JPH08329984A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH08329984A
JPH08329984A JP7135281A JP13528195A JPH08329984A JP H08329984 A JPH08329984 A JP H08329984A JP 7135281 A JP7135281 A JP 7135281A JP 13528195 A JP13528195 A JP 13528195A JP H08329984 A JPH08329984 A JP H08329984A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
positive electrode
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7135281A
Other languages
Japanese (ja)
Inventor
Kensuke Yoshida
賢介 吉田
Tamotsu Yamamoto
保 山本
Isao Watanabe
勲 渡辺
Masami Tsutsumi
正己 堤
Tsutomu Miyashita
勉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7135281A priority Critical patent/JPH08329984A/en
Publication of JPH08329984A publication Critical patent/JPH08329984A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To prevent break of a negative electrode at the time of charging and discharging, to enlarge the capacity of a battery, and to facilitate the manufacture of the battery by using the positive electrode active material which includes lithium in a positive electrode, and using a metal which can not be combined with lithium as a negative electrode. CONSTITUTION: In the positive electrode, the lithium included positive electrode active material such as charcogers material containing lithium is used. As a negative electrode, a metal such as nickel, copper, molybdenum, or the alloy thereof, which can not be combined with lithium, is used. Since these metals are used for the negative electrode, deterioration of strength of the negative electrode material due to charging and discharging is prevented, and the quantity of the positive electrode active material is increased by the volume of the negative electrode active material at the excessive quantity to enlarge the capacity of the battery. Surface treatment such as polishing of these metal for negative electrode is easier in comparison with the metal lithium, and since the metal lithium is not used for the negative electrode, an equipment for storing the metal lithium in the high dry atmosphere is unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池に
関する。更に詳しくは、本発明は、二次電池作成時に正
極がリチウムを含有する正極活物質を有し、負極がリチ
ウムと合金化しない金属からなる優れた電池容量を一定
の充放電サイクル内で実現した非水電解質二次電池に関
する。
FIELD OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention realizes an excellent battery capacity in which a positive electrode has a positive electrode active material containing lithium and a negative electrode is made of a metal that does not alloy with lithium within a certain charge / discharge cycle when a secondary battery is manufactured. The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウムを負極活物質とする負極と、金
属の酸化物、硫化物又は塩化物、或いはハロゲンの炭素
化合物等を正極活物質とする正極と、プロピレンカーボ
ネート、エチレンカーボネート、ジメトキシエタン等の
有機溶媒に過塩素酸リチウム、ホウフッ化リチウム等の
無機塩を溶解した非水系の電解液(イオン導電体)とを
備えた非水電解質二次電池は、他の二次電池に比べて、
電圧が高い、エネルギー密度が高い等の利点を有してい
る。そこで、電子機器の小型化に伴い、リチウムを負極
活物質として用いる非水電解質二次電池が注目されてい
る。
2. Description of the Related Art A negative electrode using lithium as a negative electrode active material, a positive electrode using a metal oxide, sulfide or chloride, or a carbon compound of halogen, etc. as a positive electrode active material, propylene carbonate, ethylene carbonate, dimethoxyethane, etc. Lithium perchlorate in an organic solvent, a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution (ion conductor) in which an inorganic salt such as lithium borofluoride is dissolved, compared to other secondary batteries,
It has advantages such as high voltage and high energy density. Therefore, non-aqueous electrolyte secondary batteries using lithium as a negative electrode active material have been attracting attention as electronic devices have been downsized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、金属リ
チウムやリチウム合金は高い反応性を有し、この高い反
応性がリチウムを負極活物質とする非水電解質二次電池
の実用化の障害となっている。すなわち、金属リチウム
やリチウム合金を負極活物質に用いた非水電解質二次電
池は、その表面に炭酸化物や窒化物の不均一な被膜を形
成しやすく、負極活物質としてのリチウムの一様な溶解
析出の妨げとなっている。
However, metallic lithium and lithium alloys have a high reactivity, and this high reactivity hinders the practical application of a non-aqueous electrolyte secondary battery using lithium as a negative electrode active material. There is. That is, a non-aqueous electrolyte secondary battery using metallic lithium or a lithium alloy as a negative electrode active material is likely to form a non-uniform coating film of carbonate or nitride on the surface of the non-aqueous electrolyte secondary battery. It hinders dissolution and precipitation.

