JP3772181B2 - Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product - Google Patents

Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product Download PDF

Info

Publication number
JP3772181B2
JP3772181B2 JP2001372805A JP2001372805A JP3772181B2 JP 3772181 B2 JP3772181 B2 JP 3772181B2 JP 2001372805 A JP2001372805 A JP 2001372805A JP 2001372805 A JP2001372805 A JP 2001372805A JP 3772181 B2 JP3772181 B2 JP 3772181B2
Authority
JP
Japan
Prior art keywords
powder
fire
powder fire
extinguishing agent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001372805A
Other languages
Japanese (ja)
Other versions
JP2003171665A (en
Inventor
直久 坂本
邦彦 辻
錬三 近藤
昌幸 谷
賢 尾谷
裕典 蓑嶋
智幸 内山
景一郎 松▲嶋▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Prefecture
J Morita Corp
Original Assignee
Hokkaido Prefecture
J Morita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Prefecture, J Morita Corp filed Critical Hokkaido Prefecture
Priority to JP2001372805A priority Critical patent/JP3772181B2/en
Publication of JP2003171665A publication Critical patent/JP2003171665A/en
Application granted granted Critical
Publication of JP3772181B2 publication Critical patent/JP3772181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Fertilizers (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、粉末消火薬剤廃棄物の親水化処理方法及びその方法により得られた粉末消火薬剤砕成物並びにその砕成物を用いた水性消火薬剤組成物及び造粒消火薬剤組成物に関する。
【0002】
【従来の技術】
リン酸塩類等の防炎性塩類からなる粉末消火薬剤が封入された粉末消火器は、火災発生時の消火に有効に機能するように定期的に点検され、必要に応じて内部の粉末消火薬剤が新しいものと詰め替えられる。また、粉末消火薬剤の品質管理を確実にするために、粉末消火器の前記点検時に、内部の粉末消火薬剤をその機能の有無に関わらず機械的に新しいものと詰め替えることも広く行われている。さらに、粉末消火器の前記点検により粉末消火器自体に不良が検出された場合、該粉末消火器は内部の粉末消火薬剤と共に回収されている。
【0003】
前記のような粉末消火薬剤の詰め替え時や不良の粉末消火器の回収時等には、機能を喪失し、また機能の喪失の有無に関わらず耐用年限を経過し、或は不良の粉末消火器等から排出された粉末消火薬剤の廃棄物(以下、粉末消火薬剤廃棄物と記載する。)が必然的に発生する。このような粉末消火薬剤廃棄物は全国規模では年間10,000トンをも越える膨大な量となり、これをそのまま投棄したのでは資源の大きな損失ばかりでなく重大な環境問題を引き起こすことになるので、効果的な再利用技術の早期確立が要望されるところである。関係官庁である消防庁も、平成12年度からのリサイクルの積極的な推進を図る目的で「消火器・防炎部品リサイクル推進委員会」を設置し、前記粉末消火薬剤廃棄物の再利用の必要性を指摘している。
【0004】
前記粉末消火薬剤廃棄物は、肥効成分として知られるリン酸塩類等の防炎性塩類を主成分として含むことから、これを肥料に転化すべきことを着想することが可能である。しかしながら、粉末消火薬剤を構成する前記防炎性塩類は、粉末消火薬剤としての必要な機能を付与すべく、該粉末消火薬剤の製造段階において、固化防止及び流動性付与のためにホワイトカーボン等が添加されると共に撥水性付与のためにシリコーンオイル等からなる疎水性被膜によるコーティングが施され、それらの防湿加工によって前記防炎性塩類は疎水性の微細粉末状を呈している。
【0005】
「消火器用消火薬剤の技術上の規格を定める省令」第7条によれば、前記防炎性塩類からなる粉末消火薬剤は、呼び寸法180μm以下の消火上有効な微細な粉末であること、温度30℃及び相対湿度60%の恒温恒湿槽中に48時間以上恒量になるまで静置した後に、温度30℃及び相対湿度80%の恒温恒湿槽中に48時間静置する試験で質量増加率が2%以下であること、さらに水面に均一に散布した場合に1時間以内に沈降しないことと規定され、高度の微粉性と疎水性が求められている。
前記のような粉末消火薬剤の詰め替え時や不良の粉末消火器の回収時等に発生する粉末消火薬剤廃棄物も、通常の場合、前記粉末消火薬剤に準じる高度の微粉性と疎水性を有することは言うまでもない。
【0006】
すなわち、前記のような疎水性微細粉末状の粉末消火薬剤廃棄物は、これを肥料に再利用しようとしても、その高い微粉性のために、そのままでは取扱い性が悪く、土壌への施肥に際して噴出や風等による飛散を招き易いこと、また前記噴出や飛散により人体に付着し或は吸引されて保健衛生上の悪影響を及ぼし易いこと、さらに土壌への施肥後も施肥位置から流動し易く、肥効の制御が難しいこと等の困難な問題を有する。
しかも、前記粉末消火薬剤廃棄物は、その高い疎水性による水分吸収の悪さから容易に造粒できないので微粉性に起因する前記難点を解決できないこと等の問題も有している。
【0007】
これに対して、特公昭56‐23628号公報には、防湿加工の施された粉末消火薬剤廃棄物からリン酸塩類等の主成分を回収するに際して、該粉末消火薬剤廃棄物をアンモニア水溶液又は界面活性剤水溶液中に加え、これを攪拌若しくは加熱攪拌することにより、難溶性の粉末消火薬剤廃棄物を溶解し得ることが開示されている。また、特公昭58‐22227号公報には、第一リン酸アンモニウム系の粉末消火薬剤廃棄物から粉末消火薬剤を再生するに際して、該粉末消火薬剤廃棄物を飽和相当の第一リン酸アンモニウム水溶液に投入するときに浸透剤として界面活性剤を加えることにより、該粉末消火薬剤廃棄物の主成分である第一リン酸アンモニウム粉体の溶解度を向上させ得ることが開示されている。さらに、特公平3−43233号公報には、第一リン酸アンモニウム系の粉末消火薬剤廃棄物から液肥用粉末肥料を製造するに際して、該粉末消火薬剤廃棄物を苛性カリ水溶液又は苛性カリとアンモニアとの混合水溶液で処理して溶解することが開示されている。
【0008】
しかしながら、前記従来技術における粉末消火薬剤廃棄物の親水化処理方法は、何れもアンモニア、界面活性剤或は苛性カリ等の薬剤を含む水溶液を用いて行われるので、仮に前記方法を利用して疎水性の粉末消火薬剤廃棄物を親水性の肥料に再利用する場合は、高価で、しかも時として該肥料を汚染すると共にその肥効等を阻害し得る前記薬剤の添加を必要とする上に、その水溶液処理のために厳密な工程管理を必要とし、さらに水溶液状態から肥料として好適に使用し得る粉末状態にするために、多大のエネルギーと工数を消費する乾燥、固化工程を必要とする等、肥料製造上のコスト高につながる重大な問題が生じる。
【0009】
【発明が解決しようとする課題】
本発明の解決すべき第一の課題は、従来技術のようにアンモニア、界面活性剤或は苛性カリ等の薬剤を含む水溶液を用いることなしに、粉末消火薬剤廃棄物を安価且つ効率的に親水化処理する方法を提供することにある。
また、本発明の解決すべき第二の課題は、前記親水化処理方法により得られた粉末消火薬剤砕成物とその砕成物を用いた水性消火薬剤組成物及び造粒消火薬剤組成物を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、粉末消火薬剤廃棄物の再利用に係る前記問題点に鑑み、界面活性剤等の薬剤を含む水溶液を用いない親水化処理方法について種々の実験及び検討を重ねた結果、呼び寸法180μm以下、平均粒径30〜60μm程度にまで既に微粉化されている疎水性微細粉末状を呈する粉末消火薬剤廃棄物をさらに所要の粉砕処理に供することにより濡れ性が格段に向上することを見出し、本発明を完成するに至った。
