in dry weight
It is 00 g / m 2 . When the thickness exceeds about 700 μm, problems arise in terms of heat generation amount (temperature), flexibility, and refraction resistance strength. Further, it is not appropriate to make the thickness as thin as about 20 μm as in the case of a planar heating element in which a conductive film is simply uniformly coated on a resin film such as a polyimide film. The conductive paint applied is 100 ° C-210
5 minutes to 60 ° C., preferably 160 ° C. to 180 ° C.
It is dried and heat-treated for a minute, preferably 10 to 20 minutes.

【0038】導電性塗料を塗布した電極部及び発熱部の
表裏をなす一方の面若しくは両面には必要に応じてポリ
塩化ビニル樹脂フィルム、ポリイミドフィルム、ポリア
ミド樹脂フィルム、ポリエステル樹脂フィルム等のフィ
ルム乃至シートの絶縁層を設けることができる。例えば
ポリ塩化ビニル樹脂シートを約180℃の温度でラミネ
ート加工することができる。
A film or sheet such as a polyvinyl chloride resin film, a polyimide film, a polyamide resin film, or a polyester resin film may be formed on one or both surfaces of the electrode portion and the heat generating portion coated with the conductive coating, if necessary. Insulating layer can be provided. For example, a polyvinyl chloride resin sheet can be laminated at a temperature of about 180 ° C.

【0039】先に説明したように、本発明の面状発熱体
は、このラミネート加工の差異に付随し勝ちな、ラミネ
ートシート樹脂の「メルトスルー」による弊害を回避す
ることができる。メルトスルーは、本発明者らが体験し
たある種の支障現象に対して多分本発明者らのみが名付
け使用している用語であって、学術用語でもなければ、
一般的に用いられている慣用語でもない。メルトスルー
現象は導電性塗料が塗布乾燥された面発熱体用下地布帛
に、保護シートをラミネート加工により貼着する際にし
ばしば発生するやっかいな現象である。即ち、導電性塗
料が配置された面状発熱体はラミネート加工されるべき
熱可塑性樹脂シートと密着され加圧加熱される。この
際、ラミネート加工されるべき熱可塑性樹脂シートが過
熱状態にあり且つ過剰な強い圧力で下地布帛に圧着され
ると溶融した該熱可塑性樹脂シート材料は、下地布帛の
特に網目孔部分に存在する導電性材料を押しのけて下地
布帛の裏側に到達する程、孔部分を占拠することにな
る。熱可塑性樹脂シート材料の樹脂量が導電性塗料材料
の存在量に比し多いことはしばしばであり、したがっ
て、このメルトスルーはしばしば局部的に起って局部的
な通電遮断となる可能性があるが、本発明の面状発熱体
においては、下地布帛を構成する織糸自体に導電性塗料
が浸透固着されている結果、たとえそのような局部的通
電遮断が起ったとしても、下地布帛を構成する織糸を介
して全面的に均一な通電状態を保つことができる。
As described above, the sheet heating element of the present invention can avoid the adverse effects of "melt-through" of the laminate sheet resin, which are likely to accompany this difference in the laminating process. Melt-through is a term probably used only by the present inventors for a certain trouble phenomenon experienced by the present inventors, and is not a scientific term,
Nor is it a commonly used idiom. The melt-through phenomenon is a troublesome phenomenon that often occurs when a protective sheet is laminated on a base fabric for a surface heating element, which is coated with a conductive paint and dried. That is, the sheet heating element on which the conductive paint is arranged is brought into close contact with the thermoplastic resin sheet to be laminated and heated under pressure. At this time, when the thermoplastic resin sheet to be laminated is in an overheated state and melted when pressure-bonded to the base cloth with excessively strong pressure, the thermoplastic resin sheet material is present especially in the mesh hole portion of the base cloth. The more the conductive material is pushed away to reach the back side of the base fabric, the more the hole portion is occupied. The amount of resin in the thermoplastic resin sheet material is often higher than the amount of the conductive coating material present, and therefore this melt-through often occurs locally and may cause local interruption of power supply. However, in the sheet heating element of the present invention, the conductive cloth is permeated and fixed to the weaving yarn itself which forms the base cloth, and as a result, even if such a local current interruption occurs, the base cloth is Through the constituent weaving yarns, it is possible to maintain a uniform energized state over the entire surface.

【0040】このように製作された本発明の面状発熱体
は柔軟性があり、例えば寒冷地での融雪、融霜用として
の0〜15℃程度の発熱温度を示すものとして、植物栽
培用としての15〜30℃程度の発熱温度を示すものと
して、家庭での寝具用としての25〜45℃程度の発熱
温度を示すものとして、等温熱治療器などの人体へ使用
するためのものとしての40〜60℃程度の発熱温度を
示すものとして、また水の滅菌煮沸用としての80〜1
10℃程度の発熱温度を示すものとして、調理用として
の100〜250℃程度の発熱温度を示すものとして使
用することができる。以下、本発明を図面を参照しつつ
実施例によりさらに詳細に説明する。この実施例は本発
明を具体的に説明するためのものであって本発明を制限
するためのものではない。なお、実施例中、別段の説明
がない場合「部」は「重量部」を表わす。
The planar heating element of the present invention produced in this manner is flexible and has a heat generation temperature of about 0 to 15 ° C. for melting snow and frost in cold regions, for plant cultivation. As a fever temperature of about 15 to 30 ° C., as a fever temperature of about 25 to 45 ° C. for bedding at home, and for use on the human body such as an isothermal heat treatment device. 80 to 1 for exhibiting a heat generation temperature of about 40 to 60 ° C and for sterilizing boiling water
It can be used as a material having a heat generation temperature of about 10 ° C. and a material having a heat generation temperature of about 100 to 250 ° C. for cooking. Hereinafter, the present invention will be described in more detail by way of examples with reference to the drawings. This example is intended to illustrate the present invention and not to limit the present invention. In the examples, "parts" means "parts by weight" unless otherwise specified.

【0041】[0041]

【実施例】 <複合糸(金属−綿の混紡合糸)> 銅単合糸(単繊維の直径=0.07mm) 6本 綿単合糸(20番手、撚数=1.75) 2本 を撚数が0.725になるように撚合し、図4に例示さ
れるような複合糸を作成した。なお、図4は銅単合糸1
本と綿単合糸2本の撚糸を表す。
[Examples] <Composite yarn (metal-cotton blended yarn)> 6 copper single yarns (single fiber diameter = 0.07mm) 6 cotton single yarns (20th count, number of twists = 1.75) 2 Were twisted so that the number of twists was 0.725, and a composite yarn as illustrated in FIG. 4 was prepared. In addition, FIG. 4 shows a single copper compound yarn 1
Represents a twisted yarn consisting of a book and two single cotton yarns.

【0042】<下地布帛>縦糸として、撚係数が2.5
で極めて撚りの少ない綿糸を1インチ当りの密度を80
本を使用し、下地布帛の両端から2/3インチ内側の位
置から幅2/3インチの帯状の電極部となる部分に、前
記複合糸を12本配設して電極部の下地布帛とした。横
糸として、縦糸と同じ綿糸を1インチ当りの密度を80
本とした。この縦糸と横糸を平織に織り込み、面状発熱
体の下地布帛とした。
<Base fabric> As the warp yarn, the twist coefficient is 2.5.
With a very low twist cotton yarn, the density per inch is 80
Using a book, 12 composite yarns were arranged in a portion which becomes a strip-shaped electrode portion having a width of ⅔ inch from a position inside ⅔ inch from both ends of the base fabric to form a base fabric for the electrode portion. . As the weft yarn, use the same cotton yarn as the warp yarn and have a density of 80 per inch.
It was a book. The warp yarn and the weft yarn were woven into a plain weave to prepare a base fabric for the sheet heating element.

【0043】 <導電性塗料> ポリ塩化ビニル樹脂 43部 黒鉛 5部 カーボンブラック 20部 メチルエチルケトン 31部 DOP 1部 からなる原料を予めボールミルで30分混合し、次いで
ミキサーで2時間撹拌して、粘度約5000cp(常
温)の均一な導電性塗料を調製した。
<Electrically conductive coating> Polyvinyl chloride resin 43 parts Graphite 5 parts Carbon black 20 parts Methyl ethyl ketone 31 parts DOP 1 part A raw material consisting of 30 parts was previously mixed with a ball mill for 30 minutes, and then stirred with a mixer for 2 hours to give a viscosity of about A uniform conductive paint of 5000 cp (normal temperature) was prepared.

【0044】<面状発熱体>上記調製した導電性塗料
を、上記下地布帛にラバーナイフドクターを用いて、乾
燥重量が100g/m2となるように塗布し、170℃
の電熱乾燥炉内で7分間乾燥、熱処理し、取り出した下
地布帛の電極部にリードコードを付設して、本発明の面
状発熱体を得た。
<Planar heating element> The above-prepared conductive coating material was applied to the above-mentioned base cloth using a rubber knife doctor so that the dry weight was 100 g / m 2, and 170 ° C.
Was dried and heat-treated for 7 minutes in the electrothermal drying furnace, and a lead cord was attached to the electrode portion of the taken out base cloth to obtain a sheet heating element of the present invention.

【0045】<外装>上記面状発熱体を、重合度が15
00の軟質ポリ塩化ビニル樹脂100部に対し、可塑剤
としてトリメリット酸エステルを35部含有する厚さ
0.4mmの塩化ビニル樹脂シート中に、170℃に加
熱されたヒートシーラを用いて封入して最終製品を得
た。
<Exterior> The above sheet heating element has a degree of polymerization of 15
A vinyl chloride resin sheet having a thickness of 0.4 mm and containing 35 parts of a trimellitic acid ester as a plasticizer per 100 parts of a soft polyvinyl chloride resin of 00 was sealed with a heat sealer heated to 170 ° C. The final product was obtained.

【0046】[0046]

【比較例】[Comparative example]

<金属糸> 銅線(直径=0.5mm) <Metal thread> Copper wire (diameter = 0.5 mm)

【0047】<下地布帛>縦糸として、撚係数が2.5
で極めて撚りの少ない綿糸を1インチ当りの密度を80
本を使用し、下地布帛の両端から2/3インチ内側の位
置から幅2/3インチの帯状の電極部となる部分に、前
記金属糸を12本配設して電極部の下地布帛とした。横
糸として、縦糸と同じ綿糸を1インチ当りの密度を80
本とした。この縦糸と横糸を平織に織り込み、面状発熱
体の下地布帛とした。
<Base fabric> As a warp yarn, the twist coefficient is 2.5.
With a very low twist cotton yarn, the density per inch is 80
Using a book, 12 pieces of the metal threads are arranged in a portion which becomes a strip-shaped electrode portion having a width of ⅔ inch from a position located ⅔ inch from both ends of the base fabric to form a base cloth for the electrode portion. . As the weft yarn, use the same cotton yarn as the warp yarn and have a density of 80 per inch.
It was a book. The warp yarn and the weft yarn were woven into a plain weave to prepare a base fabric for the sheet heating element.

【0048】 <導電性塗料> ポリ塩化ビニル樹脂 43部 黒鉛 5部 カーボンブラック 20部 メチルエチルケトン 31部 DOP 1部 からなる原料を予めボールミルで30分混合し、次いで
ミキサーで2時間撹拌して、粘度約5000cp(常
温)の均一な導電性塗料を調製した。
<Conductive Paint> Polyvinyl chloride resin 43 parts Graphite 5 parts Carbon black 20 parts Methyl ethyl ketone 31 parts DOP 1 part A raw material consisting of 30 parts was previously mixed with a ball mill for 30 minutes, and then stirred with a mixer for 2 hours to give a viscosity of about A uniform conductive paint of 5000 cp (normal temperature) was prepared.

【0049】<面状発熱体>上記調製した導電性塗料
を、上記下地布帛にラバーナイフドクターを用いて、乾
燥重量が100g/m2となるように塗布し、170℃
の電熱乾燥炉内で7分間乾燥、熱処理し、取り出した下
地布帛の電極部にリードコードを付設して、本発明の面
状発熱体を得た。
<Flat heating element> The above-prepared conductive coating material was applied to the above-mentioned base cloth using a rubber knife doctor so that the dry weight was 100 g / m 2, and 170 ° C.
Was dried and heat-treated for 7 minutes in the electrothermal drying furnace, and a lead cord was attached to the electrode portion of the taken out base cloth to obtain a sheet heating element of the present invention.

【0050】<外装>上記面状発熱体を、重合度が15
00の軟質ポリ塩化ビニル樹脂100部に対し、可塑剤
としてトリメリット酸エステルを35部含有する厚さ
0.4mmの塩化ビニル樹脂シート中に、170℃に加
熱されたヒートシーラを用いて封入して最終製品を得
た。
<Exterior> The above sheet heating element has a degree of polymerization of 15
A vinyl chloride resin sheet having a thickness of 0.4 mm and containing 35 parts of a trimellitic acid ester as a plasticizer per 100 parts of a soft polyvinyl chloride resin of 00 was sealed with a heat sealer heated to 170 ° C. The final product was obtained.

【0051】[0051]

【性能試験】上記面状発熱体を各種性能試験に附した。
結果は以下のように極めて優れたものであった。 (耐屈折性試験−その1−)図5に示されるように、2
4番のピアノ線をしっかりと緊張し、125mm×15
0mm大の本実施例の面状発熱体及び比較例で示される
従来タイプの面状発熱体を、このピアノ線に接した状態
で屈折を繰り返した後、電極間の電気抵抗値を測定し
て、その耐久度を比較した。結果は次のとおりであっ
た。
[Performance test] The above-mentioned sheet heating element was subjected to various performance tests.
The results were extremely excellent as follows. (Refraction Resistance Test-Part 1-) As shown in FIG.
Firmly strain the 4th piano wire, 125mm x 15
The 0 mm-sized sheet heating element of the present example and the conventional sheet heating element shown in the comparative example were repeatedly refracted in a state of being in contact with the piano wire, and then the electric resistance value between the electrodes was measured. , And compared their durability. The results were as follows.

【0052】[0052]

【表1】 [Table 1]

【0053】(耐屈折性試験−その2−)本実施例の面
状発熱体をMIT耐屈折試験機を用いてJIS−P81
15の方法で−5℃以下で耐屈折性試験を行った。その
結果、5000回以上の折り曲げに耐えることが判っ
た。一方綿糸の太さが20番手で密度が1インチ当り8
0本の平織である綿布を用いた場合には1000回で塩
化ビニルフィルムにクラックが生じた。また、この2種
の面状発熱体の動的粘弾性を測定したところ貯蔵弾性率
は糸の太さが20番手で密度が1インチ当り50本の平
織の綿布を用いた場合は−5℃で8×109であったの
に対し、綿糸の太さが20番手で密度が1インチ当り8
0本の平織の綿布を用いた場合は−5℃で8×1010
高いことが判った。
(Refraction Resistance Test-Part 2-) The sheet heating element of this example was subjected to JIS-P81 using a MIT refraction resistance tester.
A refraction resistance test was conducted by the method of 15 at -5 ° C or lower. As a result, it was found that it can withstand bending more than 5000 times. On the other hand, the thickness of cotton thread is 20th and the density is 8 per inch.
When 0 plain weave cotton cloth was used, cracking occurred in the vinyl chloride film after 1000 cycles. Further, the dynamic viscoelasticity of these two kinds of sheet heating elements was measured, and the storage elastic modulus was −5 ° C. when a plain weave cotton cloth having a yarn count of 20 and a density of 50 yarns per inch was used. It was 8 × 10 9 while the thickness of cotton thread was 20th and the density was 8 per inch.
It was found that when 0 plain weave cotton cloth was used, it was as high as 8 × 10 10 at -5 ° C.

【0054】[0054]

【発熱特性及び電力効率試験】[Heat generation characteristics and power efficiency test]

実験概要 本発明の面状発熱体について、その発熱特性及び電力効
率を試験した。本試験は、本発明の面状発熱体を屋外で
使用することを想定し、特に厳しい使用条件下としての
道路下に埋設した状態下での発熱特性及び電力効率を今
後使用することを想定して基礎のために行った。
Experimental Outline The heat generation characteristics and power efficiency of the sheet heating element of the present invention were tested. This test assumes that the planar heating element of the present invention is used outdoors, and assumes future use of the heat generation characteristics and power efficiency under the condition of being buried under the road under particularly severe usage conditions. I went for the basics.

【0055】(1)供試体 長さ40、幅40cmの形状で、出力が40Wの面状発
熱体、及び線状発熱体を、その1面が露出するようにし
て断熱材(発泡スチロール)に埋め込んで供試体とし
た。その断面図を図6に示す。また線状発熱体に使用し
た電気ヒータの全長は2.25m、電気抵抗は0.08
325Ωである。電気ヒータの配置図を図7に示す。
(1) Specimen A planar heating element having a length of 40 and a width of 40 cm and an output of 40 W and a linear heating element are embedded in a heat insulating material (styrofoam) with one surface exposed. It was used as a specimen. The sectional view is shown in FIG. The electric heater used for the linear heating element has a total length of 2.25 m and an electric resistance of 0.08.
It is 325Ω. The layout of the electric heater is shown in FIG.

【0056】(2)試験条件 周囲温度:−10℃に保持した恒温室内に供試体を置い
た。 供給電力量(P):可変抵抗器にて調整して、供給電圧
(E0)が1.82V、供給電流(I0)が21.98A
とし、供給電力量を40Wに設定した。発熱体の設計出
力は250W/m2である。
(2) Test conditions Ambient temperature: The specimen was placed in a temperature-controlled room maintained at -10 ° C. Supply power amount (P): Adjusted by a variable resistor, supply voltage (E 0 ) is 1.82 V, supply current (I 0 ) is 21.98 A.
And the power supply amount was set to 40W. The design output of the heating element is 250 W / m 2 .

【0057】(3)測定 供試体を恒温室内に12時間置いて養生した後、発熱体
が40W(250w/m2)になるよう可変抵抗器にて
電圧を調整した後、入力後の経過時間に対して、周囲温
度、発熱体の温度、発熱体の電気出力量を測定し、記録
した。測定器及び記録計は、それぞれ3181デジタル
パワーハイテスタ(日置電機(株)製)、UCAM10
A(協和電業(株)製)である。測定器及び記録計の配
置及び配線を図8に示す。
(3) Measurement After the specimen was placed in a temperature-controlled room for 12 hours for curing, the voltage was adjusted with a variable resistor so that the heating element was 40 W (250 w / m 2 ), and the elapsed time after input The ambient temperature, the temperature of the heating element, and the electric output of the heating element were measured and recorded. 3181 Digital Power HiTester (manufactured by Hioki Electric Co., Ltd.), UCAM10
A (manufactured by Kyowa Denki Co., Ltd.). The layout and wiring of the measuring instrument and recorder are shown in FIG.

【0058】(4)測定結果 測定結果を表2に示す。また表2の結果を図9〜図12
のグラフで示す。
(4) Measurement Results Table 2 shows the measurement results. The results of Table 2 are shown in FIGS.
Is shown in the graph.

【0059】[0059]

【表2】 [Table 2]

【0060】さらにこれらの試験結果は、400分経過
時点で面状発熱体及び線状発熱体のデータが表3のよう
に纏められる。
Further, these test results are summarized in Table 3 as data of the planar heating element and the linear heating element at the time when 400 minutes have elapsed.

【0061】[0061]

【表3】 また、舗装表面温度と、発熱体と密粒アスコンの界面と
の温度差は、次のとおりであった。 面状発熱体 16.9−8.9=8.0℃ 線状発熱体 2.9−(−0.3)=3.2℃
[Table 3] The temperature difference between the pavement surface temperature and the interface between the heating element and the dense-grained ascon was as follows. Sheet heating element 16.9−8.9 = 8.0 ° C. Linear heating element 2.9 − (− 0.3) = 3.2 ° C.

【0062】これら結果を踏まえ、発熱体の違いによる
熱効率を検討した。即ち、供試体が吸収したエネルギー
(W)は、次式によって表される。 W=CM△t (ここで W:吸収したエネルギー(cal)、 C:供試体の比熱 (cal/g・℃)、 M:供試体重量 (g)、 △t:上昇した温度 (℃))により、また、熱効
率(η)は、次式によって表される。
Based on these results, the thermal efficiency due to the difference in the heating element was examined. That is, the energy (W) absorbed by the sample is expressed by the following equation. W = CMΔt (W: absorbed energy (cal), C: specific heat of the specimen (cal / g · ° C), M: weight of the specimen (g), Δt: elevated temperature (° C)) And the thermal efficiency (η) is expressed by the following equation.

【0063】 (ここで、W1は外部にした仕事、Jは熱の仕事量、Q
は熱源からの熱量を、それぞれ表わす) 上記面状発熱体の熱効率(η1)と線状発熱体の熱効率
(η2)の比率は、重量、比熱、仕事は同一と考えると
温度の比率に置き変えることができ、即ち、両者の比は
次のように算出される。
[0063] (W1 is work done outside, J is work of heat, Q
Represents the amount of heat from the heat source.) The ratio of the thermal efficiency (η 1 ) of the planar heating element to the thermal efficiency (η 2 ) of the linear heating element is the temperature ratio, assuming that weight, specific heat and work are the same. It can be replaced, that is, the ratio of the two is calculated as follows.

【0064】 この結果、本発明の面状発熱体は線状発熱体に比べ、熱
効率で約58%低減される、という驚くべき優れたもの
であることが判明した。また、本発明の面状発熱体で
は、表面温度とアスコンの温度差が大きく、アスコンに
蓄熱される量が線状発熱体に比べて多い。これは、例え
ば寒冷地での冬期における実際の道路凍結状態及び昼夜
間の温度差変化の実態、即ち、舗装道路における遅い伝
熱速度及び大熱容量、を考慮すると、大きな利点の一つ
ということができる。
[0064] As a result, it was found that the planar heating element of the present invention is surprisingly excellent in that the thermal efficiency is reduced by about 58% as compared with the linear heating element. Further, in the planar heating element of the present invention, the surface temperature and the temperature difference between the ascon are large, and the amount of heat stored in the ascon is larger than that of the linear heating element. This is one of the great advantages in consideration of the actual conditions of road freezing in winter and the temperature difference change between day and night in cold regions, that is, the slow heat transfer rate and large heat capacity on paved roads. it can.

【0065】[0065]

【発明の効果】以上詳細かつ具体的に説明したように、
本発明によれば、苛酷な使用件下での長期使用に耐え、
熱効率に優れ、かつ現実的な融雪、融氷等の使用態様下
において特に著しい利便性を呈する可撓性面状発熱体及
びその製造方法が提供されるという効果が奏される。
As described above in detail and concretely,
According to the present invention, it withstands long-term use under severe usage conditions,
An effect is provided that a flexible planar heating element that has excellent thermal efficiency and that exhibits particularly remarkable convenience under realistic usage conditions such as snow melting and ice melting, and a method for manufacturing the same are provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の面状発熱体における導電性塗料のタマリ
を説明する図である。
FIG. 1 is a diagram illustrating a summary of a conductive coating material in a conventional sheet heating element.

【図2】従来の面状発熱体を形成する素材の一例を示す
図である。
FIG. 2 is a diagram showing an example of a material forming a conventional sheet heating element.

【図3】従来の面状発熱体の下地布帛の一例を説明する
図である。
FIG. 3 is a diagram illustrating an example of a base fabric of a conventional sheet heating element.

【図4】本発明の面状発熱体を形成する複合糸の一例を
説明する図である。
FIG. 4 is a diagram illustrating an example of a composite yarn forming the sheet heating element of the present invention.

【図5】本発明の面状発熱体の耐久試験法を示す図であ
る。
FIG. 5 is a diagram showing a durability test method for the sheet heating element of the present invention.

【図6】本発明の面状発熱体の発熱特性及び電力効率試
験の供試体を示す図である。
FIG. 6 is a view showing a heat generation characteristic of the sheet heating element of the present invention and a test piece for a power efficiency test.

【図7】本発明の面状発熱体の発熱特性及び電力効率試
験において比較された線状発熱体の電気ヒータの配置を
示す図である。
FIG. 7 is a diagram showing the heat generation characteristics of the planar heating element of the present invention and the arrangement of electric heaters of linear heating elements compared in a power efficiency test.

【図8】本発明の面状発熱体の発熱特性及び電力効率試
験において使用した測定器及び記録計の配置及び配線を
示す図である。
FIG. 8 is a diagram showing the arrangement and wiring of a measuring device and a recorder used in a heat generation characteristic and power efficiency test of the planar heating element of the present invention.

【図9】本発明の面状発熱体の性能を示すグラフであ
る。
FIG. 9 is a graph showing the performance of the sheet heating element of the present invention.

【図10】本発明の面状発熱体の性能を示すグラフであ
る。
FIG. 10 is a graph showing the performance of the sheet heating element of the present invention.

【図11】本発明の面状発熱体の性能を示すグラフであ
る。
FIG. 11 is a graph showing the performance of the sheet heating element of the present invention.

【図12】本発明の面状発熱体の性能を示すグラフであ
る。
FIG. 12 is a graph showing the performance of the sheet heating element of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 両端部に帯状の電極部と、該両電極部の
間に発熱部を有する面状発熱体において、前記電極部と
前記発熱部とが1枚の下地布帛の上に形成されており、
前記発熱部の下地布帛は綿糸で編組されており、前記電
極部の下地布帛は、前記発熱部の下地布帛から連続する
綿糸に金属単合糸と綿単合糸とを混撚してなる複合糸が
織り込こまれており、かつ、前記電極部における下地布
帛が、前記発熱部における金属単合糸と綿単合糸とを混
撚してなる複合糸が織り込こまれた後の下地布帛とほぼ
同程度の厚さ及びほぼ同程度の柔軟性を有することを特
徴とする面状発熱体。
1. A planar heating element having strip-shaped electrode parts at both ends and a heating part between the electrode parts, wherein the electrode part and the heating part are formed on one base cloth. And
The base fabric of the heat generating part is braided with cotton yarn, and the base fabric of the electrode part is a composite yarn obtained by mixing and twisting a metal single yarn and a cotton single yarn with a cotton yarn continuous from the base fabric of the heat generating part. And a base fabric in the electrode portion, and a base fabric after the composite yarn formed by mixing and twisting the metal single yarn and the cotton single yarn in the heat generating portion is woven. A planar heating element having substantially the same thickness and substantially the same flexibility.
【請求項2】 前記複合糸が、直径が0.001〜0.
1mmの銅及び/又はアルミニウムの単合糸3本〜9本
と10〜50番手の綿単合糸1本〜3本からなる撚糸で
あることを特徴とする請求項1記載の面状発熱体。
2. The composite yarn has a diameter of 0.001 to 0.
The sheet heating element according to claim 1, which is a twisted yarn composed of 3 to 9 single-mm composite yarns of 1 mm of copper and / or aluminum and 1 to 3 single cotton composite yarns of 10 to 50 count. .
【請求項3】 前記複合糸が、直径が0.001〜0.
1mmの鋼及び/又はステンレス鋼の単合糸1本〜8本
と10〜50番手の綿単合糸1本〜3本からなる撚糸で
あることを特徴とする請求項1記載の面状発熱体。
3. The composite yarn has a diameter of 0.001 to 0.
The sheet-like heat generation according to claim 1, which is a twisted yarn consisting of 1 to 8 single-mm composite yarns of 1 mm steel and / or stainless steel and 1 to 3 cotton single-composite yarns of 10 to 50 count. body.
【請求項4】 前記綿単合糸のインチ間撚数T1と番手
N1との間に、T1≦K1√N1(ただし、K1は撚係
数であり、1.5〜5.0である)の関係があり、前記
複合糸のインチ間撚数T2と番手N2との間に、T2≦
K2√N2(ただし、K2は撚係数であり、0.01〜
3.0である)の関係があることを特徴とする請求項1
記載、請求項2記載又は請求項3記載の面状発熱体。
4. T1 ≦ K1√N1 (where K1 is a twist coefficient and is 1.5 to 5.0) between the number of twists T1 between inches T1 and the count N1 of the single cotton composite yarn. There is a relationship between the number of twists per inch T2 of the composite yarn and the number N2, and T2 ≦
K2√N2 (where K2 is the twisting coefficient, 0.01-
3.0).
The sheet heating element according to claim 2, claim 2 or claim 3.
【請求項5】 両端部に付設した帯状の電極部と、該両
電極部の間に付設した発熱部とからなる面状発熱体の製
造方法において、前記電極部と前記発熱部を1枚の下地
布帛の上に形成し、前記発熱部の下地布帛は綿糸を編組
し、前記電極部の下地布帛は、前記発熱部の下地布帛か
ら連続する綿糸に金属単合糸と綿単合糸とを混撚してな
る複合糸を織り込み、かつ、前記発熱部の下地布帛とほ
ぼ同程度の厚さ及びほぼ同程度の柔軟性を有するように
編組することによって一枚の下地布帛に電極部と発熱部
とを区分して織成する工程と、前記下地布帛の全面を導
電性塗料で被覆する工程と、電極部に電源接続線を付設
する工程とを含むことを特徴とする請求項1記載の面状
発熱体の製造方法。
5. A method for manufacturing a planar heating element comprising strip-shaped electrode portions attached to both end portions and a heat generating portion attached between both electrode portions, wherein the electrode portion and the heat generating portion are formed as one sheet. It is formed on a base fabric, the base fabric of the heat generating portion is braided with cotton yarn, and the base fabric of the electrode portion is a continuous metal yarn from the base fabric of the heat generating portion made of a metal single yarn and a cotton single yarn. An electrode part and a heat generating part are formed on one base cloth by weaving a mixed yarn formed by mixing and twisting and braiding so as to have substantially the same thickness and substantially the same flexibility as the base cloth of the heat generating part. 2. The surface according to claim 1, further comprising: a step of weaving separately from each other, a step of covering the entire surface of the base cloth with a conductive paint, and a step of attaching a power source connecting wire to an electrode part. Of producing a heating element.
【請求項6】 電極部に電源接続線を付設する工程の次
に、軟質塩化ビニルシート中に面状発熱体をヒートシー
ラを用いて封入する工程を含むことを特徴とする請求項
5記載の面状発熱体の製造方法。 【0001】
6. The surface according to claim 5, further comprising a step of enclosing a sheet heating element in a soft vinyl chloride sheet with a heat sealer after the step of attaching a power source connecting wire to the electrode portion. Of producing a heating element. [0001]
JP15554695A 1995-05-31 1995-05-31 Flat heater element and manufacture thereof Pending JPH08330054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15554695A JPH08330054A (en) 1995-05-31 1995-05-31 Flat heater element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15554695A JPH08330054A (en) 1995-05-31 1995-05-31 Flat heater element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08330054A true JPH08330054A (en) 1996-12-13

Family

ID=15608431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15554695A Pending JPH08330054A (en) 1995-05-31 1995-05-31 Flat heater element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08330054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230133431A (en) * 2022-03-11 2023-09-19 김택종 A PTC heating film with improved energy efficiency and manufacturing methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230133431A (en) * 2022-03-11 2023-09-19 김택종 A PTC heating film with improved energy efficiency and manufacturing methods thereof

Similar Documents

Publication Publication Date Title
US5422462A (en) Electric heating sheet
US6452138B1 (en) Multi-conductor soft heating element
US20030178414A1 (en) Knitted thermal textile
TW200925344A (en) Electric heating fabric device
JP5752821B1 (en) Planar heating element
US20090095735A1 (en) Flexible heating weave
CN103959898B (en) Cloth-like heater
KR102014837B1 (en) Method for making flexible composite net heater
JP2013191551A (en) Planar heating element, manufacturing method therefor, and electrode for planar heating element
CN201967157U (en) Flexible heating component
JP2004319493A (en) Heater device of low cost composed of conductive filler-filled resin group material
US20240101851A1 (en) Thermal substrate with high-resistance magnification and positive temperature coefficient ink
WO1991014352A1 (en) Electrical heating element for use in a personal comfort device
JPH08330054A (en) Flat heater element and manufacture thereof
JPH1140329A (en) Flat heating body
KR102090192B1 (en) Heating fabric
KR100689990B1 (en) Net-type line surface heater
JP5615656B2 (en) Planar heating element
US20040035854A1 (en) Electric heating wire and applications thereof
JP5845038B2 (en) Planar heating element
KR101545699B1 (en) Pad against the cold using Heating thread
KR200435898Y1 (en) flat type pyrogen using with conducted yarn
WO1998001009A1 (en) Electrically-heated, flexible and stretchable, shaped fabric
JP7475756B1 (en) Heater wire support substrate
RU2543966C2 (en) Flexible heating element