【0004】そのため、充放電サイクルの進行に伴って
負極表面にはデンドライトと呼ばれる樹枝状の析出物を
生じる。このデンドライトは内部短絡を引き起こした
り、可逆性が低く電池容量を低下させる。更に、リチウ
ムの溶解析出が容易に起こる電流集中部でのデンドライ
トの発生が負極強度の低下を招き、その結果負極が破断
してしまう。
Therefore, dendritic deposits called dendrites are formed on the surface of the negative electrode as the charge / discharge cycle progresses. This dendrite causes an internal short circuit, has low reversibility, and reduces battery capacity. Further, dendrites are generated in the current concentrating portion where dissolution and precipitation of lithium easily occur, leading to a decrease in the strength of the negative electrode, resulting in breakage of the negative electrode.

【0005】このような現象は、充放電サイクルに伴い
電池容量を低下させる。この電池容量の低下を防ぐ手段
としては、負極活物質を正極の電気容量に対して数倍
(通常3倍)過剰に入れる方法が考えられている。ま
た、負極の破断を防ぐ手段としては、リチウムと合金化
しない金属箔の集電体上にリチウムを圧着する方法が考
えられている。
Such a phenomenon reduces the battery capacity with charge / discharge cycles. As a means for preventing the decrease in the battery capacity, a method of adding a negative electrode active material in excess of several times (usually three times) the electric capacity of the positive electrode is considered. Further, as a means for preventing the breakage of the negative electrode, a method in which lithium is pressure-bonded onto a current collector of a metal foil that does not alloy with lithium has been considered.

【0006】しかしながら、上記過剰量の負極活物質と
集電体は、電池内で無駄な容積を占有することになり、
電池容量を低下させていた。更には、リチウムやリチウ
ム合金は水分と反応しやすいので、これらの保存時及び
これらを負極活物質に用いた非水電解質二次電池の製造
時には高乾燥雰囲気が必要であった。
However, the excessive amount of the negative electrode active material and the current collector occupy a useless volume in the battery,
It was reducing the battery capacity. Furthermore, since lithium and lithium alloys easily react with water, a high dry atmosphere was required during storage of these and production of a non-aqueous electrolyte secondary battery using them as a negative electrode active material.

【0007】[0007]

【課題を解決するための手段】本発明者らは、非水電解
質二次電池において、二次電池作成時に正極がリチウム
を含有する正極活物質を有することで、負極にリチウム
を用いることなく、負極にリチウムを用いた電池より優
れた電池容量を持つ電池を得ることができることを見出
し、本発明に至った。
Means for Solving the Problems In the non-aqueous electrolyte secondary battery, the present inventors have stated that the positive electrode has a positive electrode active material containing lithium at the time of making the secondary battery, so that lithium is not used in the negative electrode. The inventors have found that a battery having a battery capacity superior to that of a battery using lithium for the negative electrode can be obtained, and completed the present invention.

【0008】すなわち、本発明によれば、正極、負極及
び電解質からなる二次電池であって、二次電池作成時に
正極がリチウムを含有する正極活物質を有し、負極がリ
チウムと合金化しない金属からなることを特徴とする非
水電解質二次電池が提供される。本発明に使用できる負
極は、リチウムと合金化しない金属からなり、具体的に
は、ニッケル、銅、モリブデンから選択される単体金
属、又はそれらの金属から複数選択される合金が挙げら
れる。負極の厚さは通常70μmである。また、負極
は、必要に応じてアルミニウム、銅等の金属からなる負
極集電体上に形成されていてもよい。負極及び負極集電
体の形状は、特に限定されず、例えば、シート状等が挙
げられる。
That is, according to the present invention, a secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode has a positive electrode active material containing lithium when the secondary battery is prepared, and the negative electrode does not alloy with lithium. A non-aqueous electrolyte secondary battery comprising a metal is provided. The negative electrode that can be used in the present invention is made of a metal that does not alloy with lithium, and specific examples thereof include simple metals selected from nickel, copper, and molybdenum, or alloys selected from a plurality of these metals. The thickness of the negative electrode is usually 70 μm. Further, the negative electrode may be formed on a negative electrode current collector made of a metal such as aluminum or copper, if necessary. The shape of the negative electrode and the negative electrode current collector is not particularly limited, and examples thereof include a sheet shape.