【0011】
即ち、本発明に係る粉末消火薬剤廃棄物の親水化処理方法は、防湿加工が施された微細粉末状防炎性塩類を含む粉末消火薬剤廃棄物を衝撃、剪断及び摩擦の少なくとも一機能を含む粉砕処理に供すると共に、それによって、下記の接触角測定方法、即ち成型力1000kgで直径15mmの円柱状に成型された1.5gの成型粉体試料の水平端面にその3mm上から純水0.01ccの水滴を接触させつつ滴下させ、該水滴の成型粉体試料に対する接触角を水滴画像から求めるようにした接触角測定方法に基づく接触角が、(a)水滴下開始後5秒以内に90度以下になり、且つ(b)水滴下開始後1200秒以内に0度になるように濡れ性を向上させることを特徴としている。
なお、前記接触角測定方法は、前記条件(a)及び(b)に係る測定試験を支障なく遂行し得るような温度及び湿度の条件下で実施されればよく、例えば、温度25±15℃、特に25±10℃、相対湿度55±25%、特に55±15%の条件下で好適に実施される。
【0012】
より優れた親水性と造粒性を得るために、前記粉末消火薬剤廃棄物は、前記接触角が水滴下開始後5秒以内に60度以下になり、且つ水滴下開始後300秒以内に0度になるように粉砕処理を施すことが望ましい。
なお、未処理の粉末消火薬剤廃棄物は、粉末消火薬剤の種類や製造者の相違、さらに粉末消火薬剤が廃棄物に至った経緯等にも依存するが、概して、水滴下開始後5秒以内の接触角が100度を越え、しかも接触角が0度になるまでの水滴下開始後の経過時間が1200秒を越えるような高い疎水性を示すものである。
【0013】
防湿加工が施された粉末消火薬剤廃棄物は、前記親水化処理方法により濡れ性が向上し、所要の粉末消火薬剤砕成物に改質される。これは、前記粉末消火薬剤廃棄物を構成する防炎性塩類の微粒子が破砕処理による衝撃、剪断、摩擦等に係る圧力を受けて部分的又は全体的に破壊されると共にそれら微粒子表面の疎水性被膜が部分的又は全体的に剥離又は破壊されることによるものであり、その結果として、該疎水性被膜に被覆されていた水溶性の防炎性塩類が外部に露出すると共にその露出の程度に応じた濡れ性、親水性、浸透速度等を生じるものと推定される。
【0014】
前記粉砕処理に使用し得る粉砕機として、例えば、ボール等の粉砕媒体を入れた容器を回転させ、それによって粉体に粉砕媒体間や該粉砕媒体と容器内壁間において衝撃力、剪断力、摩擦力等を加える広義のボールミル、粉砕ローラを粉砕テーブル上に転動させ、それによって粉体に該粉砕ローラーと粉砕テーブル表面との間において圧縮力、剪断力等を加えるローラーミル、ハンマー、ピン、ディスク等を高速回転させ、それによって粉体に衝撃力、剪断力等を与える高速回転ミル、固定容器内に入れたボール等の粉砕媒体を粉体と共に攪拌し、それによって粉体に剪断力、摩擦力等を加える媒体攪拌ミル、高圧ジェット気流を噴出させ、それによって粉体に衝撃力、摩擦力等を加えるジェットミル、或は前記粉砕機を一部変形したものや複数の前記粉砕機における所要機能を適宜組み合わせたもの等が挙げられる。例えば、回転容器内の内壁に遠心力で押し付けられた粉体に、曲率半径の異なるインナーピースとの間で強力な圧縮力、剪断力等を加えるオングミルや、固定ディスクと回転ディスクとの間で粉体に圧縮力、摩擦力を加えるディスクミル等も好適に使用可能である。
前記粉砕機は、それらの粉砕特性に応じて、所要の濡れ性向上に対応する粉砕処理が行われるように粉砕時間、粉砕力その他の運転条件が設定される。
【0015】
前記防炎性塩類の微粒子は、通常、前記破砕処理によってさらに微細化されるところ、粉砕処理の方法等によっては該微粒子の粉砕と並行して二次凝集や融合が生じるものもあるが、これらの場合も本発明における粉砕処理の概念に包含される。
なお、粉末消火薬剤廃棄物の前記破砕処理に際して、その前記作用効果を阻害しない範囲で所要の肥効成分、水分その他の成分が添加されてもよい。
【0016】
得られる粉末消火薬剤砕成物における濡れ性の度合いは、粉砕処理の方法及び処理時間等に依存し、また砕成微粒子の粒度や粒子形状等にも影響され得るが、接触角に関する前記条件(a)及び(b)が満たされている場合には、肥料等に再利用可能な優れた濡れ性、親水性が得られる。前記条件(a)及び(b)は何れも粉体の水分吸収能に係り、条件(a)において小さい接触角を示し、また条件(b)において短い経過時間を示すものは、概して高い親水性や高い造粒性を備えるものである。特に強力な圧縮剪断力や強力な摩擦力等を受けた場合の防炎性塩類の微粒子は、接触角が水滴下開始後5秒以内に0度に達するような格段に優れた濡れ性を得ることも可能である。
【0017】
前記のように得られた粉末消火薬剤砕成物を公知の方法で水中に溶解することにより、液体肥料や防炎剤、難燃剤等に利用可能な水性消火薬剤組成物を得ることができる。
なお、粉末消火薬剤砕成物の前記水性化に際して、必要に応じて、所要の肥効成分その他の成分が添加されてもよく、また該粉末消火薬剤砕成物が既存の肥料溶液その他の水溶液に溶かし込まれてもよい。
【0018】
また、前記粉末消火薬剤砕成物を公知の方法で造粒することにより粒状肥料等に利用可能な造粒消火薬剤組成物を得ることもできる。前記粉末消火薬剤砕成物の造粒に際しては、その濡れ性、粒度分布その他の粉体物性に応じて自足造粒又は強制造粒を適宜選択することができ、特に濡れ性に優れたものでは既述のように水のみの添加による自足造粒も容易に可能である。自足造粒法としては例えば回転皿等を用いる転動式や流動層式等があり、また強制造粒法としては例えば押出し式や圧縮式等がある。
なお、粉末消火薬剤砕成物の前記造粒に際して、必要に応じて、水やバインダー成分以外に所要の肥効成分その他の成分が添加されてもよい。また、前記造粒が、粉末消火薬剤廃棄物の前記粉砕処理による親水化処理工程と連続した工程において、或いは該親水化処理工程と一体の工程において、中間生成物である粉末消火薬剤砕成物を取り出すことなしに行われてもよい。
【0019】
【発明の実施の形態】
以下に、本発明を実施例に基づき、比較例と対比して説明する。
【0020】
〔粉末消火薬剤廃棄物原料の調製〕
試験に使用する粉末消火薬剤廃棄物の試料として、第一リン酸アンモニウムを42重量%含有する、株式会社モリタ製のABC粉末消火薬剤(以下、未処理粉末薬剤試料Xと記載する。)、Y社製のABC粉末消火薬剤(以下、未処理粉末薬剤試料Yと記載する。)及びZ社製のABC粉末消火薬剤(以下、未処理粉末薬剤試料Zと記載する。)を用意した。
【0021】
〔粉体物性の試験方法〕
実施例及び比較例に係る各粉体試料についての各種粉体物性を下記の方法で試験し、評価した。
【0022】
1.平均粒径(μm)
マイクロトラック(日機装製の粒度分布測定装置)を使用し、粉体試料を分散させたイソプロピルアルコール溶媒中でレーザ回折/散乱法により粒度分布を測定すると共に50%平均粒径を求める。
【0023】
2.水滴下5秒後の接触角(度)及び浸透時間(秒)
直径15mmのポンチ/ダイスを使用し、成型力1000kgで粉体試料1.5gを円柱状に成型し、得られた成型粉体試料の水平端面にその3mm上から純水0.01ccの水滴を静かに接触させ、該試料上に水滴を乗せる。その状態から前記水滴が試料に完全に浸透し終わるまで該水滴の状況を側面からビデオ撮影し、水滴下5秒後における水滴の成型粉体試料に対する接触角を求めると共に、該水滴が試料に完全に浸透し、接触角が0度になるまでの経過時間、即ち浸透時間を計測し、さらに参考として前記測定時における気温及び湿度を観測する。
この試験で、水滴下5秒後の接触角が90度以下であり、しかも浸透時間が1200秒以内である粉体試料は、造粒を容易に可能にするような極めて高い濡れ性を呈するものである。
【0024】
3.電気伝導度(mS/cm)
200ml容のビーカーに200mlの脱イオン蒸留水を加え、電気伝導度測定用の電極を液中に挿入した状態を保持し、マグネティックスターラーを用いて一定速度で攪拌しながら粉体試料0.2gを加え、添加5分後及び添加10分後における各電気伝導度を測定する。
この試験で高い電気伝導度を示す粉体試料は、概して塩類の溶出量が多く、水中への溶解性に優れ、一方、添加5分後及び添加10分後における各電気伝導度が低く、しかも両電気伝導度間の差が少ない粉体試料は、塩類の溶出量が少なく、水中への溶解性に劣るものである。
【0025】
4.浸透性速度比(cosθn/cosθ0
ペネトアナライザ(ホソカワミクロン製の浸透速度測定装置)を使用し、粉体試料10gを内側半径1.75cmの測定管(セル)に投入し、セルを1Hz(1回/秒)、180秒間、落差18mmの条件でタッピングして粉体試料を均一に充填した後、電子天秤に吊り下げる一方、測定媒液である純水を受皿に入れて昇降装置のプレート上に載置する。昇降装置を操作して粉体試料の一部を媒液に接触させた後、該粉体試料への媒液の浸透による重量の増加と時間のデータを連続的に測定し、記録する。
