JPH08327604A - Fluorescent magnetic powder for magnetic particle testing and production thereof - Google Patents

Fluorescent magnetic powder for magnetic particle testing and production thereof

Info

Publication number
JPH08327604A
JPH08327604A JP15523295A JP15523295A JPH08327604A JP H08327604 A JPH08327604 A JP H08327604A JP 15523295 A JP15523295 A JP 15523295A JP 15523295 A JP15523295 A JP 15523295A JP H08327604 A JPH08327604 A JP H08327604A
Authority
JP
Japan
Prior art keywords
particle
powder
fluorescent
particles
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15523295A
Other languages
Japanese (ja)
Other versions
JP3536188B2 (en
Inventor
Masaaki Ichikawa
雅章 市川
Yasuhiro Ishiwatari
康弘 石渡
Shunichi Kudo
俊一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP15523295A priority Critical patent/JP3536188B2/en
Publication of JPH08327604A publication Critical patent/JPH08327604A/en
Application granted granted Critical
Publication of JP3536188B2 publication Critical patent/JP3536188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE: To produce highly sensitive inexpensive fluorescent magnetic powder for magnetic particle testing. CONSTITUTION: 60-90wt.% of magnetically conductive iron oxide particles having mean particle size of 2-5μm is admixed with 3-20wt.% of white inorganic particles having mean particle size of 0.02-1μm. The mixed particles collide each other to cause mechanochemical reaction and each white inorganic particle adheres to the surface of each magnetically conductive iron oxide particle thus forming a first coating layer. The magnetically conductive iron oxide particles forming the first coating layer is admixed with 2-10wt.% of fluorescent coloring material particles having mean particle size of 0.1-0.5μm. The mixed particles collide each other to cause mechanochemical reaction and each fluorescent coloring material particle adheres to the surface of first coating layer to form a second coating layer thus producing fluorescent magnetic powder for magnetic particle testing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁粉探傷試験用蛍光磁
粉及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent magnetic powder for magnetic particle flaw detection test and a method for producing the same.

【0002】本発明に係る蛍光磁粉は、主として鉄鋼メ
ーカーや自動車メーカーなどにおいて汎用されている磁
粉探傷試験方法に使用される。
The fluorescent magnetic powder according to the present invention is mainly used in a magnetic particle flaw detection test method which is widely used in steel manufacturers, automobile manufacturers and the like.

【0003】[0003]

【従来の技術】周知の通り、角ビレット,丸ビレット等
の鋼材やシャフト,ナックルアーム等の鋼製部品は通電
することによって磁化が可能であるので、その非破壊検
査に当ってはJIS G 0565−1992に規格化
されている磁粉探傷試験方法が適用されている。
2. Description of the Related Art As is well known, steel materials such as square billets and round billets and steel parts such as shafts and knuckle arms can be magnetized by energization. Therefore, JIS G 0565 is required for nondestructive inspection. The magnetic particle flaw test method standardized in 1992 is applied.

【0004】前記JIS規格に見られる通り、磁粉探傷
試験方法の一種に蛍光磁粉を使用する試験方法があり、
該蛍光磁粉とは、導磁性粒子粉末(例えば、Fe粒子粉
末,Fe3 4 粒子粉末,γ−Fe2 3 粒子粉末)の
粒子表面を紫外線照射によって励起され黄色乃至黄緑色
に発光する蛍光着色材(例えば、蛍光染料,蛍光顔料)
を用いて着色したものである。
As seen in the JIS standard, one of the magnetic particle flaw detection test methods is a test method using fluorescent magnetic powder.
The fluorescent magnetic powder is a fluorescent light that is excited by ultraviolet irradiation on the particle surface of magnetically conductive particle powder (for example, Fe particle powder, Fe 3 O 4 particle powder, γ-Fe 2 O 3 particle powder) and emits yellow to yellowish green light. Coloring material (eg fluorescent dye, fluorescent pigment)
Is colored with.

【0005】そして、蛍光磁粉には、導磁性粒子粉末に
蛍光着色材を合成樹脂を結合材として固着させたもの
(以下「結合材使用タイプ」という)と導磁性粒子粉末
に蛍光着色材を結合材を用いることなく固着させたもの
(以下「結合材無しタイプ」という)との二タイプがあ
る。
[0005] The fluorescent magnetic powder is obtained by fixing a fluorescent coloring material to a magnetic conductive particle powder with a synthetic resin as a binding material (hereinafter referred to as "binder use type"), and binding the fluorescent coloring material to the magnetic conductive particle powder. There are two types, one that is fixed without using a material (hereinafter referred to as "no binding material type").

【0006】結合材使用タイプの蛍光磁粉は、古くから
用いられ現在も汎用されており、その殆んどが、「粉砕
法」と呼ばれている導磁性粒子粉末、結合材とする合成
樹脂及び蛍光着色材を揮発性溶剤に溶解又は分散して練
合せてペースト状物とし、このペースト状物を乾燥し、
該乾燥物を微粒子状にまで粉砕するという方法によって
製造されている。
Fluorescent magnetic powders using a binder have been used for a long time and are still in widespread use, and most of them are magnetic powder particles called "pulverization method", synthetic resin as a binder, and A fluorescent coloring material is dissolved or dispersed in a volatile solvent and kneaded to form a paste, and the paste is dried,
It is produced by a method of pulverizing the dried product into fine particles.

【0007】なお、前記粉砕法による場合には、蛍光磁
粉の粒子表面が蛍光着色材と合成樹脂とが混在した状態
となり、しかも、配合した蛍光着色材の多くは合成樹脂
層中に内在した状態となるため、探傷時(紫外線照射
時)に充分な蛍光輝度が得られ難いことに鑑み、本出願
人は、導磁性粒子粉末の各粒子表面に結合材とする合成
樹脂をメカノケミカル反応により固着させた後、その表
面に蛍光着色材粒子をメカノケミカル反応により固着さ
せることによって結合材使用タイプの蛍光磁粉を得る方
法を提案(特開昭63−304153号公報)してい
る。
In the case of the pulverization method, the particle surface of the fluorescent magnetic powder is in a state in which the fluorescent coloring material and the synthetic resin are mixed, and moreover, most of the mixed fluorescent coloring materials are contained in the synthetic resin layer. Therefore, in view of the difficulty in obtaining sufficient fluorescence brightness during flaw detection (at the time of irradiation with ultraviolet rays), the applicant has fixed a synthetic resin as a binder on the surface of each particle of the magnetically conductive particle powder by a mechanochemical reaction. After that, a method for obtaining a fluorescent magnetic powder using a binder by adhering fluorescent colorant particles to the surface by a mechanochemical reaction has been proposed (JP-A-63-304153).

【0008】次に、結合材無しタイプの蛍光磁粉の代表
的な製造法は、「吸着法」と呼ばれているもので、これ
はオルソ位にハイドロキシル基を有する芳香族アルデヒ
ド(蛍光色素の中間体)を溶解した含水アルコール溶液
に導磁性粒子粉末を分散させ該分散液にヒドラジンを加
え、液中においてアゾメチン結合のオルソ位にハイドロ
キシル基を有する蛍光色素を析出させると共に該蛍光色
素を前記導磁性粒子粉末の各粒子表面に吸着させるとい
う方法(特公昭48−30223号公報)である。
Next, a typical method of producing a binderless type fluorescent magnetic powder is called an "adsorption method", which is an aromatic aldehyde having a hydroxyl group at the ortho position (of a fluorescent dye). Magnetic powder particles are dispersed in a hydroalcoholic solution in which the intermediate) is dissolved, and hydrazine is added to the dispersion to precipitate a fluorescent dye having a hydroxyl group at the ortho position of the azomethine bond in the liquid and This is a method of adsorbing onto the surface of each particle of the magnetically conductive particle powder (Japanese Patent Publication No. 48-30223).