【0009】このリチウムと合金化しない金属は、金属
リチウムでは困難な表面加工(研磨等)が容易である。
したがって、リチウムと合金化しない金属の表面を加工
した負極を用いた非水電解質二次電池は、負極にリチウ
ムを用いた場合に比べ、リチウムの溶解析出を均一にし
やすい。また、合金化しやすい材料を負極とした場合に
は、リチウムの吸蔵・放出に伴う負極の強度劣化が問題
とされており、リチウムと合金化しにくい金属を負極と
することで負極の破断を防ぐことが可能となる。
This metal that does not form an alloy with lithium is easily subjected to surface processing (polishing, etc.) which is difficult with metallic lithium.
Therefore, the non-aqueous electrolyte secondary battery using the negative electrode in which the surface of a metal that does not alloy with lithium is used is more likely to make the dissolution and precipitation of lithium more uniform than when using lithium for the negative electrode. In addition, when a material that is easily alloyed is used as the negative electrode, strength deterioration of the negative electrode due to absorption and desorption of lithium is a problem, and the metal that is difficult to alloy with lithium is used as the negative electrode to prevent breakage of the negative electrode. Is possible.

【0010】更には、負極に金属リチウムを用いないた
め、リチウム保存用の高乾燥雰囲気の設備が不要とな
り、電池製造が容易になる。本発明に使用できる正極
は、例えば、正極活物質、導電剤及び結着剤の混合物か
らなる。正極の厚さは通常40μmである。また、正極
は、必要に応じてアルミニウム、銅等の金属からなる正
極集電体上に形成されていてもよい。正極集電体の形状
は、特に限定されず、例えば、シート状等が挙げられ
る。また、正極の形成方法は、例えば、シート状集電体
に前記混合物を塗布した後、プレスする方法等が挙げら
れるが、この方法に限定されない。
Furthermore, since metallic lithium is not used for the negative electrode, equipment for storing lithium in a highly dry atmosphere is not required, which facilitates battery production. The positive electrode that can be used in the present invention comprises, for example, a mixture of a positive electrode active material, a conductive agent and a binder. The thickness of the positive electrode is usually 40 μm. Further, the positive electrode may be formed on a positive electrode current collector made of a metal such as aluminum or copper, if necessary. The shape of the positive electrode current collector is not particularly limited, and examples thereof include a sheet shape. The method for forming the positive electrode may be, for example, a method in which the sheet-shaped current collector is coated with the mixture and then pressed, but is not limited to this method.

【0011】正極活物質は、二次電池作成時に活物質の
リチウムを含有しているものを使用する。例えば、リチ
ウムを含有するカルコゲン化物等が挙げられる。具体的
には、LiCoO2 、LiNiO2 、LiMnO2 等の
カルコゲン化合物が挙げられるが、これに限定されるも
のではない。導電剤は、正極の導電率を補う機能を有
し、アセチレンブラック等が使用できるが、これに限定
されない。
As the positive electrode active material, one containing lithium as an active material at the time of making a secondary battery is used. For example, a chalcogenide containing lithium and the like can be mentioned. Specific examples thereof include chalcogen compounds such as LiCoO 2 , LiNiO 2 , and LiMnO 2 , but the invention is not limited thereto. The conductive agent has a function of supplementing the conductivity of the positive electrode, and acetylene black or the like can be used, but is not limited thereto.

【0012】結着剤は、正極活物質及び導電剤を接着す
る機能を有し、テフロン樹脂、エチレン−プロピレン−
ジエン三元共重合体等が挙げられるが、これらに限定さ
れない。本発明に使用できる電解質は、固体電解質又は
非水系溶媒に溶解した電解質(電解液)が使用できる。
The binder has a function of adhering the positive electrode active material and the conductive agent, and is made of Teflon resin, ethylene-propylene-
Examples thereof include, but are not limited to, a diene terpolymer. As the electrolyte that can be used in the present invention, a solid electrolyte or an electrolyte (electrolyte solution) dissolved in a non-aqueous solvent can be used.

【0013】固体電解質としては、例えば、ポリエチレ
ンオキサイド(PEO)等が挙げられる。また、非水系
溶媒としては、例えば、エチレンカーボネート、プロピ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、ジメトキシエタン、テトラヒドロフラン等
が挙げられ、これらを1種又は2種以上混合して使用す
ることができる。
Examples of the solid electrolyte include polyethylene oxide (PEO) and the like. In addition, examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, and tetrahydrofuran, and these can be used alone or in combination of two or more.

【0014】上記非水系溶媒に溶解される電解質として
は、例えば、過塩素酸リチウム、ホウフッ化リチウム、
六フッ化砒素リチウム、六フッ化リンリチウム等が挙げ
られ、これらを1種又は2種以上混合して使用すること
ができる。特に好ましいイオン導電体は、エチレンカー
ボネートとジメチルカーボネートの1:1(体積比)混
合溶液からなる非水系溶媒に、濃度が1mol/リット
ルになるように六フッ化砒素リチウムを溶解した電解液
である。
As the electrolyte dissolved in the non-aqueous solvent, for example, lithium perchlorate, lithium borofluoride,
Examples thereof include lithium arsenic hexafluoride and lithium phosphorus hexafluoride, which may be used alone or in combination of two or more. A particularly preferable ionic conductor is an electrolytic solution prepared by dissolving lithium arsenic hexafluoride in a non-aqueous solvent composed of a mixed solution of ethylene carbonate and dimethyl carbonate at a ratio of 1: 1 (volume ratio) to a concentration of 1 mol / liter. .

【0015】本発明の非水電解質二次電池は、正極と負
極との間に、イオン導電体の保持のため及び正極と負極
の短絡を防止するためにセパレーターを設けてもよい。
セパレーターの材質は、電解液に溶かされず、加工が容
易な絶縁物であれば特に限定されない。具体的には、多
孔質ポリプロピレン、多孔質ポリエチレン等が挙げられ
る。
In the non-aqueous electrolyte secondary battery of the present invention, a separator may be provided between the positive electrode and the negative electrode to retain the ionic conductor and prevent a short circuit between the positive electrode and the negative electrode.
The material of the separator is not particularly limited as long as it is an insulator that is not dissolved in the electrolytic solution and is easily processed. Specific examples thereof include porous polypropylene and porous polyethylene.

【0016】本発明の非水電解質二次電池の形状は、円
筒型、角形、ボタン型、シート型等、いずれでもよい。
特にシート状に形成した電極を巻回又はつづら折りした
円筒型又は角形が好ましいが、これに限定されるもので
はない。また非水電解質二次電池の形成方法は、特に限
定されず、公知の方法にて製造することができる。例え
ば、本発明の非水電解質二次電池として、図1に示す円
筒型の非水電解質二次電池が挙げられる。図1の二次電
池の形成方法を簡単に説明すると、正極リード4を有す
る正極1、セパレーター3及び負極リード5を有する負
極2からなるシートをセンターピン11に巻き付け、こ
れを負極缶7内に設置する。ここで負極リード5はイン
シュレーター10を介して負極缶7に接続されている。
この負極缶7を、安全弁8及びガスケット9を有する正
極蓋6で密閉することにより図1の円筒型電池が形成さ
れる。なお、正極リード4はインシュレーター10を介
して正極蓋6に接続されている。
The shape of the non-aqueous electrolyte secondary battery of the present invention may be any of cylindrical type, prismatic type, button type, sheet type and the like.
In particular, a cylindrical shape or a rectangular shape in which a sheet-shaped electrode is wound or folded is preferable, but the present invention is not limited to this. The method for forming the non-aqueous electrolyte secondary battery is not particularly limited, and the non-aqueous electrolyte secondary battery can be manufactured by a known method. For example, the non-aqueous electrolyte secondary battery of the present invention includes the cylindrical non-aqueous electrolyte secondary battery shown in FIG. Briefly explaining the method of forming the secondary battery of FIG. 1, a sheet composed of the positive electrode 1 having the positive electrode lead 4, the separator 3 and the negative electrode 2 having the negative electrode lead 5 is wound around the center pin 11 and placed in the negative electrode can 7. Install. Here, the negative electrode lead 5 is connected to the negative electrode can 7 via the insulator 10.
By sealing this negative electrode can 7 with a positive electrode lid 6 having a safety valve 8 and a gasket 9, the cylindrical battery of FIG. 1 is formed. The positive electrode lead 4 is connected to the positive electrode lid 6 via the insulator 10.

【0017】[0017]

【作用】本発明の非水電解質二次電池は、二次電池作成
時に正極がリチウムを含有する正極活物質を有し、負極
がリチウムと合金化しない金属からなることを特徴とす
るので、充放電に伴う負極材料の強度劣化がなく、負極
の破断が防止される。また、従来の非水電解質二次電池
において過剰分の負極で占められていた容積分だけ正極
活物質を増量できるので、同容積で電池容量の大きな非
水電解質二次電池が得られる。
The non-aqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode has a positive electrode active material containing lithium and the negative electrode is made of a metal that does not alloy with lithium when the secondary battery is prepared. The strength of the negative electrode material does not deteriorate due to discharge, and the negative electrode is prevented from breaking. Further, since the positive electrode active material can be increased by the volume occupied by the excess negative electrode in the conventional non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having the same volume and a large battery capacity can be obtained.

【0018】更には、金属リチウムを用いないため、リ
チウム保存時及び電池製造時に必要とされる高乾燥雰囲
気の設備が不要となる。
Furthermore, since metallic lithium is not used, equipment for a highly dry atmosphere, which is required for storing lithium and for manufacturing batteries, is not required.

【0019】[0019]

【実施例】【Example】

(実施例1)正極活物質であるLiCoO2 、導電剤と
してのアセチレンブラック及び結着剤としてのテフロン
樹脂を重量比で6:1:1の割合で混合した。集電体と
して機能する厚さ20μmのアルミニウムシート(面積
25×400mm2 )上に混合物を塗布、プレスして正
極1を作成した。更に、正極1に正極リード4を配設し
た。
Example 1 LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, and Teflon resin as a binder were mixed at a weight ratio of 6: 1: 1. The positive electrode 1 was prepared by applying the mixture onto an aluminum sheet (area 25 × 400 mm 2 ) having a thickness of 20 μm that functions as a current collector and pressing the mixture. Further, the positive electrode lead 4 was arranged on the positive electrode 1.

【0020】負極2は、厚さ10μmのニッケルシート
(面積30×400mm2 )とし、負極リード5を配設
した。イオン導電体(電解液)は、エチレンカーボネー
トとジメチルカーボネートの1:1(体積比)混合溶液
からなる非水系溶媒に、濃度が1mol/リットルにな
るように六フッ化砒素リチウムを溶解することにより調
整した。
The negative electrode 2 was a nickel sheet (area 30 × 400 mm 2 ) having a thickness of 10 μm, and the negative electrode lead 5 was arranged on the sheet. The ionic conductor (electrolyte solution) is prepared by dissolving lithium arsenic hexafluoride in a non-aqueous solvent consisting of a mixed solution of ethylene carbonate and dimethyl carbonate at a ratio of 1: 1 (volume ratio) to a concentration of 1 mol / liter. It was adjusted.

【0021】次いで、正極1と負極2をポリプロピレン
製多孔質セパレーター3を介して合わせ、セパレーター
3に電解液を含浸させ、シート状の二次電池を得た。得
られたシート状の電池を巻回し、これを負極缶7内に収
め、負極リード5をインシュレーター10を介して負極
缶7に接続した。次いで、この負極缶7を安全弁8及び
ガスケット9を有する正極蓋6で密閉することにより、
図1に示すような体積8ccの円筒型非水電解質二次電
池を作成した。なお、正極リード4はインシュレーター
10を介して正極蓋6に接続した。
Next, the positive electrode 1 and the negative electrode 2 were put together through a polypropylene porous separator 3 and the separator 3 was impregnated with an electrolytic solution to obtain a sheet-shaped secondary battery. The obtained sheet-shaped battery was wound, housed in the negative electrode can 7, and the negative electrode lead 5 was connected to the negative electrode can 7 via the insulator 10. Next, by sealing this negative electrode can 7 with a positive electrode lid 6 having a safety valve 8 and a gasket 9,
A cylindrical non-aqueous electrolyte secondary battery having a volume of 8 cc as shown in FIG. 1 was prepared. The positive electrode lead 4 was connected to the positive electrode lid 6 via the insulator 10.

【0022】この実施例1の円筒型非水電解質二次電池
の正極容積、正極集電体容積、負極容積及びその他の容
積(ここで、その他の容積とはセパレーター、安全弁、
ガスケット等の容積を意味する)を、正極容量及び負極
容量と共に表1に示す。得られた電池について、充放電
サイクル試験により電池寿命を評価した。条件は、充放
電電流450mA、電圧範囲4.2〜3.0Vの定電流
放電とした。
The positive electrode volume, the positive electrode current collector volume, the negative electrode volume and other volumes of the cylindrical non-aqueous electrolyte secondary battery of this Example 1 (here, other volumes are separator, safety valve,
Table 1 shows the volume of the gasket and the like) together with the positive electrode capacity and the negative electrode capacity. The battery life of the obtained battery was evaluated by a charge / discharge cycle test. The conditions were constant current discharge with a charge / discharge current of 450 mA and a voltage range of 4.2 to 3.0V.

【0023】この結果、電池の放電容量は、初期700
mAh、30サイクル後520mAh、60サイクル後
390mAhであった。その結果を表2に示す。 (比較例1)負極は、アルゴンガス置換されたグローブ
ボックスに保管しておいた厚さ72μmの金属リチウム
(面積30×400mm2 )を用い、負極容量が正極容
量の3倍となるように正極容積及び負極容積を決定し
た。その他の条件は実施例1と同様にして、非水電解質
二次電池を作成した。比較例1の二次電池の正極容積及
び負極容積を、正極容量及び負極容量と共に表1に示
す。尚、他の容積は実施例1と同様とした。
As a result, the discharge capacity of the battery was 700
mAh was 520 mAh after 30 cycles and 390 mAh after 60 cycles. The results are shown in Table 2. (Comparative Example 1) As the negative electrode, metal lithium (area: 30 x 400 mm 2 ) having a thickness of 72 µm stored in a glove box replaced with argon gas was used, and the negative electrode capacity was set to 3 times the positive electrode capacity. The volume and the negative electrode volume were determined. Other conditions were the same as in Example 1 to prepare a non-aqueous electrolyte secondary battery. Table 1 shows the positive electrode volume and the negative electrode volume of the secondary battery of Comparative Example 1 together with the positive electrode capacity and the negative electrode capacity. The other volumes were the same as in Example 1.

【0024】得られた電池について、充放電サイクル試
験により電池寿命を評価した。この結果、電池の放電容
量は、初期540mAh、30サイクル後510mA
h、60サイクル後20mAhで、60サイクル後で大
きく低下した。各サイクルの充放電容量を表2示す。 (比較例2)負極は、負極集電体としての厚さ10μm
のニッケルシート(面積30×400mm2 )上にリチ
ウムを圧着したものを用い、負極集電体であるニッケル
シートの容積を除いて、負極容量が正極容量の3倍とな
るように正極容積及び負極容積を決定した。その他の条
件は実施例1と同様にして、非水電解質二次電池を作成
した。比較例2の二次電池の正極容積、負極容積及び負
極集電体容積を、正極容量及び負極容量と共に表1に示
す。尚、他の容積は実施例1と同様とした。
The battery life of the obtained battery was evaluated by a charge / discharge cycle test. As a result, the discharge capacity of the battery was 540 mAh at the beginning and 510 mA after 30 cycles.
h, 20 mAh after 60 cycles and a significant decrease after 60 cycles. Table 2 shows the charge / discharge capacity of each cycle. Comparative Example 2 The negative electrode has a thickness of 10 μm as a negative electrode current collector.
Using a nickel sheet (area: 30 × 400 mm 2 ) on which lithium was pressure-bonded, the positive electrode volume and the negative electrode volume were adjusted so that the negative electrode capacity was 3 times the positive electrode capacity, excluding the volume of the negative electrode current collector nickel sheet. The volume was determined. Other conditions were the same as in Example 1 to prepare a non-aqueous electrolyte secondary battery. Table 1 shows the positive electrode volume, the negative electrode volume, and the negative electrode current collector volume of the secondary battery of Comparative Example 2 together with the positive electrode capacity and the negative electrode capacity. The other volumes were the same as in Example 1.

【0025】得られた電池について、充放電サイクル試
験により電池寿命を評価した。この結果、電池の放電容
量は、初期450mAhで、低い値を示したが、30サ
イクル後420mAh、60サイクル後400mAh
で、サイクル進行による変化量は小さかった。各サイク
ルの放電容量を表2示す。 (比較例3)負極は、リチウムと合金化しやすい厚さ3
0μmのアルミニウム(面積30×400mm2 )を用
い、実施例1と同様にして、非水電解質二次電池を作成
した。比較例3の二次電池の正極容積、正極集電体容
積、負極容積及びその他の容積、正極容量及び負極容量
は実施例1と同様とした。
The battery life of the obtained battery was evaluated by a charge / discharge cycle test. As a result, the discharge capacity of the battery showed a low value at the initial value of 450 mAh, but it was 420 mAh after 30 cycles and 400 mAh after 60 cycles.
The amount of change due to the progress of the cycle was small. Table 2 shows the discharge capacity of each cycle. (Comparative Example 3) The negative electrode has a thickness of 3 which is easily alloyed with lithium.
A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1, except that 0 μm aluminum (area: 30 × 400 mm 2 ) was used. The positive electrode volume, the positive electrode current collector volume, the negative electrode volume and other volumes, the positive electrode capacity and the negative electrode capacity of the secondary battery of Comparative Example 3 were the same as in Example 1.

【0026】得られた電池について、充放電サイクル試
験により電池寿命を評価した。この結果、電池の放電容
量は、初期500mAh、30サイクル後450mA
h、60サイクル後20mAhで、比較例1と同様に6
0サイクル後で大きく低下した。各サイクルの充放電容
量を表2示す。
The battery life of the obtained battery was evaluated by a charge / discharge cycle test. As a result, the discharge capacity of the battery was 500 mAh initially and 450 mA after 30 cycles.
h, 20 mAh after 60 cycles, 6 as in Comparative Example 1
It dropped significantly after 0 cycles. Table 2 shows the charge / discharge capacity of each cycle.

【0027】[0027]

【表1】 [Table 1]

【0028】尚、実施例1及び比較例1〜3において、
正極、負極及びセパレーターの面積及び電解液容積は共
通とした。
In Example 1 and Comparative Examples 1 to 3,
The area of the positive electrode, the negative electrode, and the separator and the electrolytic solution volume were the same.

【0029】[0029]

【表2】 [Table 2]

【0030】これら4種類の電池を充放電試験終了後に
分解したところ、比較例1及び3の電池で負極の破断が
確認された。この結果より、集電体を有さないリチウム
を負極とした非水電解質二次電池(比較例1)及びリチ
ウムと合金化しやすい金属を負極とした非水電解質二次
電池(比較例3)は、充放電特性が悪いことがわかっ
た。
When these four types of batteries were disassembled after completion of the charge / discharge test, breakage of the negative electrode was confirmed in the batteries of Comparative Examples 1 and 3. From these results, the non-aqueous electrolyte secondary battery (Comparative Example 1) using lithium having no current collector as a negative electrode and the non-aqueous electrolyte secondary battery having a negative electrode of a metal that is easily alloyed with lithium (Comparative Example 3) were obtained. It was found that the charge / discharge characteristics were poor.

【0031】また、実施例1は、比較例2に対して初期
放電容量で約1.6倍、30サイクル後で約1.2倍、
60サイクル後でほぼ同等の放電容量となった。したが
って、本発明の非水電解質二次電池(実施例1)は、従
来の非水電解質二次電池に比べて、充放電サイクル特性
を損ねることなく、優れた電池容量を示すことがわかっ
た。
In Example 1, the initial discharge capacity was about 1.6 times that of Comparative Example 2, and about 1.2 times after 30 cycles,
After 60 cycles, the discharge capacity was almost the same. Therefore, it was found that the non-aqueous electrolyte secondary battery of the present invention (Example 1) exhibited excellent battery capacity without impairing charge / discharge cycle characteristics, as compared with the conventional non-aqueous electrolyte secondary battery.

【0032】[0032]

【発明の効果】本発明の非水電解質二次電池は、二次電
池作成時に正極がリチウムを含有する正極活物質を有
し、負極がリチウムと合金化しない金属からなることを
特徴とするので、充放電に伴う負極材料の強度劣化がな
く、負極の破断が防止できる。また、従来の非水電解質
二次電池において過剰量の負極活物質で占められていた
容積分だけ正極活物質を増量できるので、従来と同容積
で電池容量の大きな非水電解質二次電池を得ることがで
きる。
The non-aqueous electrolyte secondary battery of the present invention is characterized in that the positive electrode has a positive electrode active material containing lithium and the negative electrode is made of a metal that does not alloy with lithium when the secondary battery is prepared. In addition, the strength of the negative electrode material does not deteriorate due to charge / discharge, and the negative electrode can be prevented from breaking. Further, since the positive electrode active material can be increased by the volume occupied by the excessive amount of the negative electrode active material in the conventional non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having the same volume as the conventional one and a large battery capacity can be obtained. be able to.

【0033】更には、金属リチウムを用いないので、リ
チウム保存時及び電池製造時に必要とされる高乾燥雰囲
気の設備が不要となる。したがって、優れた電池容量を
一定の充放電サイクル内で実現し、製造が容易な非水電
解質二次電池が提供できる。
Furthermore, since metallic lithium is not used, equipment for a high dry atmosphere required for storing lithium and for manufacturing batteries is not required. Therefore, it is possible to provide a non-aqueous electrolyte secondary battery that realizes an excellent battery capacity within a certain charge / discharge cycle and is easy to manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の非水電解質二次電池の概略
断面図である。
FIG. 1 is a schematic cross-sectional view of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレーター 4 正極リード 5 負極リード 6 正極蓋 7 負極缶 8 安全弁 9 ガスケット 10 インシュレーター 11 センターピン 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Positive electrode lid 7 Negative electrode can 8 Safety valve 9 Gasket 10 Insulator 11 Center pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 勲 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 堤 正己 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 宮下 勉 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Watanabe 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Masami Tsutsumi, 1015, Kamedotachu, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited ( 72) Inventor Tsutomu Miyashita 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及び電解質からなる二次電池
であって、二次電池の正極がリチウムを含有する正極活
物質を有し、負極がリチウムと合金化しない金属からな
ることを特徴とする非水電解質二次電池。
1. A secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode of the secondary battery has a positive electrode active material containing lithium, and the negative electrode is made of a metal that does not alloy with lithium. Non-aqueous electrolyte secondary battery.
【請求項2】 リチウムと合金化しない金属が、ニッケ
ル、銅、モリブデンから1つ又は複数選択される請求項
1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal that does not alloy with lithium is selected from one or more of nickel, copper and molybdenum.
【請求項3】 正極活物質が、リチウムを含有するカル
コゲン化合物である請求項1又は2記載の非水電解質二
次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is a chalcogen compound containing lithium.
JP7135281A 1995-06-01 1995-06-01 Nonaqueous electrolyte secondary battery Withdrawn JPH08329984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7135281A JPH08329984A (en) 1995-06-01 1995-06-01 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7135281A JPH08329984A (en) 1995-06-01 1995-06-01 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH08329984A true JPH08329984A (en) 1996-12-13

Family

ID=15148043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7135281A Withdrawn JPH08329984A (en) 1995-06-01 1995-06-01 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH08329984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224342A (en) * 1998-08-21 2009-10-01 Eveready Battery Co Inc Battery construction having reduced collector assembly volume
US10483522B2 (en) 2014-03-24 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224342A (en) * 1998-08-21 2009-10-01 Eveready Battery Co Inc Battery construction having reduced collector assembly volume
US10483522B2 (en) 2014-03-24 2019-11-19 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JP2001243957A (en) Lithium secondary battery
JP2003100347A (en) Nonaqueous electrolyte cell and nonaqueous electrolyte
JPH05234621A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JPH10241699A (en) Battery
JPH11135116A (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, and manufacture of the negative electrode for the lithium secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPH11167929A (en) Square battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP3219928B2 (en) Non-aqueous electrolyte secondary battery
JP2019175568A (en) Lithium ion secondary battery
WO2021100272A1 (en) Secondary battery and method for producing same
JPH08329984A (en) Nonaqueous electrolyte secondary battery
CN110024203B (en) Electrode assembly and rechargeable battery including the same
JPH09204933A (en) Lithium secondary battery
JPH0536401A (en) Lithium secondary battery
JP4752126B2 (en) Non-aqueous electrolyte secondary battery
JP3795614B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JPH08115745A (en) Nonaqueous electrolyte battery
JPH10125317A (en) Monaqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806