浸透液重量WL(g)と浸透時間T(sec)の関係は、溶液の浸透高さL(cm)と浸透時間T(sec)の関係を示す公知の「Washburn」式を変形することにより、下記の式[I]で表される。
(WL 2/T)=(S・ε・ρL2P・γL・cosθ/2μL ……[I]
S:測定管断面積(cm2
ε:空隙率
ρL:媒液密度(g/cm3
P:毛細管半径(cm)=平均粒径
γL:媒液表面張力(dyne/cm)
θ:媒液と粒子の接触角(°)
μL:媒液粘度(g/cm・sec)
なお、式[I]における空隙率εは下記の式[II]で表される。
ε=1−(WP/ρP・S・LP) ……[II]
P:試料重量(g)
S:測定管断面積(cm2
ρP:粒子密度(g/cm3)=真密度
P:試料層高さ(cm)
そこで、被測定粉体試料の浸透性の度合いを示す浸透性速度比κnとして、適当に選択した基準粉体試料のcosθ0に対する被測定粉体試料のcosθnの比(cosθn/cosθ0)(但し、沿え字「0」及び「n」は各々基準粉体試料及び被測定粉体試料を表す。)を採用すれば、式[I]から基準粉体試料に関する式[I0]及び被測定粉体試料に関する式[In]を得て両式の比をとり、これに、測定条件から当然に得られる測定管断面積S0=Sn、媒液密度ρL0=ρLn、媒液表面張力γL0=γLn及び媒液粘度μL0=μLnを代入して変形すると、結局、浸透性速度比κnとして下記の式[III]が導かれる。
κn=(cosθn/cosθ0
={(WLn 2/T)・ε0 2・rP0}/{(WL0 2/T)・εn 2・rPn} ……[III]
基準粉体試料として未処理粉末薬剤試料Xを選択し、該未処理粉末薬剤試料X及び被測定対象である粉体試料について、ペネトアナライザによる前記測定データから(WLn 2/T)値及び(WL0 2/T)値を求め、式[II]からε0 2値及びεn 2値を算出し、さらにマイクロトラックによる50%平均粒度の測定データからrP0値及びrPn値を求め、これらを式[III]に代入して浸透性速度比κnを算出する。
この試験で大きい浸透性速度比(未処理粉末薬剤試料Xのそれを「1」として)を示す粉体試料は、概して高い浸透性を有するものである。
【0026】
5.造粒性
(5−1)自足造粒
粉体試料について、皿型造粒機(東武製作所製の皿型造粒機、皿径900mm、深さ150mm)を使用し、スプレーにて水を噴霧させながら加湿して自足造粒を行い、その結果を下記の基準で評価した。
○:良好に自足造粒できた。
△:不十分ながら自足造粒が可能であった。
×:粉体層と水との親和性が悪く、自足造粒が困難であった。
(5−2)強制造粒
各粉体試料について、ディスク・ペレッターF−5(不二パウダル製の押出し式造粒機)を使用し、水のみを使用して強制造粒を行い、その結果を下記の基準で評価した。
○:良好に強制造粒できた。
×:粉体層と水との親和性が悪く、強制造粒が困難であった。
【0027】
〔実施例1〕
未処理粉末薬剤試料Xを、スーパーミクロンミル(粉砕と同時に分級と異物質の分離除去を行う機構をもったホソカワミクロン製のエアースエプト型超微粉砕機)による粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、ブッシュを介して連接された二つの粉砕室において、高速で回転するランナで衝撃粉砕され、ノックによって剪断作用を受け、さらに捻りを持ったランナによって粒子間相互に摩砕作用を受ける。粒度は、前記ブッシュを大から中に交換することにより調整される。
【0028】
〔実施例2〕
未処理粉末薬剤試料Xを、メカノフュージョンAMS(粒子の融合、複合化やメカノケミカル的作用を奏し得るホソカワミクロン製のオングミル)によるバッチ方式1分間の粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、回転容器内の内壁に遠心力で押し付けられて固定された状態下に、曲率半径の異なるインナーピースとの間で強力な圧縮力、剪断力等を受ける。
【0029】
〔実施例3〜5〕
未処理粉末薬剤試料Xを、実施例3ではバッチ方式2分間、実施例4ではバッチ方式3分間、実施例5ではバッチ方式5分間にした以外は実施例2と同様のメカノフュージョンAMSによる粉砕処理に供し、得られた各粉末消火薬剤砕成物について粉体物性の試験を行った。
【0030】
〔実施例6〕
未処理粉末薬剤試料Xを、ミクロンジェットT(高速ジェット気流を用いたホソカワミクロン製のジェットミル)による粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、装置底部中央のノズル(直径1.9mm)から噴出する高速ジェット気流(エアー圧6kgf/cm2)により吸引加速され、衝突板に衝突して粉砕された後、気流と共に搬送されて分級ロータ(回転数14000r.p.m)で所要の粒度に分級される。
【0031】
〔実施例7〕
未処理粉末薬剤試料Xを、水平型ローラーミル(石井粉砕機械製のエアースエプト型分級機付き水平型ローラーミル)による粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、粉砕ローラーの転動(回転数473r.p.m)により圧縮力、剪断力と共に大きな磨砕作用を受けて粉砕され、分級機(回転数1500r.p.m、エアー微少)により所要の粒度に分級される。
【0032】
〔実施例8〕
未処理粉末薬剤試料Xを、竪型ローラーミル(石井粉砕機械製のエアースエプト型分級機付き竪型ローラミル)による粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、粉砕ローラの転動(回転数60r.p.m)により圧縮力、剪断力と共に大きな磨砕作用を受けて粉砕され、分級機(回転数315r.p.m、エアー15m3/分)により所要の粒度に分級される。
【0033】
〔実施例9〕
未処理粉末薬剤試料Xを、ラボ用ディスクミルによるバッチ式10分間の粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、回転ディスクによる圧縮力、摩擦力等を受けて粉砕される。
【0034】
〔実施例10〕
未処理粉末薬剤試料Xを、サイクロミックス(高速回転するパドル付きロータを備えたホソカワミクロン製の精密混合機)によるバッチ式40分間の粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、パドル付きロータの高速回転により遠心力を受け、ケーシング壁面において摩擦力、圧縮力及び剪断力を受ける。
【0035】
〔実施例11〕
未処理粉末薬剤試料Yを使用した以外は、実施例4と同様のメカノフュージョンAMSによるバッチ方式3分間の粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
【0036】
〔比較例1〜3〕
比較例1では未処理粉末薬剤試料X、比較例2では未処理粉末薬剤試料Y、比較例3では未処理粉末薬剤試料Zについて、各々粉砕処理なしに粉体物性の試験を行った。
【0037】
〔比較例4〕
未処理粉末薬剤試料Xを、バッチ方式20分間にした以外は実施例10と同様のサイクロミックスによる粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
【0038】
〔比較例5〕
未処理粉末薬剤試料Xを、ACM(高速回転するタテ型ハンマを有するホソカワミクロン製の衝撃式微粉砕機)による粉砕処理に供し、得られた粉末消火薬剤砕成物について粉体物性の試験を行った。
該薬剤試料Xは、高速回転するタテ型ハンマーとライナーとの間で衝撃作用を受けて粉砕され、分級ロータ(回転数350r.p.m)で所要の粒度に分級される。
【0039】
〔試験結果〕
以上の実施例1〜11及び比較例1〜5についての粉体物性に係る試験結果を以下の表1に記載する。
【0040】
【表1】

Figure 0003772181
【0041】
前記試験結果によれば、粉砕処理により、接触角が(a)水滴下開始後5秒以内に90度以下になり、且つ(b)水滴下開始後1200秒以内に0度になるように濡れ性を向上させられた実施例1〜11に係る粉末消火薬剤砕成物は、何れも、10分後の電気伝導度が0.5mS/cm以上、浸透性速度比が10以上と高く、優れた親水性、水溶解性、浸透性を有すると共に優れた造粒性を呈している。
一方、比較例1〜3の未処理粉末消火薬剤は何れも、接触角に係る前記条件(a)及び(b)を満たすことがなく、電気伝導度及び浸透性速度比は実施例1〜11に比較して明らかに低く、極めて高い疎水性と造粒困難性を呈する。
また、粉砕処理に供された粉末消火薬剤砕成物の中でも接触角に係る前記条件(a)及び(b)を満たしていない比較例4〜5の粉末消火薬剤砕成物は、比較例1〜3の未処理粉末消火薬剤と比較すれば濡れ性に若干の向上が認められるものの、実施例1〜11と比較すれば全ての性能において明確に劣り、肥料等への再利用には濡れ性の更なる向上が不可欠であり、このためには、例えば粉砕時間の延長、粉砕機の再調整、粉砕方法の変更等が必要とされる。
【0042】
【発明の効果】
本発明に係る粉末消火薬剤廃棄物の親水化処理方法は以上のように構成されるので、従来技術のようにアンモニア、界面活性剤或は苛性カリ等の薬剤を含む水溶液を用いることなしに、粉末消火薬剤廃棄物を安価且つ効率的に親水化処理することができる。
そして、前記親水化処理方法により得られた粉末消火薬剤砕成物は、肥料等に再利用可能な優れた濡れ性、親水性を有し、従って前記砕生物を水中に溶解してなる水性消火薬剤組成物は優れた液体肥料や防炎剤、難燃剤等として使用することができ、また前記砕生物を造粒してなる造粒消火薬剤組成物は優れた粒状肥料等として使用することができる。[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a method for hydrophilizing powder fire extinguishing chemical waste, a powder fire extinguisher powder obtained by the method, an aqueous fire extinguishing chemical composition and a granulated fire extinguishing chemical composition using the powder.
[0002]
[Prior art]
Powder fire extinguishers containing powder fire extinguishing chemicals such as phosphates are regularly inspected to function effectively in the event of a fire, and internal powder fire extinguishing chemicals are necessary. Are refilled with new ones. In addition, in order to ensure quality control of powder extinguishing agents, it is also widely carried out to refill the internal powder extinguishing agent mechanically with a new one regardless of the function at the time of the inspection of the powder extinguisher. . Furthermore, when a defect is detected in the powder fire extinguisher itself by the inspection of the powder fire extinguisher, the powder fire extinguisher is collected together with the powder extinguishing agent inside.
[0003]
When refilling powder fire extinguishing agent as described above or when collecting a defective powder fire extinguisher, the function is lost, and the useful life has passed regardless of the loss of function, or a defective powder fire extinguisher. A fire extinguisher waste powder (hereinafter referred to as a powder fire extinguisher waste) is inevitably generated. Such powder fire extinguishing chemical waste becomes a huge amount exceeding 10,000 tons per year on a nationwide scale, and if it is dumped as it is, it will cause not only a large loss of resources but also a serious environmental problem. There is a demand for early establishment of effective reuse technology. The Fire and Disaster Management Agency, the relevant government agency, also established the “Fire Extinguisher and Flame Retardant Parts Recycling Promotion Committee” for the purpose of actively promoting recycling from fiscal 2000, and it is necessary to reuse the powder fire extinguishing chemical waste. Point out the gender.
[0004]
Since the powder fire extinguishing chemical waste contains flameproof salts such as phosphates known as fertilizers as a main component, it can be conceived that this should be converted into fertilizer. However, the flame retardant salts constituting the powder fire extinguishing agent are provided with white carbon or the like for preventing solidification and imparting fluidity in the production stage of the powder fire extinguishing agent in order to provide a necessary function as a powder extinguishing agent. In addition to being added, a hydrophobic coating made of silicone oil or the like is applied to impart water repellency, and due to their moisture-proofing treatment, the flameproof salts are in the form of a hydrophobic fine powder.
[0005]
According to Article 7 of the “Ministerial Ordinance for Establishing Technical Standards for Fire Extinguishing Agents for Fire Extinguishers”, the powder fire extinguishing agent comprising the flameproof salt is a fine powder effective for fire extinguishing with a nominal size of 180 μm or less, temperature Increased mass in a constant temperature / humidity bath at 30 ° C. and 60% relative humidity for 48 hours and then left in a constant temperature / humidity chamber at 30 ° C. and 80% relative humidity for 48 hours. It is specified that the rate is 2% or less, and that it does not settle within 1 hour when uniformly sprayed on the water surface, and a high degree of fineness and hydrophobicity are required.
The powder fire extinguishing agent waste generated when refilling the powder extinguishing agent as described above or when collecting a defective powder extinguisher or the like, usually has a high degree of fine powder and hydrophobicity according to the powder extinguishing agent. Needless to say.
[0006]
That is, the above-mentioned hydrophobic fine powder fire extinguishing chemical waste is not easy to handle due to its high fineness even if it is to be reused as fertilizer. It is easy to cause scattering by wind and wind, etc., and adheres to or is sucked into the human body due to the eruption and scattering, and has an adverse effect on health and hygiene. It has difficult problems such as difficulty in controlling the effect.
Moreover, since the powder fire extinguishing chemical waste cannot easily be granulated due to the poor water absorption due to its high hydrophobicity, it has a problem that the above-mentioned difficulty due to fine powder cannot be solved.
[0007]
On the other hand, in Japanese Patent Publication No. 56-23628, when recovering main components such as phosphates from powder fire extinguishing chemical waste subjected to moisture-proof processing, the powder fire extinguishing chemical waste is added to an aqueous ammonia solution or an interface. It is disclosed that a hardly-soluble powder fire extinguishing chemical waste can be dissolved by adding it to an activator aqueous solution and stirring or heating it. In Japanese Patent Publication No. 58-22227, when regenerating a powder fire extinguishing agent from a monobasic ammonium phosphate powder extinguishing agent waste, the powder extinguishing agent waste is converted into a saturated ammonium phosphate aqueous solution equivalent to a saturated amount. It is disclosed that the solubility of the primary ammonium phosphate powder, which is the main component of the powder fire extinguishing agent waste, can be improved by adding a surfactant as a penetrant when it is added. Furthermore, in Japanese Patent Publication No. 3-43233, when producing a powder fertilizer for liquid fertilizer from a primary ammonium phosphate powder extinguishing chemical waste, the powder extinguishing chemical waste is mixed with a caustic potash aqueous solution or a mixture of caustic potash and ammonia. Dissolution by treatment with an aqueous solution is disclosed.
[0008]
However, the conventional methods for hydrophilizing powder fire extinguishing chemical waste in the prior art are all carried out using an aqueous solution containing a chemical such as ammonia, a surfactant or caustic potash. When reusing the powder fire extinguishing chemical waste as a hydrophilic fertilizer, it is expensive and sometimes requires the addition of the chemical which can contaminate the fertilizer and inhibit its fertilization effect. Fertilizers that require strict process control for aqueous solution treatment, and that require a drying and solidification process that consumes a great deal of energy and man-hours in order to change from an aqueous solution state to a powder state that can be suitably used as a fertilizer Significant problems lead to high manufacturing costs.
[0009]
[Problems to be solved by the invention]
The first problem to be solved by the present invention is to make powder fire extinguishing chemical waste hydrophilic at low cost and without using an aqueous solution containing a chemical such as ammonia, surfactant or caustic potash as in the prior art. It is to provide a method of processing.
In addition, the second problem to be solved by the present invention is to provide a powder fire-extinguishing agent crushed product obtained by the hydrophilization method, an aqueous fire-extinguishing agent composition and a granulated fire-extinguishing agent composition using the crushed product. It is to provide.
[0010]
[Means for Solving the Problems]
In view of the above-mentioned problems related to the reuse of powder fire extinguishing chemical wastes, the present inventors have called various results and experiments on hydrophilic treatment methods that do not use aqueous solutions containing chemicals such as surfactants. The wettability is remarkably improved by subjecting the powder fire extinguishing chemical waste exhibiting a hydrophobic fine powder that has already been finely pulverized to a size of 180 μm or less and an average particle size of about 30 to 60 μm to further required grinding treatment. The headline and the present invention were completed.
[0011]
That is, the method for hydrophilizing a powder fire extinguishing chemical waste according to the present invention includes at least one function of impact, shearing, and friction of a powder fire extinguishing chemical waste containing a fine powdery flameproof salt subjected to moistureproof processing. In addition to being subjected to a pulverization treatment, the following contact angle measurement method, that is, 1.5 g of a molded powder sample formed into a cylindrical shape with a molding force of 1000 kg and a diameter of 15 mm, was added to the horizontal end face from above 3 mm with 0. A contact angle based on a contact angle measurement method in which a 01 cc water droplet was dropped while being contacted, and the contact angle of the water droplet to the molded powder sample was determined from the water droplet image was (a) within 5 seconds after the start of water dripping. And (b) the wettability is improved so that it becomes 0 degree within 1200 seconds after the start of water dripping.
The contact angle measurement method may be performed under conditions of temperature and humidity that can perform the measurement test according to the conditions (a) and (b) without any problem, for example, a temperature of 25 ± 15 ° C. In particular, it is preferably carried out under conditions of 25 ± 10 ° C. and a relative humidity of 55 ± 25%, particularly 55 ± 15%.
[0012]
In order to obtain superior hydrophilicity and granulation property, the powder fire extinguishing chemical waste has a contact angle of 60 degrees or less within 5 seconds after the start of dripping, and 0 within 300 seconds after the start of dripping. It is desirable to perform a pulverization process so that the degree is as high as possible.
In addition, untreated powder extinguishing agent waste generally depends on the type of powder extinguishing agent, the difference in manufacturer, and the background of the powder extinguishing agent reaching waste, but generally within 5 seconds after the start of dripping water. The contact angle exceeds 100 degrees, and the elapsed time after the start of the dropwise addition of water until the contact angle reaches 0 degrees exceeds 1200 seconds.
[0013]
The powder fire-extinguishing chemical waste subjected to moisture-proof processing is improved in wettability by the hydrophilization method and is modified to a required powder fire-extinguishing chemical crushed material. This is because the fine particles of the flameproof salt constituting the powder fire extinguishing chemical waste are partially or wholly damaged by the pressure applied to the impact, shear, friction, etc. by the crushing treatment, and the hydrophobicity of the surface of the fine particles. This is because the coating is partially or totally peeled off or broken, and as a result, the water-soluble flameproof salts coated on the hydrophobic coating are exposed to the outside and to the extent of the exposure. It is estimated that corresponding wettability, hydrophilicity, permeation rate and the like are generated.
[0014]
As a pulverizer that can be used for the pulverization treatment, for example, a container containing a pulverization medium such as a ball is rotated, whereby impact force, shearing force, friction between the pulverization medium and between the pulverization medium and the inner wall of the container. A ball mill in a broad sense that applies force, a roller mill that rolls a grinding roller on the grinding table, thereby applying compressive force, shearing force, etc. to the powder between the grinding roller and the grinding table surface, hammer, pin, A high-speed rotating mill that rotates a disk or the like at high speed, thereby giving impact force, shearing force, etc. to the powder, and a grinding medium such as a ball placed in a fixed container is stirred with the powder, thereby shearing force on the powder. Medium stirring mill that applies frictional force, jet mill that jets high-pressure jet stream, thereby applying impact force, frictional force, etc. to the powder, Such a combination as appropriate the required function in the number of the grinder and the like. For example, an ong mill that applies a strong compressive force, shearing force, etc. between the inner pieces with different curvature radii to the powder pressed against the inner wall of the rotating container by centrifugal force, or between a fixed disk and a rotating disk A disk mill or the like that applies compressive force or frictional force to the powder can also be suitably used.
In the pulverizer, the pulverization time, the pulverization force, and other operating conditions are set so that the pulverization process corresponding to the required wettability improvement is performed according to the pulverization characteristics.
[0015]
The flameproof salt fine particles are usually further refined by the crushing treatment, and depending on the method of the crushing treatment, there are some cases where secondary aggregation and fusion occur in parallel with the crushing of the fine particles. This case is also included in the concept of pulverization in the present invention.
In addition, in the crushing treatment of the powder fire extinguishing chemical waste, necessary fertilizing components, moisture, and other components may be added within a range that does not hinder the action and effect.
[0016]
The degree of wettability in the obtained powder fire extinguisher pulverized product depends on the method and processing time of the pulverization treatment and may be influenced by the particle size and particle shape of the pulverized fine particles. When a) and (b) are satisfied, excellent wettability and hydrophilicity that can be reused for fertilizers and the like can be obtained. Both the conditions (a) and (b) relate to the moisture absorption capacity of the powder, and those having a small contact angle in the condition (a) and having a short elapsed time in the condition (b) are generally highly hydrophilic. And high granulation properties. Particularly, the flameproof salt fine particles when subjected to a strong compressive shearing force, a strong frictional force, etc., obtain a remarkably excellent wettability such that the contact angle reaches 0 degrees within 5 seconds after the start of water dripping. It is also possible.
[0017]
An aqueous fire-extinguishing agent composition that can be used for liquid fertilizers, flame retardants, flame retardants and the like can be obtained by dissolving the powder fire-extinguishing agent powder obtained as described above in water by a known method.
In addition, when making the powder fire extinguisher powder agglomerated, a necessary fertilizer component and other components may be added as necessary, and the powder fire extinguisher powder is an existing fertilizer solution or other aqueous solution. It may be dissolved in.
[0018]
Moreover, the granulated fire-extinguishing agent composition which can be utilized for a granular fertilizer etc. can also be obtained by granulating the said powder fire-extinguishing agent granulated material by a well-known method. When granulating the powder fire extinguisher powder, self-sufficient granulation or forced granulation can be appropriately selected according to its wettability, particle size distribution and other powder physical properties, and particularly those with excellent wettability. As described above, self-sufficient granulation by adding only water is also easily possible. Examples of the self-granulating method include a rolling method using a rotating dish and the like, a fluidized bed method, and the like, and examples of the forced granulating method include an extrusion method and a compression method.
In the granulation of the powder fire extinguisher powder, necessary fertilizer components and other components may be added as necessary in addition to water and binder components. In addition, the granulated powder fire-extinguishing chemical waste is an intermediate product in a process continuous with the hydrophilization process by the pulverization process of powder fire-extinguishing chemical waste or in an integrated process with the hydrophilization process. It may be done without taking out.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Below, this invention is demonstrated based on an Example and contrasted with a comparative example.
[0020]
[Preparation of raw material for powder fire extinguishing agent waste]
ABC powder fire extinguishing agent manufactured by Morita Co., Ltd. (hereinafter referred to as “untreated powder medicine sample X”), Y containing 42% by weight of primary ammonium phosphate as a sample of powder fire extinguishing agent waste used in the test. ABC powder fire extinguishing agent (hereinafter referred to as untreated powder medicine sample Y) manufactured by KK and ABC powder fire extinguishing agent (hereinafter referred to as untreated powder medicine sample Z) manufactured by Z company were prepared.
[0021]
[Test method for powder properties]
Various powder physical properties of each powder sample according to Examples and Comparative Examples were tested and evaluated by the following methods.
[0022]
1. Average particle size (μm)
Using a Microtrac (a particle size distribution measuring device manufactured by Nikkiso), the particle size distribution is measured by a laser diffraction / scattering method in an isopropyl alcohol solvent in which a powder sample is dispersed, and a 50% average particle size is obtained.
[0023]
2. Contact angle (degrees) and penetration time (seconds) after 5 seconds of water dripping
Using a punch / die with a diameter of 15 mm, 1.5 g of a powder sample was molded into a cylindrical shape with a molding force of 1000 kg, and a drop of 0.01 cc of pure water was applied to the horizontal end face of the obtained molded powder sample from above 3 mm. Gently touch and place a drop of water on the sample. From this state, video recording is performed from the side of the water droplet until the water droplet has completely penetrated into the sample, and the contact angle of the water droplet to the molded powder sample after 5 seconds of water dripping is obtained. The elapsed time until the contact angle reaches 0 degree, that is, the permeation time, is measured, and the temperature and humidity at the time of the measurement are observed as a reference.
In this test, the powder sample having a contact angle of 90 degrees or less after 5 seconds of water dripping and having a permeation time of 1200 seconds or less exhibits extremely high wettability so that granulation can be easily performed. It is.
[0024]
3. Electrical conductivity (mS / cm)
Add 200 ml of deionized distilled water to a 200 ml beaker, keep the state where the electrode for electric conductivity measurement is inserted in the liquid, and stir at a constant speed using a magnetic stirrer, and add 0.2 g of the powder sample. In addition, each electrical conductivity is measured 5 minutes after addition and 10 minutes after addition.
The powder sample showing high electrical conductivity in this test generally has a large amount of salt elution and excellent solubility in water, while the electrical conductivity after 5 minutes and 10 minutes after addition is low. A powder sample having a small difference between both electrical conductivities has a low salt elution amount and is poor in solubility in water.
[0025]
4). Permeability rate ratio (cosθ n / cosθ 0 )
Using a penet analyzer (Penetration rate measuring device manufactured by Hosokawa Micron Corporation), 10 g of the powder sample is put into a measuring tube (cell) having an inner radius of 1.75 cm, and the cell is 1 Hz (once / second) for 180 seconds with a drop of 18 mm. After the powder sample is uniformly filled by tapping under the above conditions, the sample is suspended from the electronic balance, and pure water as a measurement medium liquid is placed in a tray and placed on the plate of the lifting device. After operating the elevating device to bring a part of the powder sample into contact with the liquid medium, the weight increase and time data due to the penetration of the liquid medium into the powder sample are continuously measured and recorded.
The relationship between the penetrant weight W L (g) and the penetrating time T (sec) is obtained by modifying the well-known “Washburn” formula indicating the relationship between the penetrating height L (cm) of the solution and the penetrating time T (sec). And represented by the following formula [I].
(W L 2 / T) = (S · ε · ρ L ) 2 r P · γ L · cos θ / 2 μ L ...... [I]
S: Measurement tube cross-sectional area (cm 2 )
ε: Porosity ρ L : Fluid density (g / cm 3 )
r P : capillary radius (cm) = average particle diameter γ L : liquid surface tension (dyne / cm)
θ: Contact angle between fluid and particles (°)
μ L: transfer fluid viscosity (g / cm · sec)
In addition, the porosity ε in the formula [I] is represented by the following formula [II].
ε = 1− (W P / ρ P · S · L P ) [II]
W P : Sample weight (g)
S: Measurement tube cross-sectional area (cm 2 )
ρ P : Particle density (g / cm 3 ) = True density L P : Sample layer height (cm)
Therefore, as the permeability rate ratio κ n indicating the degree of permeability of the powder sample to be measured, the ratio of cos θ n of the powder sample to be measured to cos θ 0 of the appropriately selected reference powder sample (cos θ n / cos θ 0 ) (Where the subscripts “0” and “n” represent the reference powder sample and the measured powder sample, respectively), the formula [I 0 ] and the reference powder sample The equation [I n ] relating to the powder sample to be measured is obtained, and the ratio between the two equations is obtained. The cross-sectional area of the measurement tube S 0 = S n obtained naturally from the measurement conditions, the liquid density ρ L0 = ρ Ln , When the medium surface tension γ L0 = γ Ln and the medium liquid viscosity μ L0 = μ Ln are substituted, the following equation [III] is derived as the permeability rate ratio κ n after all.
κ n = (cos θ n / cos θ 0 )
= {(W Ln 2 / T) · ε 0 2 · r P0 } / {(W L0 2 / T) · ε n 2 · r Pn } ...... [III]
The untreated powder drug sample X is selected as the reference powder sample, and the (W Ln 2 / T) value and (( W L0 2 / T) value is calculated, ε 0 2 value and ε n 2 value are calculated from the formula [II], and r P0 value and r Pn value are calculated from the measurement data of 50% average particle size by Microtrack, These are substituted into the formula [III] to calculate the permeability rate ratio κ n .
A powder sample that exhibits a high permeability rate ratio in this test (as untreated powder drug sample X as “1”) is generally highly permeable.
[0026]
5. Granulation (5-1) For self-contained granulated powder samples, use a dish-type granulator (a dish-type granulator manufactured by Tobu Seisakusho, dish diameter 900 mm, depth 150 mm) and spray water with a spray. The result was evaluated by the following criteria.
○: Self-sufficient granulation was successfully achieved.
Δ: Insufficient self-granulation was possible.
X: Affinity between the powder layer and water was poor, and self-granulation was difficult.
(5-2) Forced granulation Each powder sample was subjected to forced granulation using only disk water using a disk pelleter F-5 (extrusion granulator made by Fuji Powder). Was evaluated according to the following criteria.
○: Good forced granulation was achieved.
X: The affinity between the powder layer and water was poor, and forced granulation was difficult.
[0027]
[Example 1]
Untreated powder drug sample X was subjected to a pulverization process using a supermicron mill (Hosokawa Micron air swept type ultrafine pulverizer with a mechanism to separate and remove foreign substances simultaneously with pulverization), and the resulting powder fire extinguishing agent The ground material was tested for powder properties.
The drug sample X is impact-pulverized by a runner rotating at high speed in two crushing chambers connected via bushes, subjected to a shearing action by a knock, and further, an inter-particle grinding action by a twisted runner. Receive. The particle size is adjusted by replacing the bush from large to medium.
[0028]
[Example 2]
Untreated powder drug sample X was subjected to a batch-type pulverization treatment with mechanofusion AMS (Hosokawa Micron ang mill capable of performing particle fusion, complexation and mechanochemical action), and the resulting powder fire extinguishing agent was crushed The physical properties of the powder were tested.
The drug sample X receives a strong compressive force, a shearing force, and the like between the inner piece having different radii of curvature while being fixed by being pressed against the inner wall of the rotating container by a centrifugal force.
[0029]
[Examples 3 to 5]
The untreated powder drug sample X was pulverized by mechanofusion AMS in the same manner as in Example 2 except that the batch method was 2 minutes in Example 3, the batch method was 3 minutes in Example 4, and the batch method was 5 minutes in Example 5. Each of the obtained powder fire extinguishing agent crushed materials was subjected to a powder physical property test.
[0030]
Example 6
The untreated powder drug sample X was subjected to a pulverization process using a micron jet T (a jet mill manufactured by Hosokawa Micron using a high-speed jet stream), and the powder physical properties of the obtained powder fire extinguisher drug product were tested.
The drug sample X is sucked and accelerated by a high-speed jet stream (air pressure 6 kgf / cm 2 ) ejected from a nozzle (diameter 1.9 mm) at the center of the bottom of the apparatus, collides with a collision plate and is pulverized, and then transported together with the stream. Then, it is classified to a required particle size by a classification rotor (rotational speed: 14,000 rpm).
[0031]
Example 7
Untreated powder medicine sample X is subjected to grinding treatment with a horizontal roller mill (horizontal roller mill with an air sweep type classifier manufactured by Ishii grinding machine), and the powder physical properties test of the obtained powder fire extinguisher chemical powder is tested. went.
The drug sample X is pulverized by a large grinding action together with compressive force and shearing force by rolling of a grinding roller (rotation speed 473 rpm), and a classifier (rotation speed 1500 rpm, fine air) ) To classify to the required particle size.
[0032]
Example 8
The untreated powder chemical sample X is subjected to a grinding treatment by a vertical roller mill (a vertical roller mill with an air swept type classifier manufactured by Ishii grinding machine), and the powder physical properties of the obtained powder fire extinguisher chemical product are tested. It was.
The drug sample X is pulverized by a large grinding action together with a compression force and a shearing force by rolling of a grinding roller (rotation speed 60 rpm), and a classifier (rotation speed 315 rpm, air 15 m). 3 / min) to the required particle size.
[0033]
Example 9
The untreated powder medicine sample X was subjected to a batch-type 10-minute grinding treatment using a laboratory disc mill, and the powder physical properties of the obtained powder fire extinguisher chemical powder were tested.
The drug sample X is pulverized by receiving a compressive force, a frictional force, and the like by a rotating disk.
[0034]
Example 10
The untreated powder drug sample X is subjected to a batch-type 40-minute pulverization treatment with a cyclomix (a Hosokawa Micron precision mixer equipped with a rotor with a paddle that rotates at high speed). Physical properties were tested.
The drug sample X receives centrifugal force due to the high-speed rotation of the rotor with a paddle, and receives frictional force, compressive force, and shearing force on the casing wall surface.
[0035]
Example 11
Except that the untreated powder drug sample Y was used, it was subjected to a batch method for 3 minutes by the mechano-fusion AMS as in Example 4, and the powder physical properties of the obtained powder fire extinguisher powder were tested. .
[0036]
[Comparative Examples 1-3]
In Comparative Example 1, an untreated powder drug sample X, in Comparative Example 2 an untreated powder drug sample Y, and in Comparative Example 3 an untreated powder drug sample Z were tested for powder physical properties without pulverization.
[0037]
[Comparative Example 4]
The untreated powder drug sample X was subjected to the same pulverization treatment with the cyclomix as in Example 10 except that the batch method was changed to 20 minutes, and the powder physical properties of the obtained powder fire extinguisher drug product were tested.
[0038]
[Comparative Example 5]
The untreated powder drug sample X was subjected to pulverization treatment by ACM (Hosokawa Micron impact type fine pulverizer having a vertical rotating hammer), and the powder physical properties of the obtained powder fire extinguisher drug product were tested. .
The drug sample X is pulverized by an impact action between a vertical hammer and a liner rotating at high speed, and classified to a required particle size by a classification rotor (rotation speed 350 rpm).
[0039]
〔Test results〕
The test results relating to the powder physical properties of Examples 1 to 11 and Comparative Examples 1 to 5 are shown in Table 1 below.
[0040]
[Table 1]
Figure 0003772181
[0041]
According to the test results, the contact angle was reduced to 90 degrees or less within 5 seconds after the start of water dripping and (b) 0 degrees within 1200 seconds after the start of water dripping. The powder fire extinguishing agent crushed materials according to Examples 1 to 11 whose properties were improved are both excellent in that the electrical conductivity after 10 minutes is 0.5 mS / cm or more and the permeability rate ratio is as high as 10 or more. It has excellent hydrophilicity, water solubility and permeability, and exhibits excellent granulation properties.
On the other hand, none of the untreated powder fire extinguishing agents of Comparative Examples 1 to 3 satisfy the above conditions (a) and (b) related to the contact angle, and the electrical conductivity and the permeability rate ratio are those of Examples 1 to 11. It is clearly lower than that of, and exhibits extremely high hydrophobicity and difficulty in granulation.
Further, among the powder fire extinguisher powders subjected to the pulverization treatment, the powder fire extinguisher powders of Comparative Examples 4 to 5 that do not satisfy the conditions (a) and (b) related to the contact angle are Comparative Example 1. Although a slight improvement in wettability is observed when compared with ~ 3 untreated powder fire extinguishing agent, it is clearly inferior in all performance as compared with Examples 1 to 11, and wettability for reuse in fertilizers, etc. Therefore, for example, it is necessary to extend the grinding time, readjust the grinding machine, change the grinding method, and the like.
[0042]
【The invention's effect】
Since the method for hydrophilizing powder fire extinguishing chemical waste according to the present invention is configured as described above, the powder can be used without using an aqueous solution containing a chemical such as ammonia, surfactant or caustic potash as in the prior art. The fire-extinguishing chemical waste can be hydrophilically and inexpensively treated.
The powder fire extinguisher powder obtained by the hydrophilization method has excellent wettability and hydrophilicity that can be reused for fertilizers and the like. Therefore, an aqueous fire extinguisher formed by dissolving the crushed organism in water. The pharmaceutical composition can be used as an excellent liquid fertilizer, flame retardant, flame retardant, etc., and the granulated fire-extinguishing chemical composition formed by granulating the crushed organism can be used as an excellent granular fertilizer, etc. it can.

Claims (4)

防湿加工が施された微細粉末状防炎性塩類を含む粉末消火薬剤廃棄物を衝撃、剪断及び摩擦の少なくとも一機能を含む粉砕処理に供すると共に、それによって、下記の接触角測定方法、即ち成型力1000kgで直径15mmの円柱状に成型された1.5gの成型粉体試料の水平端面にその3mm上から純水0.01ccの水滴を接触させつつ滴下させ、該水滴の成型粉体試料に対する接触角を水滴画像から求めるようにした接触角測定方法に基づく接触角が、(a)水滴下開始後5秒以内に90度以下になり、且つ(b)水滴下開始後1200秒以内に0度になるように濡れ性を向上させることを特徴とする粉末消火薬剤廃棄物の親水化処理方法。The powder fire extinguishing chemical waste containing the fine powdery flameproof salt subjected to moistureproof processing is subjected to a grinding treatment including at least one function of impact, shearing and friction, and thereby, the following contact angle measuring method, that is, molding A drop of 0.01 cc of pure water is dropped from 3 mm above the horizontal end face of a 1.5 g molded powder sample molded into a cylinder having a diameter of 15 mm with a force of 1000 kg, and the water droplet is applied to the molded powder sample. The contact angle based on the contact angle measurement method in which the contact angle is obtained from the water drop image becomes (a) 90 degrees or less within 5 seconds after the start of water dropping, and (b) 0 within 1200 seconds after the start of water dropping. A method for hydrophilizing powder fire extinguishing chemical waste, characterized by improving wettability to a degree. 請求項1に記載の親水化処理方法により得られた粉末消火薬剤砕成物。The powder fire-extinguishing agent crushed material obtained by the hydrophilization processing method of Claim 1. 請求項2に記載の粉末消火薬剤砕成物を水中に溶解してなる水性消火薬剤組成物。An aqueous fire-extinguishing agent composition obtained by dissolving the powder fire-extinguishing agent powder according to claim 2 in water. 請求項2に記載の粉末消火薬剤砕成物を造粒してなる造粒消火薬剤組成物。The granulated fire-extinguishing agent composition formed by granulating the powder fire-extinguishing agent crushed material of Claim 2.
JP2001372805A 2001-12-06 2001-12-06 Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product Expired - Lifetime JP3772181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372805A JP3772181B2 (en) 2001-12-06 2001-12-06 Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372805A JP3772181B2 (en) 2001-12-06 2001-12-06 Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product

Publications (2)

Publication Number Publication Date
JP2003171665A JP2003171665A (en) 2003-06-20
JP3772181B2 true JP3772181B2 (en) 2006-05-10

Family

ID=19181630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372805A Expired - Lifetime JP3772181B2 (en) 2001-12-06 2001-12-06 Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product

Country Status (1)

Country Link
JP (1) JP3772181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021295A (en) * 2005-07-12 2007-02-01 Morita Corp Covering material for control of environmental load gas, organic waste treatment method, and fertilizer composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878173B1 (en) * 2004-11-25 2007-01-19 Valoragri Sa Sa PROCESS FOR TREATING EXTINCTOR POWDER WASTE, AND FERTILIZER OBTAINED BY SUCH A METHOD
JP2010100456A (en) * 2008-10-21 2010-05-06 Sagaken Nogyo Kyodo Kumiai Method of manufacturing fertilizer using powder type extinguishing agent waste as raw material
JP5126561B1 (en) * 2012-06-12 2013-01-23 株式会社ゴールドリンク Method of hydrophilizing powder fire extinguishing chemical waste and fertilizer obtained by the method
JP2013063905A (en) * 2012-11-19 2013-04-11 Sagaken Nogyo Kyodo Kumiai Method of manufacturing fertilizer using powder type extinguishing agent waste as raw material
JP6273567B2 (en) * 2013-06-14 2018-02-07 兼定興産株式会社 Fertilizer using powder-treated fire extinguishing agent and method for producing the same
KR101998080B1 (en) 2017-11-03 2019-10-01 주식회사 탑이엔씨 Fertilizer using dry chemical powder of disused fire extinguisher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021295A (en) * 2005-07-12 2007-02-01 Morita Corp Covering material for control of environmental load gas, organic waste treatment method, and fertilizer composition

Also Published As

Publication number Publication date
JP2003171665A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
Pietsch Agglomeration in Industry, 2 Volume Set: Occurrence and Applications
US3011902A (en) Process of manufacturing carbon black pellets for inks
JP3772181B2 (en) Method for hydrophilizing powder fire extinguishing chemical waste, powder fire extinguisher crushed material obtained by the method, aqueous fire retardant composition and granulated fire retardant composition using the crushed product
JPH0564169B2 (en)
JP2001502375A (en) Metal pigment component
JP2008524356A (en) Fine-grained polyarylene ether ketone powder
IE58980B1 (en) Product and process for producing an agglomerated instant coffee having a roast ground appearance
Zhu et al. Investigation on the influence of surface roughness on magnetite flotation from the view of both particle-particle and bubble-particle interactions
JPS58120525A (en) Manufacture of hollow silicate sphere
CN101426625A (en) Titanium dioxide scouring media and method of production
Kondo et al. Spheronization mechanism of pharmaceutical material crystals processed by extremely high shearing force using a mechanical powder processor
Deng et al. Urea melt marbles developed by enwrapping urea melt droplets with superhydrophobic particles: preparation, properties, and application in large urea granule production
KR100245418B1 (en) Water dispersible granules of low melting point pesticides
Kondo et al. Solventless-mixing layering using a high shear mixer for preparing drug pellets: a feasibility study using acetaminophen
KR102323009B1 (en) Surface treatment method for improving the flowability of titanium powder for additive manufacturing and titanium powder for additive manufacturing manufactured thereby
JP7474221B2 (en) Manufacturing method of spherical silica powder
JPH0542326B2 (en)
JPH07111421B2 (en) Manufacturing method of colored magnetic powder for magnetic particle inspection
US2679932A (en) Manufacture of magnesium alloy extrusions
JP2565410B2 (en) Silica filler
JP2014197503A (en) Composite particle, semiconductor sealing material, and electrode material for lithium ion secondary battery
US2778718A (en) Comminuted coal fines and method of comminuting agglomerated coal fines
JP6273567B2 (en) Fertilizer using powder-treated fire extinguishing agent and method for producing the same
TW583020B (en) Granules of para-hydroxybenzoic acid or ester para-hydroxybenzoate and method of manufacturing the same
WO2023191019A1 (en) Porous silica particles and method for producing same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Ref document number: 3772181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term