【0009】なお、前記吸着法による場合には、蛍光着
色材の選択範囲が著しく限定され、また、蛍光色素中間
体を多量に用いる必要があり、さらに、蛍光色素の析出
・吸着時の操作が厄介であることに鑑み、本出願人は、
導磁性粒子粉末の各粒子表面に蛍光着色材粒子をメカノ
ケミカル反応により固着させることによって結合材無し
タイプの蛍光磁粉を得る方法を提案(特開昭63−30
4152号公報)している。
In the case of the above-mentioned adsorption method, the selection range of the fluorescent coloring material is remarkably limited, and it is necessary to use a large amount of the fluorescent dye intermediate. In view of the complications, the Applicant has
Proposed is a method of obtaining a binderless fluorescent magnetic powder by fixing fluorescent colorant particles to the surface of each particle of magnetically conductive particle powder by a mechanochemical reaction (JP-A-63-30).
No. 4152).

【0010】[0010]

【発明が解決しようとする課題】近時、前記鋼材や前記
鋼製部品の品質管理基準が厳しくなるにつれ、鉄鋼メー
カーや自動車メーカーにおける磁粉探傷試験用蛍光磁粉
の使用量が増加しており、これらユーザーからは、安
価、且つ高感度の蛍光磁粉を提供することが要請されて
いる。
Recently, as the quality control standards of the steel materials and the steel parts become stricter, the amount of fluorescent magnetic powder used for magnetic particle flaw detection test is increasing in steel manufacturers and automobile manufacturers. Users have demanded to provide inexpensive and highly sensitive fluorescent magnetic powder.

【0011】本発明者は、製造コストの有利性等に鑑
み、前掲特開昭63−304152号公報記載の方法を
用いて安価、且つ高感度の蛍光磁粉を提供すべく、実験
・試作を進めたところ、次の問題点に直面した。
The present inventor, in view of the advantage of manufacturing cost, etc., proceeded with experiments and trial manufacture in order to provide an inexpensive and highly sensitive fluorescent magnetic powder by using the method described in Japanese Patent Laid-Open No. 63-304152. I faced the following problems.

【0012】即ち、導磁性粒子粉末の内、Fe粒子粉末
は高価であり、また、その比重が重いため、これを用い
た蛍光磁粉を湿式(蛍光磁粉を水に分散させて該分散液
を検査物に適用する方式)で用いる場合には、沈降し易
いので欠陥検出精度が低下する。一方、Fe3 4 粒子
粉末やγ−Fe2 3 粒子粉末は、Fe粒子粉末に比較
して安価であると共に比重も軽く、これらを用いた蛍光
磁粉の場合には沈降性に起因する欠陥検出精度の低下が
避けられる。
That is, among the magnetically conductive particle powders, the Fe particle powder is expensive and has a high specific gravity. Therefore, the fluorescent magnetic powder using the powder is wet (dispersing the fluorescent magnetic powder in water to inspect the dispersion). When it is used in a method applied to an object, the accuracy of defect detection is lowered because sedimentation is likely to occur. On the other hand, the Fe 3 O 4 particle powder and the γ-Fe 2 O 3 particle powder are cheaper and have a lower specific gravity than the Fe particle powder, and in the case of the fluorescent magnetic powder using these particles, defects caused by sedimentation A decrease in detection accuracy can be avoided.

【0013】しかし、導磁性粒子粉末としてFe3 4
粒子粉末やγ−Fe2 3 粒子粉末を用いて、前掲特開
昭63−304152号公報記載の方法によって結合材
無しタイプの蛍光磁粉を製造する場合には、後出比較例
に示す通り、蛍光着色材の配合割合を多くしないと探傷
時に充分な蛍光輝度が得られず、充分な蛍光輝度が得ら
れるように蛍光着色材の配合割合を多くする場合には、
蛍光着色材が高価なために製品コストが高くなり、蛍光
磁粉の磁気感度も低下して欠陥検出精度が悪くなってし
まうという問題が生じるのである。
However, Fe 3 O 4 is used as the magnetically conductive particle powder.
In the case of producing a binderless type fluorescent magnetic powder by the method described in JP-A-63-304152, using the particle powder or the γ-Fe 2 O 3 particle powder, as shown in Comparative Examples below, If the blending ratio of the fluorescent coloring material is not increased, sufficient fluorescent brightness cannot be obtained during flaw detection, and if the blending ratio of the fluorescent coloring material is increased so that sufficient fluorescent brightness is obtained,
Since the fluorescent coloring material is expensive, the product cost is increased, the magnetic sensitivity of the fluorescent magnetic powder is reduced, and the defect detection accuracy is deteriorated.

【0014】本発明者は、前記問題点を解決し、前掲特
開昭63−304152号公報記載の方法を利用して、
安価、且つ高感度の蛍光磁粉を製造することを技術的課
題として、さらに実験・試作を進めた。
The present inventor has solved the above-mentioned problems and has utilized the method described in Japanese Patent Laid-Open No. 63-304152 mentioned above.
As a technical challenge to manufacture inexpensive and highly sensitive fluorescent magnetic powder, we proceeded with further experiments and trial production.

【0015】そして、本発明者は、蛍光着色材の配合割
合を多くしないと探傷時に充分な蛍光輝度が得られない
現象を追求した結果、Fe3 4 粒子やγ−Fe2 3
粒子の表面に直接蛍光着色材が固着している場合には、
該各粒子表面の色彩が黒色系のものであるため、表面に
固着されている蛍光着色材が紫外線照射によって励起さ
れて黄色乃至黄緑色に発光するとき、当該各粒子表面か
らの反射率が非常に小さいため、蛍光着色材の配合割合
を多くしなければ充分な蛍光輝度が得られないことを知
った。
Then, the present inventor pursued a phenomenon in which sufficient fluorescent brightness cannot be obtained at the time of flaw detection unless the mixing ratio of the fluorescent coloring material is increased, and as a result, Fe 3 O 4 particles and γ-Fe 2 O 3 are obtained.
If the fluorescent coloring material is directly adhered to the surface of the particles,
Since the color of each particle surface is black, when the fluorescent coloring material fixed to the surface is excited by ultraviolet irradiation and emits yellow to yellowish green, the reflectance from each particle surface is extremely high. Since it is very small, it has been found that sufficient fluorescent brightness cannot be obtained unless the mixing ratio of the fluorescent coloring material is increased.

【0016】そこで、本発明者は、前記反射率を大きく
できると共に磁気感度の低下を欠陥検出精度に悪影響を
及ぼさない程度に押さえることができる技術的手段を求
めて試行錯誤的な数多くの実験・試作を繰返した結果、
本発明に到達したのである。
Therefore, the inventor of the present invention seeks a technical means capable of increasing the reflectance and suppressing the deterioration of the magnetic sensitivity to such an extent that the defect detection accuracy is not adversely affected. As a result of repeating the trial production,
The present invention has been reached.

【0017】[0017]

【課題を解決するための手段】即ち、本発明は、平均粒
子径2〜5μm の導磁性酸化鉄粒子60〜90重量%、
平均粒子径0.02〜1μm の白色無機粒子3〜20重
量%及び平均粒子径0.1〜0.5μm の蛍光着色材粒
子2〜10重量%が配合されており、且つ、前記導磁性
酸化鉄粒子の表面に第1被覆層として前記白色無機粒子
がメカノケミカル反応によって固着していると共にその
表面に第2被覆層として前記蛍光着色材粒子がメカノケ
ミカル反応によって固着していることを特徴とする磁粉
探傷試験用蛍光磁粉である。
That is, according to the present invention, 60 to 90% by weight of magnetically conductive iron oxide particles having an average particle diameter of 2 to 5 μm,
3 to 20% by weight of white inorganic particles having an average particle size of 0.02 to 1 μm and 2 to 10% by weight of fluorescent colorant particles having an average particle size of 0.1 to 0.5 μm are blended, and the magnetically conductive oxide The white inorganic particles are fixed to the surface of the iron particles as a first coating layer by a mechanochemical reaction, and the fluorescent colorant particles are fixed to the surface of the iron particles as a second coating layer by a mechanochemical reaction. It is a fluorescent magnetic powder for magnetic particle flaw detection testing.

【0018】また、本発明は、平均粒子径2〜5μm の
導磁性酸化鉄粒子60〜90重量%と平均粒子径0.0
2〜1μm の白色無機粒子粉末3〜20重量%を、一次
粒子の状態で混合し該混合粉末を気相中において粒子速
度60〜160m/secに加速して粒子どうしを衝突させ
てメカノケミカル反応を行うことによって、前記導磁性
酸化鉄粒子粉末の各粒子表面に前記白色無機粒子粉末の
各粒子を固着させて第1被覆層を形成し、次いで、当該
第1被覆層が形成されている導磁性酸化鉄粒子粉末に平
均粒子径0.1〜0.5μm の蛍光着色材粒子粉末2〜
10重量%(全体量に対する割合)を一次粒子の状態で
添加し混合し該混合粉末を気相中において粒子速度60
〜160m/secに加速して粒子どうしを衝突させてメカ
ノケミカル反応を行うことによって前記第1被覆層の表
面に前記蛍光着色材粒子粉末の各粒子を固着させて第2
被覆層を形成することを特徴とする磁粉探傷試験用蛍光
磁粉の製造法である。
According to the present invention, 60 to 90% by weight of magnetically conductive iron oxide particles having an average particle diameter of 2 to 5 μm and an average particle diameter of 0.0
3 to 20% by weight of white inorganic particle powder of 2-1 μm is mixed in the state of primary particles, and the mixed powder is accelerated in the gas phase to a particle velocity of 60 to 160 m / sec to cause particles to collide with each other to cause a mechanochemical reaction. By performing the above, each particle of the white inorganic particle powder is fixed to each particle surface of the magnetically conductive iron oxide particle powder to form a first coating layer, and then the first coating layer is formed. Magnetic iron oxide particles powder with fluorescent colorant particle powder 2 having an average particle size of 0.1 to 0.5 μm
10% by weight (ratio to the total amount) of primary particles is added and mixed, and the mixed powder is mixed in the gas phase with a particle velocity of 60.
The particles of the fluorescent colorant particle powder are fixed to the surface of the first coating layer by accelerating to ~ 160 m / sec to cause the particles to collide with each other to perform a mechanochemical reaction.
A method for producing a fluorescent magnetic powder for a magnetic particle flaw detection test, which comprises forming a coating layer.

【0019】本発明の構成をより詳しく説明すれば次の
通りである。先ず、本発明においては、平均粒子径2〜
5μm の範囲内のいずれかの平均粒子径をもつ導磁性酸
化鉄粒子粉末を用いる。この酸化鉄粒子粉末として好ま
しいものはFe3 4 粒子粉末やγ−Fe2 3 粒子粉
末であり、該各粒子粉末は、磁粉探傷試験用蛍光磁粉の
材料として常用されており、市販品から所要の平均粒子
径のものを容易に入手できる。
The structure of the present invention will be described in more detail below. First, in the present invention, the average particle diameter of 2 to
A magnetic iron oxide particle powder having an average particle diameter within the range of 5 μm is used. Fe 3 O 4 particle powder and γ-Fe 2 O 3 particle powder are preferable as the iron oxide particle powder, and each of the particle powders is commonly used as a material of the fluorescent magnetic powder for magnetic particle flaw detection test, and is commercially available. The one having the required average particle diameter can be easily obtained.

【0020】平均粒子径2μm 未満の酸化鉄粒子粉末
は、その各粒子表面にメカノケミカル反応によって固着
させる白色無機粒子粉末として超微細(0.02μm 未
満)のものを選定しなければならないので実用的でな
く、平均粒子径5μm を越える酸化鉄粒子粉末は、入手
が困難である。
Iron oxide particles having an average particle size of less than 2 μm are practical, because ultrafine particles (less than 0.02 μm) must be selected as white inorganic particle powder to be fixed to the surface of each particle by a mechanochemical reaction. In addition, iron oxide particles having an average particle size of more than 5 μm are difficult to obtain.

【0021】なお、必要に応じて平均粒子径2μm 未満
の酸化鉄粒子を造粒して大粒子として用いることもでき
る。
If necessary, iron oxide particles having an average particle size of less than 2 μm may be granulated and used as large particles.

【0022】上記導磁性酸化鉄粒子粉末の配合割合が、
60重量%未満の場合には得られる蛍光磁粉の磁気感度
が0.4未満(後出測定法による値)となり欠陥検出精
度が低下してしまい、95重量%を越える場合には相対
的に白色無機粒子粉末及び蛍光着色材粒子粉末の配合割
合が減るので探傷時に充分な蛍光輝度が得られず欠陥検
出精度が低下してしまう。特に好ましい配合割合は80
〜90重量%である。
The compounding ratio of the above magnetic iron oxide particles is
If it is less than 60% by weight, the magnetic sensitivity of the obtained fluorescent magnetic powder will be less than 0.4 (value by the later-described measurement method), and the defect detection accuracy will be deteriorated. If it exceeds 95% by weight, it will be relatively white. Since the blending ratio of the inorganic particle powder and the fluorescent coloring material particle powder is reduced, sufficient fluorescence brightness cannot be obtained during flaw detection, and the defect detection accuracy is deteriorated. A particularly preferable mixing ratio is 80
~ 90% by weight.

【0023】次に、本発明においては、平均粒子径0.
02〜1μm の範囲内のいずれかの平均粒子径をもつ白
色無機粒子粉末を用いる。この無機粒子粉末としては、
酸化チタン粒子粉末、カオリン粒子粉末、シリカ粒子粉
末、亜鉛華粒子粉末、アンチモン白粒子粉末、炭酸マグ
ネシウム粒子粉末及び炭酸カルシウム粒子粉末が挙げら
れ、その白色度が85%以上(後出測定法による値)の
ものが好ましい。これら各粒子粉末は、体質顔料等に常
用されており市販品から所要の平均粒子径のものを容易
に入手できる。白色度や価格の面から酸化チタン粒子粉
末が特に好ましい。
Next, in the present invention, the average particle size is 0.
A white inorganic particle powder having an average particle diameter in the range of 02 to 1 μm is used. As this inorganic particle powder,
Titanium oxide particles powder, kaolin particles powder, silica particles powder, zinc white particles powder, antimony white particles powder, magnesium carbonate particles powder and calcium carbonate particles powder, whose whiteness is 85% or more (value by the later-mentioned measurement method. The thing of () is preferable. These particle powders are commonly used for extender pigments and the like, and those having a required average particle diameter can be easily obtained from commercial products. Titanium oxide particle powder is particularly preferable in terms of whiteness and price.

【0024】平均粒子径0.02μm 未満の白色無機粒
子粉末は、所要の白色度が得られないから実用的でな
く、平均粒子径1μm を越える白色無機粒子粉末は、前
記導磁性酸化鉄粒子粉末の各粒子表面にメカノケミカル
反応によって固着させることが困難である。
White inorganic particle powders having an average particle size of less than 0.02 μm are not practical because the required whiteness cannot be obtained, and white inorganic particle powders having an average particle size of more than 1 μm are the above-mentioned magnetic iron oxide powder particles. It is difficult to fix each particle surface by a mechanochemical reaction.

【0025】上記白色無機粒子粉末の配合割合が、3重
量%未満の場合には導磁性酸化鉄粒子粉末の各粒子表面
に固着する量が少なすぎるため得られる蛍光磁粉の探傷
時における蛍光輝度を上げる効果が得られず、20重量
%を越える場合には相対的に導磁性酸化鉄粒子粉末の配
合割合が減るので得られる蛍光磁粉の磁気感度が悪くな
ってしまうと共に、導磁性酸化鉄粒子粉末に固着しない
で脱落する量が多くなる。
When the blending ratio of the white inorganic particle powder is less than 3% by weight, the amount of the magnetically conductive iron oxide particle powder adhered to the surface of each particle is too small, and the fluorescent brightness at the time of flaw detection of the obtained fluorescent magnetic powder is If the effect is not increased, and if it exceeds 20% by weight, the compounding ratio of the magnetically conductive iron oxide particle powder is relatively reduced, so that the magnetic sensitivity of the obtained fluorescent magnetic powder is deteriorated and the magnetically conductive iron oxide particle powder is obtained. There is a large amount of falling off without sticking to.

【0026】次に、本発明においては、平均粒子径0.
1〜0.5μm の蛍光着色材粒子粉末を用いる。この蛍
光着色材粒子粉末としては、磁粉探傷試験用蛍光磁粉の
材料として常用されている蛍光顔料の内から選定すれば
よく、市販品から容易に入手でき、通常、市販品の平均
粒子径は0.1〜0.5μm の範囲内のものである。好
ましいものを具体的に示せば、ルモゲンイエロー(商品
名:BASF社製)やフェスタ蛍光顔料(商品名:スワ
ダリミテッド社製:品番E−27,GT−27及びHM
P−27)が挙げられ、これらは平均粒子径0.1〜
0.5μm の範囲内の粒子粉末であり、紫外線照射によ
って励起され黄色乃至黄緑色に発光する。
Next, in the present invention, the average particle size is 0.
Fluorescent colorant particle powder of 1 to 0.5 μm is used. The fluorescent colorant particle powder may be selected from among fluorescent pigments that are commonly used as materials for fluorescent magnetic powder for magnetic particle flaw detection tests, and can be easily obtained from commercial products, and the average particle size of commercial products is usually 0. 0.1 to 0.5 μm. Specific examples of preferred ones include Lumogen Yellow (trade name: manufactured by BASF) and Festa fluorescent pigment (trade name: manufactured by Swada Limited: product numbers E-27, GT-27 and HM).
P-27), and these have an average particle size of 0.1 to 0.1.
It is a particle powder in the range of 0.5 μm, and it is excited by irradiation of ultraviolet rays and emits yellow to yellowish green light.

【0027】上記蛍光着色材粒子粉末の配合割合が、2
重量%未満の場合には探傷時に充分な蛍光輝度が得られ
難く欠陥検出精度が低下してしまう。2重量部以上であ
れば実用上充分な欠陥検出精度が得られるから、通常は
2重量%とすればよく、10重量%を越える配合は導磁
性酸化鉄粒子粉末の配合割合が減るので得られる蛍光磁
粉の磁気感度が悪くなってしまうから避けるべきであ
る。
The mixing ratio of the fluorescent colorant particle powder is 2
If the amount is less than the weight%, it is difficult to obtain sufficient fluorescence brightness during flaw detection, and the defect detection accuracy is deteriorated. When the amount is 2 parts by weight or more, the defect detection accuracy is practically sufficient. Therefore, the amount is usually 2% by weight, and the amount exceeding 10% by weight is obtained because the compounding ratio of the magnetic iron oxide particles decreases. This should be avoided because the magnetic sensitivity of the fluorescent magnetic powder deteriorates.

【0028】次に、本発明に係る磁粉探傷試験用蛍光磁
粉の製造は容易であり、常法に従って、回転羽を備えた
高速粉砕機を使用してメカノケミカル反応を行わせるこ
とによって目的物が得られる。
Next, the fluorescent magnetic powder for magnetic particle flaw detection test according to the present invention is easy to produce, and the desired product is obtained by performing a mechanochemical reaction using a high-speed crusher equipped with a rotary blade according to a conventional method. can get.

【0029】即ち、前記導磁性酸化鉄粒子粉末の内から
所要平均粒子径のものを選んでその所要量を秤取すると
共に、前記白色無機粒子粉末の内から所要粒子径のもの
を選んでその所要量を秤取し、秤取した両粉末を上記粉
砕機に投入して、両粉末を一次粒子の状態で気相中にて
該粉末を粒子速度60〜160m/secに加速して粒子ど
うしを約2〜5分間衝突させれば、導磁性酸化鉄粒子が
核粒子となり、その表面に白色無機粒子が子粒子となっ
て固着して第1被覆層が形成される。
That is, one having the required average particle diameter is selected from the magnetically conductive iron oxide particles and the required amount is weighed, and one having the required particle diameter is selected from the white inorganic particle powders. The required amount is weighed, both weighed powders are put into the above-mentioned pulverizer, and both powders in the state of primary particles are accelerated in the gas phase to a particle velocity of 60 to 160 m / sec, and the particles are mixed with each other. For about 2 to 5 minutes, the magnetic iron oxide particles become core particles, and the white inorganic particles as child particles adhere to the surface of the core particles to form the first coating layer.

【0030】粒子速度を60m/sec以上に加速しない場
合には核粒子に子粒子を固着させるに必要な機械的・熱
的エネルギーが得られず、粒子速度を大きくすればする
程に強く固着させることができるが、実用上は160m
/secまでで充分である。また、衝突させる時間は少なく
とも2分間以上を必要とし、時間を長くすればする程に
強く固着させることができるが、実用上は5分間程度ま
でで充分である。
If the particle velocity is not accelerated to 60 m / sec or more, the mechanical and thermal energy required to fix the child particles to the core particles cannot be obtained, and the particles are strongly fixed as the particle speed is increased. It is possible, but practically 160 m
/ sec is enough. Further, the collision time needs to be at least 2 minutes or more, and the longer the time, the stronger the fixation can be made, but in practice, about 5 minutes is sufficient.

【0031】なお、上記両粉末の平均粒子径を選定する
に当っては、当然のことではあるが、核粒子となる導磁
性酸化鉄粒子粉末の平均粒子径と子粒子となる白色無機
粒子粉末の平均粒子径との差ができるだけ大きくなるよ
うにすることが好ましい。
In selecting the average particle diameters of the two powders, it goes without saying that the average particle diameter of the magnetically conductive iron oxide particle powder to be the core particles and the white inorganic particle powder to be the child particles. It is preferable that the difference from the average particle diameter of is as large as possible.

【0032】上述の操作によって、導磁性酸化鉄粒子粉
末の各粒子表面に白色無機粒子粉末の各粒子を固着させ
て第1被覆層を形成した後、該第1被覆層が形成されて
いる導磁性酸化鉄粒子粉末に、前記蛍光着色材粒子粉末
の所要量を添加し、上記粉砕機を用いて、両粉末を一次
粒子の状態で気相中にて該粉末を粒子速度60〜160
m/secに加速して粒子どうしを約1〜3分間衝突させれ
ば、当該導磁性酸化鉄粒子粉末が核粒子となり、その表
面に蛍光着色材粒子が子粒子となって固着して第2被覆
層が形成される。
By the above-mentioned operation, the particles of the white inorganic particle powder are fixed to the surfaces of the particles of the magnetically conductive iron oxide particle powder to form the first coating layer, and then the first coating layer is formed. A required amount of the fluorescent coloring material particle powder was added to the magnetic iron oxide particle powder, and both powders were in the form of primary particles in the gas phase by using the above pulverizer, and the powder particles had a particle velocity of 60 to 160.
By accelerating to m / sec and causing the particles to collide with each other for about 1 to 3 minutes, the magnetically conductive iron oxide particle powder becomes a core particle, and the fluorescent coloring material particle is fixed as a child particle on the surface of the second particle. A coating layer is formed.

【0033】粒子速度を60m/sec以上に加速しない場
合には、第1被覆層を形成する場合と同様に、核粒子に
子粒子を固着させるに必要な機械的・熱的エネルギーが
得られず、粒子速度を大きくすればする程に強く固着す
るが実用上は160m/secまでで充分である。また、衝
突させる時間は少なくとも1分間以上を必要とし、時間
を長くすればする程に強く固着するが実用上は3分間程
度までで充分である。
If the particle velocity is not accelerated to 60 m / sec or more, the mechanical and thermal energy required for fixing the child particles to the core particles cannot be obtained, as in the case of forming the first coating layer. The higher the particle velocity, the stronger the fixation. However, up to 160 m / sec is sufficient for practical use. Further, the collision time needs to be at least 1 minute or more, and the longer the time, the stronger the fixation will be, but practically about 3 minutes is sufficient.

【0034】使用する蛍光着色材粒子粉末の平均粒子径
は前記範囲内のものであればいずれの平均粒子径のもの
であってもよい。
The average particle size of the fluorescent colorant particle powder to be used may be any one as long as it is within the above range.

【0035】なお、第1,2被覆層の形成に当っては、
各粒子粉末を一次粒子の状態で衝突させる必要があるの
で、用いる各粒子粉末材料が一次粒子の状態で入手でき
ない場合には、あらかじめ、常法に従って、回転羽を備
えた高速攪拌機を使用して一次粒子の状態(一ケ、一ケ
の粒子がバラバラの状態)にして置く必要がある。
In forming the first and second coating layers,
Since it is necessary to collide each particle powder in the state of primary particles, if each particle powder material to be used cannot be obtained in the state of primary particles, in advance, according to a conventional method, use a high-speed stirrer equipped with a rotary blade. It is necessary to put them in a state of primary particles (one particle is in a disjointed state).

【0036】以上説明したところに従えば、高感度の蛍
光磁粉を低コストで製造できることが保証できる。
According to what has been described above, it can be guaranteed that highly sensitive fluorescent magnetic powder can be manufactured at low cost.

【0037】[0037]

【作用】先ず、本発明に係る磁粉探傷試験用蛍光磁粉
は、粒子表面の色彩が黒色系であるFe3 4 粒子やγ
−Fe2 3 粒子などの導磁性酸化鉄粒子の表面に白色
無機粒子からなる第1被覆層が形成されており、この白
色被覆層の表面に蛍光着色材からなる第2被覆層が形成
されているから、紫外線照射下においては、最表面に位
置している蛍光着色材は、下面に反射率の高い白色面が
存在していることによって、その発光機能をフルに発揮
するので、該蛍光着色材の量が比較的小量であっても、
充分な蛍光輝度を得ることができる。事実、後出実施例
に示す通り、白色被覆層が存在する場合には、白色被覆
層が存在しない場合と比較して、約1/5量(実施例
3、比較例2並びに実施例10、比較例4参照)の蛍光
着色材によって、ほぼ同等の蛍光輝度が得られている。
The fluorescent magnetic powder for magnetic particle flaw detection test according to the present invention comprises Fe 3 O 4 particles having a black surface color and γ
A first coating layer made of white inorganic particles is formed on the surface of magnetically conductive iron oxide particles such as —Fe 2 O 3 particles, and a second coating layer made of fluorescent coloring material is formed on the surface of the white coating layer. Therefore, under the irradiation of ultraviolet rays, the fluorescent coloring material located on the outermost surface has a white surface of high reflectance on the lower surface, so that its fluorescent function is fully exerted. Even if the amount of coloring material is relatively small,
Sufficient fluorescent brightness can be obtained. In fact, as shown in Examples described later, when the white coating layer is present, the amount is about 1/5 of that in the case where the white coating layer is not present (Example 3, Comparative Example 2 and Example 10, With the fluorescent coloring material of Comparative Example 4), almost the same fluorescent brightness is obtained.

【0038】また、白色無機粒子からなる第1被覆層
は、導磁性酸化鉄粒子表面に反射率の高い白色面を形成
するものであるから薄層でよいので比較小量の白色無機
粒子粉末を用いることによって形成でき、上記作用によ
って蛍光着色材が小量でよいことと相侯って、第1,2
被覆層による磁気感度の低下は、後出実施例に示す通
り、実用上無視できる程度のものとなる。
Since the first coating layer composed of white inorganic particles forms a white surface having high reflectance on the surface of the magnetically conductive iron oxide particles, it may be a thin layer. It can be formed by using it, and in combination with the fact that a small amount of fluorescent coloring material is required by the above-mentioned action,
The decrease in magnetic sensitivity due to the coating layer is practically negligible, as shown in Examples below.

【0039】次に、本発明に係る磁粉探傷試験用蛍光磁
粉の製造法は、メカノケミカル反応によるものであるか
ら、合成樹脂の如き結合材を用いることなく前記導磁性
酸化鉄粒子粉末の各粒子表面に前記白色無機粒子粉末の
各粒子を効率よく固着させて第1被覆層を形成すること
ができ、また、第1被覆層表面に前記蛍光着色材粒子粉
末の各粒子を効率よく固着させることができ、固着物の
剥離・脱落も殆んどないので、収率よく目的物を得るこ
とができる。
Next, since the method for producing the fluorescent magnetic powder for the magnetic particle flaw detection test according to the present invention is based on the mechanochemical reaction, each particle of the above magnetic iron oxide particle powder without using a binder such as a synthetic resin. It is possible to efficiently fix each particle of the white inorganic particle powder to the surface to form the first coating layer, and to efficiently fix each particle of the fluorescent colorant particle powder to the surface of the first coating layer. Since the adhered substances are hardly peeled off or fallen off, the target substance can be obtained in good yield.

【0040】[0040]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り詳しく説明する。なお、各実施例及び各比較例におけ
る白色度、蛍光輝度及び磁気感度は、それぞれ次の各手
法によって測定し、探傷性能は、次の磁粉探傷試験方法
を実施することによって評価したものである。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples. In addition, the whiteness, the fluorescence brightness, and the magnetic sensitivity in each of the examples and the comparative examples are measured by the following respective methods, and the flaw detection performance is evaluated by performing the following magnetic particle flaw detection test method.

【0041】白色度:光電光沢計(東京電色株式会社
製)を用いて測定した。
Whiteness: Measured using a photoelectric gloss meter (manufactured by Tokyo Denshoku Co., Ltd.).

【0042】蛍光輝度:八木式微量蛍光光度計(株式会
社コタキ製作所製)を用い、該蛍光光度計の粉体輝度測
定用セルに基準とする蛍光磁粉(実施例1〜4、比較例
1、2では比較例1の蛍光磁粉を、実施例5〜7では比
較例1の蛍光磁粉を、実施例8〜10、比較例3、4で
は比較例3の蛍光磁粉を、それぞれ基準とした)を充填
し、この時のメータの針の振れを100%に調整して置
き、次に基準蛍光磁粉に代えて、測定すべき蛍光磁粉を
上記測定用セルに充填し、その時のメータの針の指示
(%)を読み取り、相対%で表示した。
Fluorescent brightness: A Yagi microfluorimeter (manufactured by Kotaki Seisakusho Co., Ltd.) was used, and the fluorescent magnetic powder (Examples 1 to 4 and Comparative Example 1, as a reference) was used as a reference for the powder brightness measuring cell of the fluorescent photometer. 2 was used as a reference, the fluorescent magnetic powder of Comparative Example 1 was used as a reference, the fluorescent magnetic powder of Comparative Example 1 was used as a reference in Examples 5 to 7, and the fluorescent magnetic powder of Comparative Example 3 was used as a reference in Examples 8 to 10 and Comparative Examples 3 and 4). Filling, adjusting the deflection of the meter needle at this time to 100% and placing it, then replacing the reference fluorescent magnetic powder, filling the measuring cell with the fluorescent magnetic powder to be measured, and instructing the meter needle at that time (%) Was read and displayed as relative%.

【0043】磁気感度:図1に示す構成の磁気感度測定
器を製作し、容積45mlの測定用ガラスセルに測定すべ
き蛍光磁粉をタッピングしながら標線まで充填して置
き、上記磁気感度測定器の電流計4の目盛りを0.3A
に合せて電圧計3の目盛りを読み取った後、蛍光磁粉を
充填した上記測定用ガラスセルをコイル5に挿入して電
流計4の目盛りを0.3に合せて電圧計3の目盛りを読
み取り、挿入前の電圧値を挿入後の電圧値から引いて求
めた数値を表示した。
Magnetic sensitivity: A magnetic sensitivity measuring instrument having the structure shown in FIG. 1 was manufactured, and the fluorescent magnetic powder to be measured was tapped into a glass cell for measurement having a volume of 45 ml and filled up to the marked line. Ammeter 4 scale of 0.3A
After reading the scale of the voltmeter 3 according to, the glass cell for measurement filled with the fluorescent magnetic powder is inserted into the coil 5, the scale of the ammeter 4 is adjusted to 0.3, and the scale of the voltmeter 3 is read. The value obtained by subtracting the voltage value before insertion from the voltage value after insertion is displayed.

【0044】探傷性能:実施例1〜10及び比較例1〜
6の各蛍光磁粉毎に、次の通りの磁粉探傷試験方法を実
施した。
Flaw detection performance: Examples 1 to 10 and Comparative Examples 1 to
For each of the fluorescent magnetic powders of No. 6, the following magnetic powder flaw detection test method was carried out.

【0045】水1l当り蛍光磁粉2gを分散剤を使用
(水1l当りノニオン系界面活性剤20mlを使用)して
分散させた磁粉液を調整し、軸通電法によって通電(D
C 1000A)した鋼製角ビレット表面に該磁粉液を
散布し、暗所にて紫外線灯(ブラックライト)の照射下
において散布面を目視により観察して、該角ビレット表
面に存在する傷深さ0.1mmの開口欠陥部が蛍光指示模
様によって明瞭に指示されている場合を「○」、より明
瞭で鮮明な蛍光指示模様によって指示されている場合を
「◎」、蛍光指示模様が不明瞭で該開口欠陥部の存在が
確認できない場合を「×」と評価した。
A magnetic powder solution prepared by dispersing 2 g of fluorescent magnetic powder per 1 liter of water using a dispersant (using 20 ml of a nonionic surfactant per 1 liter of water) was prepared and was electrified by an axial electrification method (D
C 1000A) The magnetic powder liquid was sprayed on the surface of the square billet made of steel, and the sprayed surface was visually observed under irradiation of an ultraviolet lamp (black light) in a dark place, and the scratch depth existing on the surface of the square billet was observed. When the 0.1 mm aperture defect part is clearly indicated by the fluorescent indication pattern, it is "○", when it is indicated by the clearer and clear fluorescent indication pattern, it is "◎", and the fluorescent indication pattern is unclear. The case where the presence of the opening defect portion could not be confirmed was evaluated as "x".

【0046】実施例1〜4、比較例1、2 平均粒子径3μm のFe3 4 粒子粉末(タロックスB
L−SP:商品名:チタン工業株式会社製)、平均粒子
径0.03μm で白色度95%の酸化チタン粒子粉末
(タイペークTTO−55(A):商品名:石原産業株
式会社製)及び平均粒子径0.1μm の蛍光顔料粒子粉
末(ルモゲンイエロー:商品名:BASF社製)を表1
の処方で用い、4種の本発明に係る磁粉探傷試験用蛍光
磁粉を次の操作によって製造した。
Examples 1 to 4, Comparative Examples 1 and 2 Fe 3 O 4 particle powder having an average particle size of 3 μm (Tarox B
L-SP: trade name: made by Titanium Industry Co., Ltd.), titanium oxide particle powder with an average particle size of 0.03 μm and whiteness of 95% (Taipaque TTO-55 (A): trade name: made by Ishihara Sangyo Co., Ltd.) and average. Table 1 shows fluorescent pigment particle powder (Lumogen Yellow: trade name: manufactured by BASF) having a particle diameter of 0.1 μm.
4 types of fluorescent magnetic powders for magnetic particle flaw detection test according to the present invention were manufactured by the following operations.

【0047】回転羽を備えた粉砕機(コスモマイザー:
商品名:奈良機械製作所製)に上記Fe3 4 粒子粉末
と上記酸化チタン粒子粉末との各所定量を投入し、羽根
先端周速度100m/sec・回転数6000rpm にて、該
粉末を一次粒子の状態で気相中において粒子速度約10
0m/secに加速して粒子どうしを3分間衝突させてメカ
ノケミカル反応を行った。
Crusher equipped with rotary wings (Cosmomizer:
(Trade name: Nara Machinery Co., Ltd.), each predetermined amount of the above Fe 3 O 4 particle powder and the above titanium oxide particle powder was charged, and the powder was converted into primary particles at a blade tip peripheral speed of 100 m / sec and a rotation speed of 6000 rpm. Particle velocity of about 10 in the gas phase
The mechanochemical reaction was performed by accelerating to 0 m / sec and colliding the particles for 3 minutes.

【0048】次いで、ここに得た上記Fe3 4 粒子粉
末の各粒子表面に上記酸化チタン粒子粉末の各粒子が固
着して第1被覆層が形成されている粒子粉末と上記蛍光
顔料粒子粉末の所定量を上記粉砕機に投入し、上記と同
じ羽根先端周速度・回転数にて、該粉末を一次粒子の状
態で気相中において粒子速度約100m/secに加速して
粒子どうしを2分間衝突させてメカノケミカル反応を行
って、上記第1被覆層の表面に上記蛍光顔料粒子粉末の
各粒子が固着して第2被覆層が形成されている粒子粉末
(本発明に係る磁粉探傷試験用蛍光磁粉)を得た。
Then, the particle powder of the above-mentioned Fe 3 O 4 particle powder, in which the respective particles of the above-mentioned titanium oxide particle powder adhere to the surface of each particle, and the first coating layer is formed, and the above-mentioned fluorescent pigment particle powder. Is charged into the crusher, and at the same blade tip peripheral speed and rotation speed as above, the powder is accelerated in the gas phase in the form of primary particles to a particle speed of about 100 m / sec to cause particles to separate from each other. Particle powder in which each particle of the fluorescent pigment particle powder adheres to the surface of the first coating layer to form a second coating layer by performing a mechanochemical reaction by colliding for a minute (the magnetic particle flaw detection test according to the present invention To obtain a fluorescent magnetic powder).

【0049】なお、全操作を通じて、核粒子と子粒子と
の剥離・脱落は、ごくわずか認められただけなので、得
られた上記粒子粉末は、処方した各材料の配合割合を維
持していると推定できる。
It should be noted that, during the whole operation, only slight separation and detachment of the core particles and the sub-particles was observed, so that the obtained particle powder maintains the blending ratio of each prescribed material. Can be estimated.

【0050】比較のため、上記Fe3 4 粒子粉末及び
上記蛍光顔料粒子粉末を表1の処方で用い、2種の比較
用蛍光磁粉を次の操作によって製造した。
For comparison, the Fe 3 O 4 particle powder and the fluorescent pigment particle powder were used in the formulation shown in Table 1, and two types of comparative fluorescent magnetic powders were produced by the following procedure.

【0051】上記粉砕機に上記Fe3 4 粒子粉末と上
記蛍光顔料粒子粉末との各所定量を投入し、上記と同じ
羽根先端周速度・回転数にて、該粉末を一次粒子の状態
で気相中において粒子速度約100m/secに加速して粒
子どうしを2分間衝突させてメカノケミカル反応を行っ
て、該Fe3 4 粒子粉末の各粒子表面に該蛍光顔料粒
子粉末の各粒子が固着している粒子粉末(比較用蛍光磁
粉)を得た。この場合にも、核粒子と子粒子との剥離・
脱落がごくわずか認められただけなので、得られた粒子
粉末は、処方した両材料の配合割合を維持していると推
定できる。
A predetermined amount of the Fe 3 O 4 particle powder and the fluorescent pigment particle powder was charged into the pulverizer, and the powder was vaporized in the state of primary particles at the same blade tip peripheral speed and rotation speed as described above. In the phase, the particle velocity is accelerated to about 100 m / sec and the particles are collided with each other for 2 minutes to cause a mechanochemical reaction, so that each particle of the fluorescent pigment particle powder adheres to the surface of each particle of the Fe 3 O 4 particle powder. Particle powder (comparative fluorescent magnetic powder) was obtained. Also in this case, the separation between the core particles and the child particles
Since only a slight dropout was observed, it can be inferred that the obtained particle powder maintained the compounding ratio of both the prescribed materials.

【0052】ここに得た4種の本発明に係る磁粉探傷試
験用蛍光磁粉と2種の比較用蛍光磁粉の各蛍光輝度、各
磁気感度及び各探傷性能を表1に示す。
Table 1 shows the fluorescent brightness, magnetic sensitivity, and flaw detection performance of the four types of magnetic flux particles for the flaw detection test according to the present invention and the two types of the comparative magnetic flux particles for comparison.

【0053】[0053]

【表1】 [Table 1]

【0054】実施例5〜7 前出実施例と同じFe3 4 粒子粉末、平均粒子径0.
8μm で白色度88%のカオリン(サテントンNo5:商
品名:土屋カオリン工業株式会社製)及び前出実施例と
同じ蛍光顔料粒子粉末を表2の処方で用い、3種の本発
明に係る磁粉探傷試験用蛍光磁粉を前出実施例と同じ操
作、同一条件によって製造した。
Examples 5 to 7 Fe 3 O 4 particle powder same as in the above-mentioned Examples, average particle diameter of 0.
Kaolin having a whiteness of 8% and a whiteness of 88% (Satinton No5: trade name: manufactured by Tsuchiya Kaolin Kogyo Co., Ltd.) and the same fluorescent pigment particle powder as in the above-mentioned Examples were used in the formulations shown in Table 2 to detect three types of magnetic particle flaws according to the present invention. The test fluorescent magnetic powder was manufactured by the same operation and the same conditions as those in the above-mentioned Examples.

【0055】なお、全操作を通じて、核粒子と子粒子と
の剥離・脱落は、ごくわずか認められただけなので、得
られた本発明に係る磁粉探傷試験用蛍光磁粉は、処方し
た各材料の配合割合を維持していると推定できる。
Note that, during the whole operation, only slight separation and detachment of the core particles and the sub-particles was observed, so that the obtained fluorescent magnetic powder for magnetic particle flaw detection test according to the present invention is a mixture of the prescribed materials. It can be estimated that the ratio is maintained.

【0056】ここに得た3種の本発明に係る磁粉探傷試
験用蛍光磁粉の各蛍光輝度、各磁気感度及び各探傷性能
を表2に示す。
Table 2 shows the fluorescent brightness, the magnetic sensitivity, and the flaw detection performance of the three types of the fluorescent magnetic powder for flaw detection test according to the present invention.

【0057】[0057]

【表2】 [Table 2]

【0058】実施例8〜10、比較例3、4 平均粒子径2μm のγ−Fe2 3 粒子粉末(γ−50
0:商品名:チタン工業株式会社製)、実施例1〜4と
同じ酸化チタン粒子粉末及び実施例1〜4と同じ蛍光顔
料粒子粉末を表3の処方で用い、3種の本発明に係る磁
粉探傷試験用蛍光磁粉を、実施例1〜4と同じ操作、同
一加速条件によって製造した。
Examples 8 to 10 and Comparative Examples 3 and 4 γ-Fe 2 O 3 particle powder (γ-50 having an average particle diameter of 2 μm)
0: trade name: manufactured by Titanium Industry Co., Ltd.), the same titanium oxide particle powder as in Examples 1 to 4 and the same fluorescent pigment particle powder as in Examples 1 to 4 are used in the formulation of Table 3, and three kinds of the present invention are related Fluorescent magnetic powder for a magnetic particle flaw detection test was manufactured by the same operation and the same acceleration conditions as in Examples 1 to 4.

【0059】なお、全操作を通じて、核粒子と子粒子と
の剥離・脱落は、ごくわずか認められただけなので、得
られた本発明に係る磁粉探傷試験用蛍光磁粉は、処方し
た各材料の配合割合を維持していると推定できる。
Note that, during the whole operation, since the separation and detachment of the core particles and the sub-particles was observed only slightly, the obtained fluorescent magnetic powder for magnetic particle flaw detection test according to the present invention was blended with each of the prescribed materials. It can be estimated that the ratio is maintained.

【0060】比較のため、上記γ−Fe2 3 粒子粉末
及び上記蛍光顔料粒子粉末を表3の処方で用い、2種の
比較用蛍光磁粉を、比較例1、2と同じ操作、同一加速
条件によって製造した。この場合にも、核粒子と子粒子
との剥離・脱落は、ごくわずか認められただけなので、
得られた比較用蛍光磁粉は、処方した両材料の配合割合
を維持していると推定できる。
For comparison, the above-mentioned γ-Fe 2 O 3 particle powder and the above-mentioned fluorescent pigment particle powder were used in the formulation shown in Table 3, and two kinds of comparative fluorescent magnetic powders were used in the same operation and the same acceleration as in Comparative Examples 1 and 2. It was manufactured according to the conditions. Also in this case, since the separation and drop-off between the core particles and the child particles was only slightly observed,
It can be inferred that the obtained comparative fluorescent magnetic powder maintains the blending ratio of both the prescribed materials.

【0061】ここに得た3種の本発明に係る磁粉探傷試
験用蛍光磁粉と2種の比較用蛍光磁粉の各蛍光輝度、各
磁気感度及び各探傷性能を表3に示す。
Table 3 shows the fluorescent brightness, the magnetic sensitivity, and the flaw detection performance of the three types of the magnetic flaw detection test fluorescent magnetic powders according to the present invention and the two types of comparative fluorescent magnetic powders obtained here.

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【発明の効果】本発明によれば、磁粉探傷試験用蛍光磁
粉の材料コスト中で最も高くつく蛍光輝度着色材の配合
割合を減少させても高蛍光輝度が得られるので、安価、
且つ高感度の蛍光磁粉が提供できる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a high fluorescent brightness even if the compounding ratio of the fluorescent brightness coloring material, which is the most expensive in the material cost of the fluorescent magnetic powder for magnetic particle flaw detection test, is reduced, so that the cost is low.
Moreover, highly sensitive fluorescent magnetic powder can be provided.

【0064】また、本発明によれば、メカノケミカル反
応によって導磁性酸化鉄粒子粉末の各粒子を核粒子とし
てその粒子表面に、合成樹脂からなる結合材を用いるこ
となく、白色無機粒子粉末及び蛍光着色材粒子粉末の各
粒子を子粒子として固着させているので、効率よく目的
とする蛍光磁粉が製造できる。
Further, according to the present invention, each particle of the magnetically conductive iron oxide particle powder is used as a core particle by the mechanochemical reaction, and a white inorganic particle powder and a fluorescent material are used on the surface of the particle without using a binder made of synthetic resin. Since each particle of the coloring material particle powder is fixed as a child particle, the target fluorescent magnetic powder can be efficiently manufactured.

【0065】従って、本発明は、鉄鋼メーカーや自動車
メーカーなどの磁粉探傷試験用蛍光磁粉ユーザーの要請
を満たすものであり、その産業利用性は非常に大きいと
言える。
Therefore, the present invention satisfies the demands of fluorescent magnetic powder users for magnetic particle flaw detection tests, such as steel manufacturers and automobile manufacturers, and it can be said that its industrial applicability is very high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用した磁気感度測定器の構成
を示す回路図
FIG. 1 is a circuit diagram showing a configuration of a magnetic sensitivity measuring device used in the present invention.

【符号の説明】[Explanation of symbols]

1 スライダック 2 トラン
ス 3 電圧計 4 電流計 5 コイル
1 sliderac 2 transformer 3 voltmeter 4 ammeter 5 coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径2〜5μm の導磁性酸化鉄粒
子60〜90重量%、平均粒子径0.02〜1μm の白
色無機粒子3〜20重量%及び平均粒子径0.1〜0.
5μm の蛍光着色材粒子2〜10重量%が配合されてお
り、且つ、前記導磁性酸化鉄粒子の表面に第1被覆層と
して前記白色無機粒子がメカノケミカル反応によって固
着していると共にその表面に第2被覆層として前記蛍光
着色材粒子がメカノケミカル反応によって固着している
ことを特徴とする磁粉探傷試験用蛍光磁粉。
1. A magnetic iron oxide particle having an average particle diameter of 2 to 5 μm, 60 to 90% by weight, white inorganic particles having an average particle diameter of 0.02 to 1 μm, 3 to 20% by weight, and an average particle diameter of 0.1 to 0.
2 to 10% by weight of fluorescent colorant particles of 5 μm are mixed, and the white inorganic particles are fixed to the surface of the magnetically conductive iron oxide particles as a first coating layer by a mechanochemical reaction, A fluorescent magnetic powder for magnetic particle flaw detection test, wherein the fluorescent colorant particles are fixed as a second coating layer by a mechanochemical reaction.
【請求項2】 平均粒子径2〜5μm の導磁性酸化鉄粒
子粉末60〜90重量%と平均粒子径0.02〜1μm
の白色無機粒子粉末3〜20重量%を、一次粒子の状態
で混合し該混合粉末を気相中において粒子速度60〜1
60m/secに加速して粒子どうしを衝突させてメカノケ
ミカル反応を行うことによって、前記導磁性酸化鉄粒子
粉末の各粒子表面に前記白色無機粒子粉末の各粒子を固
着させて第1被覆層を形成し、次いで、当該第1被覆層
が形成されている導磁性酸化鉄粒子粉末に平均粒子径
0.1〜0.5μm の蛍光着色材粒子粉末2〜10重量
%を一次粒子の状態で添加して混合し該混合粉末を気相
中において粒子速度60〜160m/secに加速して粒子
どうしを衝突させてメカノケミカル反応を行うことによ
って前記第1被覆層の表面に前記蛍光着色材粒子粉末の
各粒子を固着させて第2被覆層を形成することを特徴と
する磁粉探傷試験用蛍光磁粉の製造法。
2. A magnetic conductive iron oxide particle powder having an average particle diameter of 2 to 5 μm, 60 to 90% by weight, and an average particle diameter of 0.02 to 1 μm.
3 to 20% by weight of the white inorganic particle powder are mixed in the state of primary particles, and the mixed powder in the gas phase has a particle velocity of 60 to 1
By accelerating at 60 m / sec and causing the particles to collide with each other to perform a mechanochemical reaction, each particle of the white inorganic particle powder is fixed to the surface of each particle of the magnetically conductive iron oxide particle powder to form the first coating layer. Then, 2 to 10% by weight of fluorescent colorant particle powder having an average particle diameter of 0.1 to 0.5 μm is added to the magnetically conductive iron oxide particle powder on which the first coating layer is formed in the form of primary particles. Then, the mixed powder is accelerated in the gas phase to a particle velocity of 60 to 160 m / sec to cause particles to collide with each other to cause a mechanochemical reaction, and thereby the fluorescent colorant particle powder is applied to the surface of the first coating layer. A method for producing a fluorescent magnetic powder for a magnetic particle flaw detection test, which comprises fixing the respective particles to form a second coating layer.
JP15523295A 1995-05-29 1995-05-29 Fluorescent magnetic powder for magnetic particle flaw detection test and its production method Expired - Fee Related JP3536188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15523295A JP3536188B2 (en) 1995-05-29 1995-05-29 Fluorescent magnetic powder for magnetic particle flaw detection test and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15523295A JP3536188B2 (en) 1995-05-29 1995-05-29 Fluorescent magnetic powder for magnetic particle flaw detection test and its production method

Publications (2)

Publication Number Publication Date
JPH08327604A true JPH08327604A (en) 1996-12-13
JP3536188B2 JP3536188B2 (en) 2004-06-07

Family

ID=15601429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15523295A Expired - Fee Related JP3536188B2 (en) 1995-05-29 1995-05-29 Fluorescent magnetic powder for magnetic particle flaw detection test and its production method

Country Status (1)

Country Link
JP (1) JP3536188B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039999A (en) * 2000-07-27 2002-02-06 Marktec Corp Fluorescent magnetic particle for magnetic particle flaw detecting test, and its manufacturing method
EP1215261A2 (en) * 2000-12-18 2002-06-19 Sumitomo Chemical Company, Limited Method of producing aluminate phosphor
KR100435433B1 (en) * 1999-09-16 2004-06-10 주식회사 포스코 A magnetic powder for billet surface inspection
KR100497668B1 (en) * 2000-12-22 2005-07-01 주식회사 포스코 Magnetic powder contained fluorescent pigment and titanium dioxide
KR100544877B1 (en) * 2001-10-09 2006-01-24 주식회사 포스코 Method of surface defect detection of billet
JP2006145246A (en) * 2004-11-16 2006-06-08 Kawada Kogyo Kk Method for testing protection against dust and resistance to water of body structure, and powder for test protection against dust used for the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435433B1 (en) * 1999-09-16 2004-06-10 주식회사 포스코 A magnetic powder for billet surface inspection
JP2002039999A (en) * 2000-07-27 2002-02-06 Marktec Corp Fluorescent magnetic particle for magnetic particle flaw detecting test, and its manufacturing method
JP4521648B2 (en) * 2000-07-27 2010-08-11 マークテック株式会社 Manufacturing method of fluorescent powder for magnetic particle testing
EP1215261A2 (en) * 2000-12-18 2002-06-19 Sumitomo Chemical Company, Limited Method of producing aluminate phosphor
KR100497668B1 (en) * 2000-12-22 2005-07-01 주식회사 포스코 Magnetic powder contained fluorescent pigment and titanium dioxide
KR100544877B1 (en) * 2001-10-09 2006-01-24 주식회사 포스코 Method of surface defect detection of billet
JP2006145246A (en) * 2004-11-16 2006-06-08 Kawada Kogyo Kk Method for testing protection against dust and resistance to water of body structure, and powder for test protection against dust used for the method

Also Published As

Publication number Publication date
JP3536188B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
DE112014006041B4 (en) Magnetic toner
DE112012005485B4 (en) Magnetic toner
DE112012005504B4 (en) Magnetic toner
DE112016001186T5 (en) Magnetic carrier
DE102016116611A1 (en) toner
DE10244951A1 (en) Two-component developer
CN106033174B (en) Bright property toner and electrostatic charge image developer
JP3536188B2 (en) Fluorescent magnetic powder for magnetic particle flaw detection test and its production method
EP3932869A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP4521648B2 (en) Manufacturing method of fluorescent powder for magnetic particle testing
JP4359353B2 (en) Non-silking yellow iron oxide pigments with high color density
JPS62229160A (en) Colored 1-component toner
EP3709087A1 (en) Toner
EP4130884A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
KR100287745B1 (en) Water Dispersible Fluorescent Powder for Wet Magnetic Powder Testing
US5556571A (en) Magnetite particles and process for preparing the same
JP2813952B2 (en) Colored magnetic powder for magnetic particle flaw detection test and method for producing the same
CA1136028A (en) Magnetic particle inspection process and composition useable with simultaneous illumination by ultraviolet and white light
DE10344591B4 (en) Toner, its use, two-component developer and method of producing fixed images
DE102020112666A1 (en) TONER
EP4130885A1 (en) Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer
JP6914693B2 (en) Wet magnetic particle flaw detection test fluorescent magnetic powder and wet magnetic particle flaw detection test method using the fluorescent magnetic powder
JP2002072545A (en) Electrostatic copying magnetic toner and electrostatic latent image developing carrier
JPH07111421B2 (en) Manufacturing method of colored magnetic powder for magnetic particle inspection
JPS60211358A (en) Manufacture of colored magnetic powder for magnetic powder flaw detection

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees