JPH07111421B2 - Manufacturing method of colored magnetic powder for magnetic particle inspection - Google Patents

Manufacturing method of colored magnetic powder for magnetic particle inspection

Info

Publication number
JPH07111421B2
JPH07111421B2 JP13900287A JP13900287A JPH07111421B2 JP H07111421 B2 JPH07111421 B2 JP H07111421B2 JP 13900287 A JP13900287 A JP 13900287A JP 13900287 A JP13900287 A JP 13900287A JP H07111421 B2 JPH07111421 B2 JP H07111421B2
Authority
JP
Japan
Prior art keywords
powder
magnetic powder
particle
particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13900287A
Other languages
Japanese (ja)
Other versions
JPS63304153A (en
Inventor
優 宇野
隆夫 荘田
明義 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP13900287A priority Critical patent/JPH07111421B2/en
Publication of JPS63304153A publication Critical patent/JPS63304153A/en
Publication of JPH07111421B2 publication Critical patent/JPH07111421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁粉探傷用着色磁粉の製造法に関するもので
ある。
The present invention relates to a method for producing a colored magnetic powder for magnetic particle flaw detection.

〔従来の技術〕[Conventional technology]

鋼材の如き磁化可能な被検査物の非破壊検査法の一種で
ある磁粉探傷は、JIS GO565−1974に規格化されてい
る。そして、この探傷法には、導磁性粒子粉末である純
鉄粒子粉末、四三酸化鉄粒子粉末及びステンレススチー
ル粒子粉末(これ等を「磁粉」という。)の粒子表面を
白色、赤色、又は黄色を呈する顔料や染料或いは紫外線
照射によつて励起され黄色乃至黄緑色に発光する螢光染
料等の無機又は有機色素(これ等を「着色材」とい
う。)を用いて着色したもの(これ等を「着色磁粉」と
いう。)が用いられていることは周知である。
Magnetic particle flaw detection, which is a type of non-destructive inspection method for magnetizable inspected objects such as steel, is standardized in JIS GO 565-1974. Then, in this flaw detection method, the particle surfaces of pure iron particle powder, ferrosoferric oxide particle powder, and stainless steel particle powder (these are referred to as "magnetic particles") that are magnetically conductive particle powders are white, red, or yellow. Those colored with an inorganic or organic dye (such as a "coloring material") such as a pigment or dye exhibiting a color, or a fluorescent dye or the like that is excited by irradiation of ultraviolet rays and emits yellow to yellow-green light. It is well known that "colored magnetic powder" is used.

着色磁粉は大別すると、磁粉に着色材を合成樹脂を結合
材として固着させたものと、磁粉に結合材を用いること
なく着色材を直接固着させたものとに別けられる。
The colored magnetic powders are roughly classified into those in which a coloring material is fixed to a magnetic powder by using a synthetic resin as a binding material, and those in which the coloring material is directly fixed to a magnetic powder without using a binding material.

前者の結合材を用いた着色磁粉の代表的な製造法は、最
も古くから採用され、現在も実用されている「粉砕法」
と呼ばれる方法であり、これは、結合材として熱可塑性
合成樹脂を用い、該樹脂を溶剤に溶解した溶液に着色材
を分散又は溶解して置き、これに磁粉を加えて練合して
ペースト状物とし、該ペースト状物を乾燥して溶剤を揮
散させて塊状物とした後、粉砕機を用いて粉砕し、次い
で篩によつて分級して所要の粒度をもつ着色磁粉を得る
という方法である。
The former typical method for producing colored magnetic powder using a binder is the "grinding method", which has been adopted since the oldest and is still in use today.
This is a method called a thermoplastic synthetic resin as a binder, and a coloring material is dispersed or dissolved in a solution of the resin dissolved in a solvent, and magnetic powder is added to this and kneaded to form a paste. In this method, the paste-like material is dried and the solvent is volatilized to form a lump, which is then crushed using a crusher and then classified by a sieve to obtain a colored magnetic powder having a required particle size. is there.

また、「粉砕法」には、粉砕時に着色材が結合材ととも
に磁粉から剥離し、製品中に未着色の磁粉と剥離物とが
混入してしまうという欠点と所要の粒度の製品を得るに
当つて再三の篩による分級を必要とするので非能率的で
あるとともに歩留りが悪いという短所があることに鑑
み、近年、特開昭60−211358号公報記載の方法に代表さ
れる「噴霧法」と呼ばれる方法が提案されており、これ
は結合材とする熱可塑性合成樹脂を溶剤に溶解した溶液
に着色材を分散若しくは溶解して置き、これに所要粒度
の磁粉を加えて混和してスラリー状物とし、該スラリー
状物を回転円盤型アトマイザーや二流体ノズルを用いて
噴霧して、乾燥、微粒子化して、所要粒度の着色磁粉を
得るという方法であり、「粉砕法」と比較すれば剥離は
少ないが、それでもなお、製品中に相当量の未着色の磁
粉と剥離物とが混入することを避けることができず、更
に、製造できる着色磁粉は比較的粒度の大きいものに限
られ、平均粒径5ミクロン程度以下の着色磁粉を得るこ
とは極めて困難である。
In addition, in the "pulverization method", the coloring material is peeled off together with the binder from the magnetic powder at the time of pulverization, and uncolored magnetic powder and exfoliated substances are mixed in the product, and it is necessary to obtain a product having a required particle size. In view of the disadvantage that the yield is poor as well as being inefficient because it requires classification by a sieve repeatedly, in recent years, the `` spraying method '' represented by the method described in JP-A-60-211358. A method called so far has been proposed, in which a coloring material is dispersed or dissolved in a solution in which a thermoplastic synthetic resin as a binder is dissolved in a solvent, and magnetic particles of a required particle size are added to and mixed with the slurry to form a slurry-like material. Then, the slurry is sprayed using a rotary disk atomizer or a two-fluid nozzle, dried, and made into fine particles to obtain colored magnetic powder having a required particle size. Few, but still It is unavoidable that a considerable amount of uncolored magnetic powder and exfoliated substances are mixed in the product, and the colored magnetic powder that can be produced is limited to those having a relatively large particle size, and the average particle size is about 5 microns or less. It is extremely difficult to obtain the colored magnetic powder.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、磁粉に着色材を合成樹脂を結合材として固着
させた着色磁粉の製造法に属するものであり、前記「粉
砕法」と「噴霧法」に共通する製品中に未着色の磁粉と
剥離物とが混入するという問題点の解決並びに「粉砕
法」に内在する歩留りが悪いという問題点と「噴霧法」
に内在する平均粒径5ミクロン程度以下の着色磁粉を得
ることが困難という問題点の解決を技術的課題とするも
のである。
The present invention belongs to a method for producing a colored magnetic powder in which a coloring material is fixed to a magnetic powder by using a synthetic resin as a binder, and an uncolored magnetic powder in a product common to the "crushing method" and the "spraying method" Solving the problem of mixing with exfoliated matter and the problem of poor yield inherent in the "crushing method" and "spraying method"
The technical problem is to solve the problem that it is difficult to obtain colored magnetic powder having an average particle size of about 5 microns or less, which is inherent in the above.

尚、未着色の磁粉や剥離物が混入している着色磁粉を使
用して磁粉探傷を行う場合には明瞭な欠陥指示模様が得
られず探傷精度が著るしく低下してしまうことは、当業
界においてよく知られている。
In addition, when magnetic powder flaw detection is performed using colored magnetic powder containing uncolored magnetic powder or exfoliated material, a clear defect indication pattern cannot be obtained, and the flaw detection accuracy may significantly decrease. Well known in the industry.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、前記技術的課題を次の通りの技術的手段を
採ることによつて達成した。
The present inventor has achieved the above technical problem by taking the following technical means.

即ち磁粉として平均粒径1ミクロンから平均粒径10ミク
ロンの範囲内のいづれかの平均粒径をもつ純鉄粒子粉
末、四三酸化鉄粒子粉末又はステンレススチール粒子粉
末40〜90部を用い、これに結合材として対象とする磁粉
のもつ平均粒径と同等又は小さい平均粒径をもつ熱可塑
性合成樹脂粒子粉末5〜20部を加え、両粉末を一次粒子
の状態で混合し、該混合粉末を気相中で粒子速度60〜16
0m/secに加速して粒子どうしを1〜3分間衝突させるこ
とによつて対象とする磁粉の各粒子表面に前記結合材の
被膜をメカノケミカル反応により形成し、更に、これに
着色材として該結合材被膜を形成した磁粉のもつ平均粒
径よりも小さい平均粒径をもつ無機又は有機色素粒子粉
末5〜20部を加え、両粉末を一次粒子の状態で混合し、
該混合粉末を気相中で粒子速度60〜160m/secに加速して
粒子どうしを1〜3分間衝突させることによつて当該結
合材被膜を形成した磁粉の各粒子表面に前記着色材をメ
カノケミカル反応により固着することからなる磁粉探傷
用着色磁粉の製造法である。
That is, 40 to 90 parts of pure iron particle powder, ferrosoferric oxide particle powder or stainless steel particle powder having an average particle diameter within the range of 1 micron to 10 micron is used as the magnetic powder. Add 5 to 20 parts of thermoplastic synthetic resin particle powder having an average particle size equal to or smaller than the average particle size of the target magnetic powder as a binder, mix both powders in the state of primary particles, and mix the powder Particle velocity in phase 60-16
A film of the binder is formed by a mechanochemical reaction on each particle surface of the target magnetic powder by accelerating the particles to 0 m / sec for 1 to 3 minutes to collide with each other, and further, as a coloring material, Add 5 to 20 parts of an inorganic or organic pigment particle powder having an average particle size smaller than that of the magnetic powder forming the binder coating, and mix both powders in the state of primary particles,
By accelerating the mixed powder in the gas phase to a particle velocity of 60 to 160 m / sec and causing the particles to collide with each other for 1 to 3 minutes, the coloring agent is mechanically attached to each particle surface of the magnetic powder on which the binder coating is formed. It is a method for producing a colored magnetic powder for magnetic particle flaw detection, which comprises fixing by a chemical reaction.

本発明方法において用いる磁粉は、平均粒径1ミクロン
から平均粒径10ミクロンの範囲内のいづれかの平均粒径
をもつ純鉄粒子粉末、四三酸化鉄粒子粉末又はステンレ
ススチール粒子粉末であり、これ等はいづれも磁粉探傷
に常用されているものであつて、市販品があり、所望の
平均粒径をもつものが容易に入手できる。
The magnetic powder used in the method of the present invention is a pure iron particle powder, a ferrosoferric oxide particle powder or a stainless steel particle powder having an average particle size within the range of 1 to 10 microns. All of these are commonly used for magnetic particle flaw detection, and there are commercial products, and those having a desired average particle size are easily available.

精密な磁粉探傷用に使用される着色磁粉を製造する場合
には、平均粒径1ミクロンから平均粒径5ミクロンまで
の範囲内の所要の平均粒径をもつ磁粉を選択すべきであ
り、通常の磁粉探傷用に使用される着色磁粉を製造する
場合には、平均粒径5ミクロンから平均粒径10ミクロン
までの範囲内の所要平均粒径をもつ磁粉を選択すればよ
い。
When manufacturing colored magnetic powders used for precise magnetic particle flaw detection, magnetic powders with a required average particle size within the range of average particle size 1 micron to average particle size 5 microns should be selected. When the colored magnetic powder used for the magnetic particle flaw detection is manufactured, the magnetic powder having the required average particle diameter within the range of the average particle diameter of 5 μm to the average particle diameter of 10 μm may be selected.

上記磁粉を40〜90部用いるのは、得られた着色磁粉を使
用して磁粉探傷を行なうに当つて40部以下の場合には欠
陥部に集合・付着する能力(磁気感度)が小さくなり正
確な探傷結果が得られ難いからであり、また、90部以上
の場合には結合材と着色材の量が少なくなりすぎ充分な
固着効果と着色効果が得られなくなるからである。
Using 40 to 90 parts of the above-mentioned magnetic powder means that when performing magnetic powder flaw detection using the obtained colored magnetic powder, if it is less than 40 parts, the ability to collect and adhere to defective parts (magnetic sensitivity) will be small and accurate. This is because it is difficult to obtain a satisfactory flaw detection result, and when it is 90 parts or more, the amounts of the binder and the coloring agent are too small, and sufficient fixing effect and coloring effect cannot be obtained.

本発明方法において結合材とする熱可塑性合成樹脂は、
着色磁粉の製造に当つて常用されているナイロン12、ポ
リスチレン樹脂の如き熱可塑性合成樹脂であるが、その
形態は粒子状であることが必要であり、且つ、対象とす
る前記範囲から選ばれる平均粒径をもつ磁粉と同等又は
小さい平均粒径をもつ粒子粉末でなければならない。詳
言すれば、例えば平均粒径1ミクロンの磁粉を対象とす
るときには平均粒径1ミクロン又は平均粒径1ミクロン
以下の熱可塑性合成樹脂粒子粉末を用いるのである。対
象とする磁粉のもつ平均粒径よりも大きい平均粒径をも
つ熱可塑性合成樹脂粒子粉末を用いる場合にはメカノケ
ミカル反応によつて被膜を形成させることが、困難とな
る。熱可塑性合成樹脂粒子粉末の平均粒子径が対象とす
る磁粉のそれよりも小さければ小さい程、磁粉の各粒子
表面に熱可塑性合成樹脂被膜層を形成させることが容易
となる。対象とする磁粉のもつ平均粒子径の1/5以下の
平均粒子径をもつものを選択することが好ましい。
The thermoplastic synthetic resin as the binder in the method of the present invention,
Nylon 12, which is commonly used in the production of colored magnetic powder, is a thermoplastic synthetic resin such as polystyrene resin, but its form is required to be in the form of particles, and the average selected from the above target range. It must be a particle powder with an average particle size equal to or smaller than the magnetic powder with a particle size. More specifically, for example, when a magnetic powder having an average particle size of 1 micron is targeted, a thermoplastic synthetic resin particle powder having an average particle size of 1 micron or an average particle size of 1 micron or less is used. When a thermoplastic synthetic resin particle powder having an average particle size larger than that of the target magnetic powder is used, it becomes difficult to form a film by a mechanochemical reaction. The smaller the average particle size of the thermoplastic synthetic resin particle powder is than that of the target magnetic powder, the easier it is to form the thermoplastic synthetic resin coating layer on the surface of each particle of the magnetic powder. It is preferable to select one having an average particle size of 1/5 or less of the average particle size of the target magnetic powder.

上記熱可塑性合成樹脂粒子粉末を5〜20部用いるのは、
5部以下では後述の着色材を強固に固着するために必要
な被膜を形成することが困難となるからであり、20部以
上を用いると着色磁粉の必須成分である磁粉と着色材の
使用量が少くなり充分な探傷能力をもつ着色磁粉が得ら
れなくなるからである。
Using 5 to 20 parts of the thermoplastic synthetic resin particle powder,
If it is 5 parts or less, it will be difficult to form a film necessary for firmly fixing the coloring material described later, and if 20 parts or more is used, the amount of the magnetic powder and the coloring material which are the essential components of the colored magnetic powder are used. Is less, and colored magnetic powder having a sufficient flaw detection ability cannot be obtained.

本発明方法において着色材とする無機又は有機色素は、
着色磁粉の製造に当つて常用されているチタン白、弁柄
等の無機顔料、ハンザイエロー5G(商品名:黄色顔料)
ブリリアントカーミン3G(商品名:赤色顔料)等の有機
顔料及びルモゲンブリリアントイエロー(商品名:螢光
染料)等の螢光染料であるが、その形態は粒子状である
ことが必要であり、且つ、結合材被膜を形成した磁粉の
もつ平均粒径よりも小さい平均粒径をもつ粒子粉末でな
ければならない。結合材被膜を形成した磁粉のもつ平均
粒径と同等又は大きい平均粒径をもつものを用いる場合
にはメカノケミカル反応によつて固着させることが極め
て困難となる。無機又は有機色素粒子粉末の平均粒子径
が結合材被膜を形成した磁粉のもつそれよりも小さけれ
ば小さい程、固着が容易となる。結合材被膜を形成した
磁粉のもつ平均粒子径の1/10以下の平均粒子径をもつも
のを選択することが好ましい。
Inorganic or organic dye as a coloring material in the method of the present invention,
Titanium white, inorganic pigments such as Benji, which are commonly used in the production of colored magnetic powder, Hansa Yellow 5G (trade name: yellow pigment)
Organic pigments such as Brilliant Carmine 3G (trade name: red pigment) and fluorescent dyes such as Lumogen Brilliant Yellow (trade name: fluorescent dye), but the form thereof is required to be particulate, and , The particle powder should have a smaller average particle size than the average particle size of the magnetic powder with the binder coating. When a magnetic powder having a binder coating and having an average particle size equal to or larger than the average particle size of the magnetic powder is used, it is extremely difficult to fix the particles by a mechanochemical reaction. The smaller the average particle size of the inorganic or organic pigment particle powder is than that of the magnetic powder on which the binder coating is formed, the easier the fixation becomes. It is preferable to select one having an average particle diameter of 1/10 or less of the average particle diameter of the magnetic powder having the binder coating formed thereon.

上記無機又は有機色素粒子粉末を5〜20部用いるのは、
5部以下では充分な着色効果が得られ難いが、5部以下
20部までの使用で実用上充分な着色効果が得られるから
である。
Using 5 to 20 parts of the inorganic or organic dye particles powder,
If it is 5 parts or less, it is difficult to obtain a sufficient coloring effect, but 5 parts or less
This is because when used up to 20 parts, a practically sufficient coloring effect can be obtained.

前記熱可塑性合成樹脂粒子粉末と上記無機又は有機色素
粒子粉末は、市販品から所要の平均粒径をもつものを選
択するか、或いは市販の粉末状製品を所要の平均粒径に
粉砕して用いればよい。
The thermoplastic synthetic resin particle powder and the inorganic or organic pigment particle powder may be selected from commercially available products having a required average particle diameter, or a commercially available powdered product may be crushed to a required average particle diameter before use. Good.

本発明方法は、前記の通りの磁粉の各粒子表面に前記の
通りの熱可塑性合成樹脂粒子粉末の被膜を形成し、該被
膜に前記の通りの無機又は有機色素粒子粉末を強固に固
着させるものである。このためには、先ず、磁粉と熱可
塑性合成樹脂粒子粉末とを、1ケ、1ケの粒子がバラバ
ラの一次粒子の状態で混合し、該混合粉末にメカノケミ
カル反応を起させることが必要である。両粉末はミクロ
ン単位の微粒子粉末であるから、通常は凝集した状態に
あるが、かゝる両粉体を回転羽を備えた高速攪拌機によ
つて羽根先端周速度4〜10m/sec、回転数1000〜3500RPM
の条件で3〜5分間攪拌すれば、容易に、一次粒子の状
態で充分混合された混合物とすることができる。
The method of the present invention comprises forming a coating film of the thermoplastic synthetic resin particle powder as described above on each particle surface of the magnetic powder as described above, and firmly fixing the inorganic or organic dye particle powder as described above to the coating film. Is. For this purpose, it is first necessary to mix the magnetic powder and the thermoplastic synthetic resin particle powder in a state where one particle and one particle are discrete primary particles and cause the mixed powder to cause a mechanochemical reaction. is there. Since both powders are fine particles in the unit of micron, they are usually in a state of agglomeration, but both powders are circulated at a blade tip peripheral speed of 4-10m / sec and rotation speed by a high-speed stirrer equipped with a rotary blade. 1000-3500 RPM
If the mixture is stirred for 3 to 5 minutes under the above condition, a mixture sufficiently mixed in the state of primary particles can be easily obtained.

磁粉と熱可塑性合成樹脂粒子粉末とが一次粒子の状態で
混合している混合物を、周知の高速回転ミルやジエット
ミルを用い、粉体を気相中で粒子速度60〜160m/secに加
速して粒子どうしを1〜3分間衝突させれば、磁粉粒子
が核粒子となり、熱可塑性合成樹脂粒子が子粒子とな
り、メカノケミカル反応によつて核粒子の表面に均一な
被膜が形成され、表面に熱可塑性合成樹脂被膜が形成さ
れた一ケ、一ケが殆んどバラバラの状態にある磁粉が得
られる。
A mixture in which magnetic powder and thermoplastic synthetic resin particle powder are mixed in the state of primary particles, using a known high-speed rotating mill or jet mill, the powder is accelerated in the gas phase to a particle velocity of 60 to 160 m / sec. When the particles collide with each other for 1 to 3 minutes, the magnetic powder particles become core particles, the thermoplastic synthetic resin particles become sub-particles, and a uniform film is formed on the surface of the core particles by the mechanochemical reaction, and the heat on the surface is increased. A magnetic powder in which a plastic synthetic resin film is formed and one of which is almost in a scattered state can be obtained.

次に、上記の表面に熱可塑性合成樹脂被覆が形成されて
いる磁粉と無機又は有機色素粒子粉末とを一ケ、一ケの
粒子がバラバラの一次粒子の状態で混合し、該混合粉末
にもメカノケミカル反応を起させる必要がある。この場
合にも、両粉末は、通常は凝集した状態にあるが、前記
と同条件で両粉体を容易に一次粒子の状態で充分混合さ
れた混合物とすることができる。
Next, one piece of the magnetic powder and the inorganic or organic pigment particle powder on which the thermoplastic synthetic resin coating is formed on the above-mentioned surface, one particle is mixed in the state of discrete primary particles, and the mixed powder also It is necessary to cause mechanochemical reaction. Also in this case, both powders are usually in an agglomerated state, but under the same conditions as above, both powders can be easily made into a sufficiently mixed mixture in the state of primary particles.

表面に熱可塑性合成樹脂被膜が形成されている磁粉と無
機又は有機色素粒子粉末とが一次粒子の状態で混合して
いる混合物を、前記と同様に、周知の高速回転ミルやジ
エットミルを用い、粉体を気相中で粒子速度60〜160m/s
ecに加速して粒子どうしを1〜3分間衝突させれば、表
面に熱可塑性合成樹脂被膜が形成されている磁粉粒子が
核粒子となり、無機又は有機色素粒子が子粒子となり、
メカノケミカル反応によつて核粒子の表面に子粒子が均
一、且つ、強固に固着し、一ケ、一ケがバラバラの状態
にある着色磁粉が得られる。
A mixture of a magnetic powder having a thermoplastic synthetic resin coating formed on its surface and an inorganic or organic pigment particle powder mixed in the state of primary particles, similarly to the above, using a known high-speed rotating mill or jet mill, powder Particle velocity in the gas phase of 60 to 160 m / s
By accelerating to ec and colliding the particles with each other for 1 to 3 minutes, the magnetic powder particles having the thermoplastic synthetic resin coating formed on the surface become core particles, and the inorganic or organic pigment particles become child particles,
By the mechanochemical reaction, the child particles are uniformly and firmly adhered to the surface of the core particles, and a colored magnetic powder in which one particle is in a disjointed state is obtained.

粒子速度を60〜160m/secに加速するのは、60.m/sec以下
の場合には、メカノケミカル反応を起させるに必要な機
械的、熱的エネルギーが得られないが、60m/sec以上に
加速した場合には、メカノケミカル反応による充分な被
膜形成効果又は固着効果が得られる。粒子速度を大きく
すればする程、これ等の効果は大きくなるが、実用上は
160m/sec程度までで充分である。
Accelerating the particle velocity to 60-160 m / sec is 60.m / sec or less, but if it is 60.m / sec or less, the mechanical and thermal energy necessary for causing the mechanochemical reaction cannot be obtained. In the case of accelerating to 1, a sufficient film forming effect or a fixing effect due to the mechanochemical reaction is obtained. The higher the particle velocity, the greater these effects, but in practice
Up to 160m / sec is enough.

粒子どうしを衝突させる時間は、粒子速度60〜160m/sec
において少くとも1分間以上が必要であり、1〜3分間
の衝突時間で実用上充分な被膜形成効果又は固着効果が
得られる。
The time for the particles to collide is 60-160m / sec.
In this case, at least 1 minute or more is required, and a practically sufficient film-forming effect or sticking effect can be obtained with a collision time of 1-3 minutes.

〔作用〕[Action]

前記の通り、磁粉と熱可塑性合成樹脂粒子粉末とを用
い、両粉末を一次粒子の状態で混合し、当該混合物を気
相中で粒子速度60〜160m/secに加速して粒子どうしを1
〜3分間衝突させると、衝突時の衝撃力と摩擦力から発
生する機械的・熱的エネルギーによつて、核粒子となる
磁粉粒子と子粒子となる樹脂粒子との間にメカノケミカ
ル反応が起り、核粒子である各磁粉粒子の表面に子粒子
である樹脂粒子の被膜が形成される。
As described above, the magnetic powder and the thermoplastic synthetic resin particle powder are used, both powders are mixed in the state of primary particles, and the mixture is accelerated in the gas phase to a particle velocity of 60 to 160 m / sec to make particles 1
When they are collided for ~ 3 minutes, the mechanical and thermal energy generated from the impact force and frictional force at the time of collision causes mechanochemical reaction between the magnetic particles as the core particles and the resin particles as the child particles. A coating of resin particles, which are child particles, is formed on the surface of each magnetic powder particle that is a core particle.

本発明者は、顕微鏡観察によつて、各磁粉粒子の表面に
平滑な樹脂被膜が形成されており、用いた熱可塑性合成
樹脂粒子が熔融したことを確認している。
The present inventor has confirmed by microscope observation that a smooth resin coating is formed on the surface of each magnetic powder particle and that the thermoplastic synthetic resin particles used have melted.

また、前記の通り、表面に熱可塑性合成樹脂被膜が形成
された磁粉と無機又は有機色素粒子粉末とを用い、両粉
末を一次粒子の状態で混合し、当該混合物を気相中で粒
子速度60〜160m/secに加速して粒子どうしを1〜3分間
衝突させると、衝突時の衝撃力と摩擦力から発生する機
械的・熱的エネルギーによつて核粒子となる上記磁粉粒
子と子粒子となる色素粒子との間にメカノケミカル反応
が起り、核粒子である各上記磁粉粒子の表面に子粒子で
ある色素粒子が強固に固着する。
Further, as described above, using a magnetic powder having a thermoplastic synthetic resin coating formed on the surface and an inorganic or organic pigment particle powder, both powders are mixed in the state of primary particles, and the mixture has a particle velocity of 60 in the gas phase. When the particles are collided with each other for 1 to 3 minutes by accelerating to ~ 160 m / sec, the magnetic powder particles and the child particles, which become the core particles by the mechanical / thermal energy generated from the impact force and the frictional force at the time of collision, A mechanochemical reaction occurs with the dye particles, and the dye particles, which are the child particles, firmly adhere to the surfaces of the magnetic powder particles, which are the core particles.

本発明者は、顕微鏡観察によつて、各上記磁粉粒子の表
面に無機又は有機色素粒子が微細な凹凸をもつ被膜状に
固着しており、該凹凸は、無機色素粒子を用いた場合と
比較して有機色素粒子を用いた場合にはより微細な凹凸
となつていることを確認している。この結果は、無機色
素粒子は樹脂被膜表面にくい込んでおり、有機色素粒子
は樹脂被膜表面にくい込むとともにそ一部が熔融してい
ることを示している。
The present inventor, by microscopic observation, the inorganic or organic pigment particles adhere to the surface of each of the magnetic powder particles in the form of a film having fine irregularities, and the irregularities are compared with the case where the inorganic pigment particles are used. Then, it was confirmed that when organic dye particles were used, finer irregularities were formed. This result shows that the inorganic pigment particles are embedded in the surface of the resin coating, and the organic pigment particles are embedded in the surface of the resin coating, and a part thereof is melted.

〔実施例〕〔Example〕

本発明方法を実施例によつてより詳しく説明する。尚、
「部」は「重量部」を意味する。
The method of the present invention will be described in more detail with reference to examples. still,
"Parts" means "parts by weight".

実施例1. 磁粉として市販の平均粒径5ミクロンの純鉄粒子粉末90
部と結合材として市販の平均粒径5ミクロンのナイロン
12(熱変形温度150℃)5部とを、高速攪拌型混合機を
用いて、攪拌羽根先端速度8m/sec、回転数1200RPMで4
分間混合して混合粉末とした。
Example 1. Pure iron particle powder 90 having an average particle diameter of 5 microns commercially available as magnetic powder 90
Commercially available nylon with an average particle size of 5 microns
12 parts (heat distortion temperature 150 ° C) and 5 parts, using a high-speed stirring mixer, 4 at a stirring blade tip speed of 8 m / sec and a rotation speed of 1200 RPM.
Mixing for minutes gave a mixed powder.

次に、上記混合粉末を、高速回転ミルを用いて、粒子速
度120m/secに加速して、粒子どうしを3分間衝突させ
て、平均粒径7ミクロンの造粒粒子93部を得た。
Next, the mixed powder was accelerated to a particle velocity of 120 m / sec using a high-speed rotating mill, and the particles were collided with each other for 3 minutes to obtain 93 parts of granulated particles having an average particle diameter of 7 microns.

更に、上記造粒粒子93部と着色材として市販の平均粒径
0.2ミクロンのチタン白5部とを、高速攪拌型混合機を
用いて、上記と同条件で混合して混合粉末とした。
Furthermore, 93 parts of the above granulated particles and a commercially available average particle size as a coloring material
5 parts of 0.2 micron titanium white was mixed under the same conditions as above using a high-speed stirring mixer to obtain a mixed powder.

次に、上記混合粉末を、高速回転ミルを用いて、上記と
同条件で粒子どうしを衝突させて、平均粒径8ミクロン
の着色磁粉96部を得た。
Next, the above mixed powder was made to collide with each other under the same conditions as above using a high-speed rotary mill to obtain 96 parts of colored magnetic powder having an average particle diameter of 8 microns.

上記着色磁粉を高速回転ミルから取り出し、そのままの
状態で、次の通りの磁粉探傷に使用した。
The colored magnetic powder was taken out from the high-speed rotary mill and used as it was for the following magnetic particle flaw detection.

水1当り上記着色磁粉2gを分散剤(水1当り界面活
性剤20mlを使用)を用いて分散させた磁粉液を、軸通電
法によつて通電(DC−1000A)した80mmの角ビレットの
表面に散布し、散布面を可視光下で観察すると、角ビレ
ット表面に存在する深さ0.15mm、の欠陥部が、白色を呈
した欠陥指示模様によつて明瞭に指示されていることが
確認できた。この探傷結果は着色材の剥離、脱落が、殆
んど発生していないことを示している。
The surface of a 80 mm square billet in which 2 g of the above-mentioned colored magnetic powder per 1 water is dispersed with a dispersant (use 20 ml of surfactant per 1 water), and a magnetic powder liquid is electrified (DC-1000A) by the axial electrification method. By observing the sprayed surface under visible light, it can be confirmed that the defect portion with a depth of 0.15 mm existing on the surface of the square billet is clearly indicated by the white defect instruction pattern. It was This flaw detection result shows that the peeling and dropping of the coloring material hardly occurred.

実施例2. 磁粉として市販の平均粒径3ミクロンの純鉄粒子粉末90
部と結合材として市販の平均粒径3ミクロンのポリスチ
レン樹脂(熱変形温度80〜90℃)5部とを、高速攪拌型
混合機を用いて、攪拌羽根先端速度9m/sec、回転数1400
RPMで4分間混合して混合粉末とした。
Example 2. Pure iron particle powder 90 having an average particle diameter of 3 microns, which is commercially available as magnetic powder
Parts and 5 parts of a commercially available polystyrene resin having an average particle size of 3 microns (heat distortion temperature 80 to 90 ° C) as a binder, using a high-speed stirring mixer, a stirring blade tip speed of 9 m / sec, a rotation speed of 1400.
Mixed by RPM for 4 minutes to obtain a mixed powder.

次に、上記混合粉末を、高速回転ミルを用いて、粒子速
度120m/secに加速して、粒子どうしを5分間衝突させ
て、平均粒径4ミクロンの造粒粒子93部を得た。
Next, the mixed powder was accelerated to a particle velocity of 120 m / sec using a high-speed rotary mill, and the particles were collided with each other for 5 minutes to obtain 93 parts of granulated particles having an average particle diameter of 4 microns.

更に、上記造粒粒子93部と着色材として市販の平均粒径
0.2ミクロンのブリリアントカーミン3G(商品名:赤色
顔料)5部とを、高速攪拌型混合機を用いて、上記と同
条件で混合して混合粉末とした。
Furthermore, 93 parts of the above granulated particles and a commercially available average particle size as a coloring material
5 parts of 0.2 micron brilliant carmine 3G (trade name: red pigment) was mixed under the same conditions as above using a high-speed stirring mixer to obtain a mixed powder.

次に、上記混合粉末を、高速回転ミルを用いて、上記と
同条件で粒子どうしを衝突させて、平均粒径5ミクロン
の着色磁粉96部を得た。
Next, the mixed powder was made to collide with each other under the same conditions as above using a high-speed rotary mill to obtain 96 parts of colored magnetic powder having an average particle diameter of 5 microns.

上記着色磁粉を高速回転ミルから取り出し、そのままの
状態で、次の通りの磁粉探傷に使用した。
The colored magnetic powder was taken out from the high-speed rotary mill and used as it was for the following magnetic particle flaw detection.

水1当り上記着色磁粉2gを分散剤(水1当り界面活
性剤20mlを使用)を用いて分散させた磁粉液を、軸通電
法によつて通電(DC−1000A)した80mm角ビレットの表
面に散布し、散布面を可視光下で観察すると、角ビレッ
ト表面に存在する深さ0.15mmの欠陥部が、赤色を呈した
欠陥指示模様によつて明瞭に指示されていることが確認
できた。この探傷結果は着色材の剥離、脱落が、殆んど
発生していないことを示している。
A magnetic powder solution prepared by dispersing 2 g of the above-mentioned colored magnetic powder per water with a dispersant (using 20 ml of surfactant per 1 water) was applied to the surface of an 80 mm square billet which was energized (DC-1000A) by the axial energization method. When sprayed and the sprayed surface was observed under visible light, it was confirmed that the defect portion having a depth of 0.15 mm existing on the surface of the square billet was clearly indicated by the defect indicating pattern showing red. This flaw detection result shows that the peeling and dropping of the coloring material hardly occurred.

実施例3. 磁粉として市販の平均粒径5ミクロンの純鉄粒子粉末90
部と結合材として市販の平均粒径3ミクロンのポリスチ
レン樹脂(熱変形温度80〜90℃)5部とを、高速攪拌型
混合機を用いて、攪拌羽根先端速度8m/sec、回転数1200
RPMで4分間混合して混合粉末とした。
Example 3. Pure iron particle powder 90 having an average particle size of 5 microns, which is commercially available as magnetic powder
Parts and 5 parts of a commercially available polystyrene resin having an average particle size of 3 microns (heat deformation temperature of 80 to 90 ° C) as a binder, using a high-speed stirring mixer, a stirring blade tip speed of 8 m / sec, a rotation speed of 1200
Mixed by RPM for 4 minutes to obtain a mixed powder.

次に、上記混合粉末を、高速回転ミルを用いて、粒子速
度120m/secに加速して、粒子どうしを3分間衝突させ
て、平均粒径7ミクロンの造粒粒子93部を得た。
Next, the mixed powder was accelerated to a particle velocity of 120 m / sec using a high-speed rotating mill, and the particles were collided with each other for 3 minutes to obtain 93 parts of granulated particles having an average particle diameter of 7 microns.

更に、上記造粒粒子93部と着色材として市販の平均粒径
0.5ミクロンのルモゲンブリリアントイエロー(商品
名:螢光染料)5部とを、高速攪拌型混合機を用いて、
上記と同条件で混合して混合粉末とした。
Furthermore, 93 parts of the above granulated particles and a commercially available average particle size as a coloring material
5 parts of 0.5 micron Lumogen Brilliant Yellow (trade name: Fluorescent dye) and a high-speed stirring type mixer,
Mixed under the same conditions as above to obtain a mixed powder.

次に、上記混合粉末を、高速回転ミルを用いて、上記と
同条件で粒子どうしを衝突させて、平均粒径8ミクロン
の着色磁粉(当業界では「螢光磁粉」と呼ばれてい
る。)96部を得た。
Next, the mixed powder is made to collide with each other under the same conditions as above using a high-speed rotating mill to give a colored magnetic powder having an average particle diameter of 8 microns (which is called "fluorescent magnetic powder" in the art). ) 96 parts were obtained.

上記着色磁粉を高速回転ミルから取り出し、そのままの
状態で、次の通りの磁粉探傷に使用した。
The colored magnetic powder was taken out from the high-speed rotary mill and used as it was for the following magnetic particle flaw detection.

水1当り上記着色磁粉0.5gを分散剤(水1当り界面
活性剤20mlを使用)を用いて分散させた磁粉液を、軸通
電法によつて通電(DC−1000A)した80mmの角ビレット
の表面に散布し、散布面にブラックライトを用いて紫外
線を照射して暗所で観察すると、角ビレット表面に存在
する深さ0.15mmの欠陥部が、黄緑色の螢光を呈した欠陥
指示模様によつて明瞭に指示されていることが確認でき
た。この探傷結果は着色材の剥離、脱落が、殆んど発生
していないことを示している。
A magnetic powder liquid prepared by dispersing 0.5 g of the above-mentioned colored magnetic powder per 1 water using a dispersant (using 20 ml of surfactant per 1 water) was electrified (DC-1000A) by an axial electrification method to obtain an 80 mm square billet. When sprayed on the surface and irradiated with ultraviolet light using a black light on the sprayed surface and observed in a dark place, the defect part with a depth of 0.15 mm present on the surface of the square billet has a defect indicator pattern showing yellow-green fluorescence. It was confirmed that it was clearly instructed. This flaw detection result shows that the peeling and dropping of the coloring material hardly occurred.

〔効果〕〔effect〕

本発明によれば、磁粉に着色材を合成樹脂を結合材とし
て強固に固着させた着色磁粉を高能率且つ高収率で製造
できる。
According to the present invention, a colored magnetic powder in which a coloring material is firmly fixed to a magnetic powder by using a synthetic resin as a binder can be produced with high efficiency and high yield.

特に本発明によれば、製造工程中において着色材が結合
材とともに磁粉から剥離することは殆んどなく、従つ
て、製品中に未着色の磁粉と剥離物とが混入することも
殆んどない。
In particular, according to the present invention, the coloring material hardly peels off together with the binder from the magnetic powder during the manufacturing process, and therefore, the uncolored magnetic powder and the peeled material almost never enter the product. Absent.

また、本発明によれば、対象とする磁粉の平均粒径を比
較的小さいものから比較的大きいものまで自由に選ぶこ
とができるとともに結合材と着色材とが各磁粉粒子に均
一に固着しており、一ケ、一ケがバラバラの状態にある
着色磁粉が粉砕、篩い分け工程を採ることなく得られ、
得られた着色磁粉は対象とした磁粉の平均粒径に比例し
たものとなるので、所要の平均粒径の着色磁粉が容易に
製造できる。
Further, according to the present invention, the average particle size of the target magnetic powder can be freely selected from a relatively small one to a relatively large one, and the binder and the coloring material are uniformly fixed to each magnetic powder particle. There is one and one colored magnetic powder in a disjointed state is obtained without crushing and sieving steps,
Since the obtained colored magnetic powder is proportional to the average particle size of the target magnetic powder, colored magnetic powder having a required average particle size can be easily manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁粉として平均粒径1ミクロンから平均粒
径10ミクロンの範囲内のいづれかの平均粒径をもつ純鉄
粒子粉末、四三酸化鉄粒子粉末又はステンレススチール
粒子粉末40〜90部を用い、これに結合材として対象とす
る磁粉のもつ平均粒径と同等又は小さい平均粒径をもつ
熱可塑性合成樹脂粒子粉末5〜20部を加え、両粉末を一
次粒子の状態で混合し、該混合粉末を気相中で粒子速度
60〜160m/secに加速して粒子どうしを1〜3分間衝突さ
せることによつて対象とする磁粉の各粒子表面に前記結
合材の被膜をメカノケミカル反応により形成し、更に、
これに着色材として該結合材被膜を形成した磁粉のもつ
平均粒径よりも小さい平均粒径をもつ無機又は有機色素
粒子粉末5〜20部を加え、両粉末を一次粒子の状態で混
合し、該混合粉末を気相中で粒子速度60〜160m/secに加
速して粒子どうしを1〜3分間衝突させることによつて
当該結合材被膜を形成した磁粉の各粒子表面に前記着色
材をメカノケミカル反応により固着することを特徴とす
る磁粉探傷用着色磁粉の製造法。
1. As magnetic powder, 40 to 90 parts of pure iron particle powder, ferrosoferric oxide particle powder or stainless steel particle powder having an average particle size of 1 micron to 10 micron. 5 to 20 parts of a thermoplastic synthetic resin particle powder having an average particle diameter equal to or smaller than the average particle diameter of the target magnetic powder as a binder is added thereto, and both powders are mixed in the state of primary particles, Particle velocity of mixed powder in gas phase
The coating of the binder is formed on the surface of each particle of the magnetic powder by colliding the particles with each other for 1 to 3 minutes by accelerating to 60 to 160 m / sec by a mechanochemical reaction, and further,
5 to 20 parts of an inorganic or organic pigment particle powder having an average particle diameter smaller than that of the magnetic powder having the binder coating formed thereon as a coloring material is added thereto, and both powders are mixed in a primary particle state, By accelerating the mixed powder in a gas phase to a particle velocity of 60 to 160 m / sec and causing the particles to collide with each other for 1 to 3 minutes, the coloring agent is mechanically attached to each particle surface of the magnetic powder on which the binder coating is formed. A method for producing a colored magnetic powder for magnetic particle flaw detection, which is characterized in that it is fixed by a chemical reaction.
JP13900287A 1987-06-04 1987-06-04 Manufacturing method of colored magnetic powder for magnetic particle inspection Expired - Fee Related JPH07111421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13900287A JPH07111421B2 (en) 1987-06-04 1987-06-04 Manufacturing method of colored magnetic powder for magnetic particle inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13900287A JPH07111421B2 (en) 1987-06-04 1987-06-04 Manufacturing method of colored magnetic powder for magnetic particle inspection

Publications (2)

Publication Number Publication Date
JPS63304153A JPS63304153A (en) 1988-12-12
JPH07111421B2 true JPH07111421B2 (en) 1995-11-29

Family

ID=15235181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13900287A Expired - Fee Related JPH07111421B2 (en) 1987-06-04 1987-06-04 Manufacturing method of colored magnetic powder for magnetic particle inspection

Country Status (1)

Country Link
JP (1) JPH07111421B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004280B2 (en) * 1989-03-29 2000-01-31 富士通株式会社 Semiconductor memory cell
JPH0422108A (en) * 1990-05-17 1992-01-27 Atom Chem Paint Co Ltd Colored magnetic powder and marking body thereof
GB9409015D0 (en) * 1994-05-06 1994-06-22 Minnesota Mining & Mfg Surface defect detection
US5721011A (en) * 1995-10-13 1998-02-24 Minnesota Mining And Manufacturing Company Guide coat detect surface defects and method of sanding therewith
CN112300780A (en) * 2019-08-02 2021-02-02 上海全凯新材料科技有限公司 Anti-stripping fluorescent magnetic powder, preparation method thereof and composite fluorescent magnetic powder

Also Published As

Publication number Publication date
JPS63304153A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
AU643191B2 (en) Coloured powder coating compositions
TWI243845B (en) Powder coating composition, manufacturing method thereof, and coating film obtained by using the composition
EP0372860B1 (en) Coloured powder coating compositions
US5336309A (en) Flaky pigment
WO2010016603A1 (en) Magnetic carrier and two-component developer
JPS59155756A (en) Marking agent marking minute dispersoid and manufacture thereof and method using said manufacture as marker
EP0459048B1 (en) Coloured powder coating compositions
JPH07111421B2 (en) Manufacturing method of colored magnetic powder for magnetic particle inspection
JP3458847B2 (en) Granular additive for synthetic resin and method for producing the same
JP4521648B2 (en) Manufacturing method of fluorescent powder for magnetic particle testing
KR100665042B1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JP3772181B2 (en) Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product
US4888264A (en) Process for preparing toner or capsule toner for use in electrophotography
JPH0367736B2 (en)
JP3536188B2 (en) Fluorescent magnetic powder for magnetic particle flaw detection test and its production method
JPH07111420B2 (en) Manufacturing method of colored magnetic powder for magnetic particle inspection
JPS60211358A (en) Manufacture of colored magnetic powder for magnetic powder flaw detection
JPH0542326B2 (en)
JPH0253745B2 (en)
JP4683687B2 (en) Powdered microcapsule and manufacturing method thereof
JP2002031620A (en) Magnetic particle compound for wet magnetic particle testing
JP3869511B2 (en) Magnetic particle inspection
JPH07114946B2 (en) Treatment method for sparingly soluble substances
JPH0578607A (en) Production of coating
JPH01236284A (en) Manufacture of electrostatic powder coating material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees