JPH08327193A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08327193A
JPH08327193A JP7134182A JP13418295A JPH08327193A JP H08327193 A JPH08327193 A JP H08327193A JP 7134182 A JP7134182 A JP 7134182A JP 13418295 A JP13418295 A JP 13418295A JP H08327193 A JPH08327193 A JP H08327193A
Authority
JP
Japan
Prior art keywords
defrosting
heat exchanger
outdoor
air conditioner
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7134182A
Other languages
Japanese (ja)
Inventor
Yasuji Ogoshi
靖二 大越
Akihiko Sugiyama
明彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7134182A priority Critical patent/JPH08327193A/en
Publication of JPH08327193A publication Critical patent/JPH08327193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To shorten a defrosting operation time and improve a comfortable feeling by a method wherein either a mechatronics defrosting operation for stopping an operation of an indoor fan and an outdoor fan or a reverse defrosting operation for stopping an operation of an indoor fan and an outdoor fan is selected and run in response to a detected defrosting load. CONSTITUTION: An outdoor heat exchanger 8 is provided with a surrounding air temperature sensor 10 and an evaporating temperature sensor 11. These both sensors 10 and 11 are connected to an outdoor controller 12. The outdoor controller 12 detects a presence or a non-presence of necessity of defrosting of the outdoor heat exchanger 8 and a defrosting load in response to a surrounding air temperature read from a surrouding air temperature sensor 10 and a refrigerant evaporating temperature read from an evaporating temperature sensor 11 in accordance with a program when a heating operation is carried out, one of the reverse defrosting operation and the mechatronics defrosting operation is selected in response to the defrosting load and operated. With such an arrangement as above, it is possible to shorten a defrosting time and improve a comfortable feeling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ式空気調和
機に係り、特に、除霜運転方法を改良した空気調和機に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly to an air conditioner having an improved defrosting operation method.

【0002】[0002]

【従来の技術】従来、この種の空気調和機の除霜方式と
してはリバース除霜方式や、メカトロ除霜方式等があ
る。リバース除霜方式は、図6のシーケンス図に示すよ
うに暖房運転時にオンの四方弁をOFFに逆転して、冷
媒の循環方向を暖房時と逆転させ、流量調節弁(メカト
ロ弁)である膨張弁の開度が所定開度で一定に保持され
るように制御し、室内外ファンの運転を停止させる運転
方法である。
2. Description of the Related Art Conventionally, there are a reverse defrosting method, a mechatronic defrosting method, etc. as a defrosting method for this type of air conditioner. In the reverse defrosting method, as shown in the sequence diagram of FIG. 6, the four-way valve that is on during the heating operation is reversed to be turned off, the circulation direction of the refrigerant is reversed from that during heating, and the expansion that is the flow control valve (mechatronic valve) is performed. This is an operation method in which the opening of the valve is controlled to be kept constant at a predetermined opening, and the operation of the indoor / outdoor fan is stopped.

【0003】つまり、コンプレッサから吐出された高温
高圧のガス状冷媒を室外熱交換器内に導入し、ここで放
熱して液化させ、その放熱により、室外熱交換器の外面
の着霜を加熱融霜して除霜することができる。また、室
外熱交換器で液化した液冷媒は膨張弁を経て室内熱交換
器内へ流入し、ここで蒸発して気化し、ガス冷媒となっ
て再びコンプレッサに戻される。したがって、液冷媒と
してコンプレッサに戻る液バック量が少ない。
That is, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor is introduced into the outdoor heat exchanger, where it radiates heat to be liquefied, and the radiated heat heats and melts frost on the outer surface of the outdoor heat exchanger. Can be defrosted and defrosted. Further, the liquid refrigerant liquefied in the outdoor heat exchanger flows into the indoor heat exchanger through the expansion valve, is vaporized and vaporized there, becomes a gas refrigerant, and is returned to the compressor again. Therefore, the amount of liquid bag returning to the compressor as the liquid refrigerant is small.

【0004】しかし、このようなリバース除霜方式で
は、室内熱交換器内に流入した液化冷媒が蒸発して吸熱
するので、室内熱交換器を冷却してしまう。このため
に、リバース除霜運転終了後、室内熱交換器を加温して
暖房運転が立上るまでには、なお数分がかかる。つま
り、暖房運転の立上りが遅いという特徴がある。また、
リバース除霜時の室外熱交換器の冷媒温度は霜の溶融に
よって、ガスライン側(除霜流入側)から液ライン側
(除霜流出側)へ徐々に低下するので、着霜量が多い場
合には液ライン側の端部に着霜が残る場合がある。
However, in such a reverse defrosting system, the liquefied refrigerant flowing into the indoor heat exchanger evaporates and absorbs heat, so that the indoor heat exchanger is cooled. For this reason, after the reverse defrosting operation is completed, it takes several minutes until the indoor heat exchanger is heated and the heating operation is started. In other words, there is a feature that the start-up of heating operation is slow. Also,
When the amount of frost is large, the refrigerant temperature of the outdoor heat exchanger during reverse defrost gradually decreases from the gas line side (defrost inflow side) to the liquid line side (defrost outflow side) due to the melting of frost. In some cases, frost may remain on the end on the liquid line side.

【0005】さらに、リバース除霜運転開始とほぼ同時
に四方弁がOFFになるので、室内熱交換器内に溜って
いる高温高圧の冷媒の熱が冷媒配管やサクションカップ
で放熱してしまい、除霜に利用されないという特徴があ
る。
Further, since the four-way valve is turned off almost at the same time as the reverse defrosting operation is started, the heat of the high temperature and high pressure refrigerant accumulated in the indoor heat exchanger is dissipated in the refrigerant pipe and the suction cup, and the defrosting is performed. There is a feature that is not used for.

【0006】一方、メカトロ除霜方式では、暖房運転時
の四方弁をOFFせずにON状態を継続しながら膨脹弁
を開く一方、単に室内,外ファンの運転を停止させるも
のであり、コンプレッサの蓄熱とその入力(電力)とに
より室外熱交換器の着霜を加熱融霜して除霜するもので
ある。
On the other hand, in the mechatronic defrosting method, the expansion valve is opened while the four-way valve is not turned off during the heating operation and is kept on while the indoor and outdoor fans are simply stopped. The frost of the outdoor heat exchanger is heated and melted by heat storage and its input (electric power) to defrost the heat.

【0007】したがって、コンプレッサから吐出された
高温高圧の冷媒が四方弁,室内熱交換器,膨脹弁を順次
経て室外熱交換器へ流入し、この室外熱交換器で冷媒の
一部が放熱して着霜を融霜することにより除霜し、反
面、その除霜により液化した液冷媒は再びコンプレッサ
に戻され、ここで吸熱し、再び圧縮されて吐出される。
したがって、コンプレッサはその内部に吸い込まれた液
冷媒により冷却され、温度が徐々に低下する。
Therefore, the high-temperature and high-pressure refrigerant discharged from the compressor sequentially flows into the outdoor heat exchanger through the four-way valve, the indoor heat exchanger, and the expansion valve, and the outdoor heat exchanger radiates a part of the refrigerant. Defrosting is performed by melting the frost, and on the other hand, the liquid refrigerant liquefied by the defrosting is returned again to the compressor, where it absorbs heat, is compressed again, and is discharged.
Therefore, the compressor is cooled by the liquid refrigerant sucked inside, and the temperature gradually decreases.

【0008】しかし、このようなメカトロ除霜方式で
は、コンプレッサの蓄熱量とその入力(電力)の熱量に
より室外熱交換器の着霜を加熱融霜して除霜する方式で
あるので、その除霜中、コンプレッサの蓄熱量が殆どな
くなってコンプレッサが冷えると、コンプレッサ内に液
冷媒が溜まり、最終的には液冷媒と圧縮機内の潤滑油が
吐出されるという液吐出現象が発生し、コンプレッサが
故障する場合がある。
However, such a mechatronic defrosting method is a method of defrosting by frosting the frost of the outdoor heat exchanger by heating and frosting the frost of the outdoor heat exchanger by the heat storage amount of the compressor and the heat amount of its input (electric power). When the compressor cools down due to almost no heat storage in the frost, the liquid refrigerant accumulates in the compressor and eventually the liquid refrigerant and the lubricating oil in the compressor are discharged, which causes the liquid discharge phenomenon. It may break down.

【0009】[0009]

【発明が解決しようとする課題】そして、従来の空気調
和機は、除霜負荷(着霜量)のいかんに拘らず、リバー
ス除霜方式またはメカトロ除霜方式の一方により運転し
ているので、例えば着霜量が少なく、除霜負荷が比較的
軽いときにもリバース除霜運転を行なうので、暖房運転
の立上りが遅いという課題がある。
Since the conventional air conditioner is operated by either the reverse defrosting system or the mechatronic defrosting system regardless of the defrosting load (frosting amount), For example, since the reverse defrosting operation is performed even when the amount of frost is small and the defrosting load is relatively light, there is a problem that the rising of the heating operation is slow.

【0010】また、除霜負荷が重いときにもメカトロ除
霜運転を行なうので、コンプレッサの液吐出によりコン
プレッサの故障を招く場合があるという課題がある。
Further, since the mechatronics defrosting operation is performed even when the defrosting load is heavy, there is a problem that the compressor may be damaged due to discharge of liquid from the compressor.

【0011】そこで本発明の目的は、除霜負荷に応じて
メカトロ除霜運転とリバース除霜運転とを選択して実行
することにより、除霜運転時間を短縮して快適性を向上
することができる空気調和機を提供することにある。
Therefore, an object of the present invention is to shorten the defrosting operation time and improve comfort by selectively executing the mechatronics defrosting operation and the reverse defrosting operation according to the defrosting load. It is to provide an air conditioner that can.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明は、
少なくとも圧縮機,四方弁,室内ファンを具備した室内
熱交換器,膨張弁,室外ファンを具備した室外熱交換器
を冷媒配管により順次接続して冷媒を循環せしめる冷暖
房自在の冷凍サイクルを有する空気調和機において、上
記冷凍サイクルの暖房運転時に上記室外熱交換器に生ず
る着霜を除霜するために必要な負荷を検知する除霜負荷
検知手段と、この除霜負荷検知手段により検知した除霜
負荷に応じて、上記冷凍サイクルを循環する冷媒の循環
方向が暖房運転時と同じであって上記膨脹弁を開くと共
に、上記室内,室外ファンの運転を停止せしめるメカト
ロ除霜運転と、上記冷凍サイクルを循環する冷媒の循環
方向が暖房運転時と逆であって上記室内,外ファンの運
転を停止せしめるリバース除霜運転と、のいずれかを選
択し実行せしめる制御手段と、を有する。
According to the first aspect of the present invention,
An air conditioner that has a refrigeration cycle that allows free cooling and heating in which at least a compressor, a four-way valve, an indoor heat exchanger equipped with an indoor fan, an expansion valve, and an outdoor heat exchanger equipped with an outdoor fan are sequentially connected by refrigerant piping to circulate a refrigerant. In the machine, a defrosting load detecting means for detecting a load necessary for defrosting the frost formed on the outdoor heat exchanger during the heating operation of the refrigeration cycle, and a defrosting load detected by the defrosting load detecting means. Accordingly, the circulation direction of the refrigerant circulating in the refrigeration cycle is the same as that in the heating operation, the expansion valve is opened, and the mechatronics defrosting operation for stopping the operation of the indoor and outdoor fans and the refrigeration cycle are performed. The reverse defrosting operation, in which the circulation direction of the circulating refrigerant is opposite to that in the heating operation and the operation of the indoor and outdoor fans is stopped, is executed. And a control means,.

【0013】請求項2記載の発明は、請求項1記載の空
気調和機において、制御手段は、除霜負荷が軽いと判断
したときには、メカトロ除霜運転を行ない、重いと判断
したときには、リバース除霜運転を行なう構成である。
According to a second aspect of the present invention, in the air conditioner according to the first aspect, the control means performs the mechatronic defrosting operation when it is determined that the defrosting load is light, and the reverse defrosting operation when it is determined that the defrosting load is heavy. It is configured to perform frost operation.

【0014】請求項3記載の発明は、請求項2記載の空
気調和機において、制御手段は、リバース除霜運転を行
なう際、室内ファンを停止させてから四方弁を反転させ
る構成である。
According to a third aspect of the present invention, in the air conditioner according to the second aspect, the control means is configured to reverse the four-way valve after stopping the indoor fan when performing the reverse defrosting operation.

【0015】請求項4記載の発明は、請求項3記載の空
気調和機において、制御手段は、室内ファンの運転停止
時に膨張弁を、全開にする一方、四方弁の反転後に所定
開度に絞る構成である。
According to a fourth aspect of the present invention, in the air conditioner according to the third aspect, the control means fully opens the expansion valve when the operation of the indoor fan is stopped, while narrowing the expansion valve to a predetermined opening after reversing the four-way valve. It is a composition.

【0016】請求項5記載の発明は、請求項1〜4のい
ずれか1項に記載の空気調和機において、除霜負荷検知
手段は、外気温を検出する外気温センサー、室外熱交換
器における冷媒の蒸発温度を検出する蒸発温度センサ
ー、空調空間の湿度を検出する湿度センサー,室外ファ
ンの回転数を検出する室外ファン回転数検出手段,圧縮
機の運転周波数を検出する運転周波数検出手段のうちの
少なくともいずれかである。
According to a fifth aspect of the present invention, in the air conditioner according to any one of the first to fourth aspects, the defrost load detecting means is an outside air temperature sensor for detecting an outside air temperature, and an outdoor heat exchanger. Of the evaporation temperature sensor that detects the evaporation temperature of the refrigerant, the humidity sensor that detects the humidity of the air-conditioned space, the outdoor fan rotation speed detection means that detects the rotation speed of the outdoor fan, and the operation frequency detection means that detects the operation frequency of the compressor At least one of.

【0017】[0017]

【作用】請求項1〜4の発明においては、除霜負荷検知
手段により検知された除霜負荷が軽いときには制御手段
によりメカトロ除霜運転が選択され、かつ実行されるの
で、室内熱交換器の温度が高い状態のままで除霜運転を
行なうことができる。また、除霜負荷が軽いので、除霜
運転時間を短縮することができる。このために、除霜運
転終了後の暖房運転の立上げを早めることができるの
で、快適性と暖房効率の向上とを共に図ることができ
る。
According to the present invention, when the defrosting load detected by the defrosting load detecting means is light, the control means selects and executes the mechatronics defrosting operation. The defrosting operation can be performed while the temperature remains high. Further, since the defrosting load is light, the defrosting operation time can be shortened. For this reason, it is possible to speed up the start-up of the heating operation after the completion of the defrosting operation, so that it is possible to improve both comfort and heating efficiency.

【0018】一方、除霜負荷が重いときには制御手段に
よりリバース除霜運転が選択され、かつ実行されるの
で、圧縮機に戻される冷媒の液バック量を低減すること
ができる。このために、液バックによる圧縮機の故障を
未然に防止することができるので、信頼性を向上させる
ことができる。
On the other hand, when the defrosting load is heavy, the reverse defrosting operation is selected and executed by the control means, so that the liquid back amount of the refrigerant returned to the compressor can be reduced. For this reason, it is possible to prevent the failure of the compressor due to the liquid back, so that the reliability can be improved.

【0019】請求項3の発明においては、リバース除霜
運転を行なう際、直ちに四方弁を反転(OFF)させず
に、室内ファンを停止させてから四方弁を反転(OF
F)させるので、室内熱交換器内に溜っている高温高圧
の冷媒を除霜運転開始直後に、ON中の四方弁を通して
室外熱交換器内に導入して除霜に有効に利用でき、その
分、除霜時間を短縮することができる。
According to the third aspect of the invention, when the reverse defrosting operation is performed, the four-way valve is reversed (OF) after the indoor fan is stopped without immediately reversing (OFF) the four-way valve.
F), the high-temperature and high-pressure refrigerant accumulated in the indoor heat exchanger can be introduced into the outdoor heat exchanger through the ON four-way valve immediately after the defrosting operation is started, and can be effectively used for defrosting. The time required for defrosting can be shortened.

【0020】請求項4の発明は、リバース除霜運転の開
始により室内ファンの運転が停止した時に、膨張弁を全
開するので、暖房運転時に室内熱交換器内に溜っている
高温高圧の冷媒の一部を、全開中の膨張弁を通して室外
熱交換器内へ、そのリバース除霜運転時冷媒出口側から
導入することができる。このために、この冷媒出口側端
部の残霜を高温高圧のガス状冷媒により加熱して除霜す
ることができる。
According to the fourth aspect of the invention, when the operation of the indoor fan is stopped by the start of the reverse defrosting operation, the expansion valve is fully opened, so that the high temperature and high pressure refrigerant accumulated in the indoor heat exchanger during the heating operation is A part of the refrigerant can be introduced into the outdoor heat exchanger from the refrigerant outlet side during the reverse defrosting operation through the expansion valve that is fully open. Therefore, the residual frost on the refrigerant outlet side end can be defrosted by heating it with a high-temperature and high-pressure gaseous refrigerant.

【0021】[0021]

【実施例】以下、本発明の実施例を図1〜図5に基づい
て説明する。図1〜図5中、同一または相当部分には同
一符号を付している。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5, the same or corresponding parts are designated by the same reference numerals.

【0022】図1は本発明に係る空気調和機の一実施例
の冷凍サイクル図であり、この図において、空気調和機
1は、図示しないインバータにより回転数制御自在に駆
動される圧縮機2,四方弁3,室内ファン4を有する室
内熱交換器5,流量制御弁(メカトロ弁)である膨張弁
6,室外ファン7を有する室外熱交換器8を冷媒配管9
により、この順に順次、かつ環状に接続して冷媒を可逆
的に循環させる冷凍サイクルを構成している。この冷凍
サイクルは、室内,外ファン4,7の運転時に、四方弁
3の切換操作により、冷媒を、図中実線矢印方向に循環
させることにより暖房運転され、図中破線矢印方向に循
環させることにより冷房運転される。また、少なくとも
室内ファン4の運転停止時に、冷媒を、図中実線矢印方
向に循環させることによりメカトロ除霜運転され、また
図中破線矢印方向に循環させることによりリバース除霜
運転される。
FIG. 1 is a refrigeration cycle diagram of an embodiment of an air conditioner according to the present invention. In this figure, an air conditioner 1 is a compressor 2, which is driven by an inverter (not shown) so that the rotation speed can be controlled freely. An indoor heat exchanger having a four-way valve 3, an indoor fan 4, an expansion valve 6, which is a flow control valve (mechatronic valve) 6, an outdoor heat exchanger 8 having an outdoor fan 7, and a refrigerant pipe 9
Thus, the refrigerating cycle in which the refrigerant is reversibly circulated is sequentially connected in this order and in a ring shape. In this refrigeration cycle, when the indoor and outdoor fans 4 and 7 are operating, the refrigerant is circulated in the direction of the solid line arrow in the figure by the switching operation of the four-way valve 3, and is circulated in the direction of the broken line arrow in the figure. The cooling operation is performed by. Further, at least when the operation of the indoor fan 4 is stopped, the mechatronic defrosting operation is performed by circulating the refrigerant in the direction of the solid line arrow in the figure, and the reverse defrosting operation is performed by circulating the refrigerant in the direction of the broken line arrow in the figure.

【0023】そして、室外熱交換器8には除霜負荷検知
手段として外気温Toを検知する外気温センサー10
と、室外熱交換器8内で蒸発する冷媒の蒸発温度TEを
検知する蒸発温度センサー11とを設けており、これら
両センサー10,11を信号線により制御手段である室
外制御器12に電気的に接続している。
The outdoor heat exchanger 8 has an outside air temperature sensor 10 for detecting the outside air temperature To as defrosting load detecting means.
And an evaporation temperature sensor 11 that detects the evaporation temperature TE of the refrigerant that evaporates in the outdoor heat exchanger 8, and these sensors 10 and 11 are electrically connected to an outdoor controller 12 which is a control means by a signal line. Connected to.

【0024】室外制御器12は例えばマイクロプロセッ
サー等からなり、暖房運転時に、図2で示す制御プログ
ラムに従って、外気温センサー10から読み込んだ外気
温Toと、蒸発温度センサー11から読み込んだ冷媒蒸
発温度TEとに基づいて室外熱交換器8の除霜の必要性
の有無および除霜負荷を検知し、その除霜負荷に基づい
てリバース除霜運転とメカトロ除霜運転の一方を選択し
て実行するものである。
The outdoor controller 12 is composed of, for example, a microprocessor, and during heating operation, the outside air temperature To read from the outside air temperature sensor 10 and the refrigerant evaporation temperature TE read from the evaporation temperature sensor 11 according to the control program shown in FIG. The presence or absence of the need for defrosting of the outdoor heat exchanger 8 and the defrosting load are detected based on, and one of the reverse defrosting operation and the mechatronics defrosting operation is selected and executed based on the defrosting load. Is.

【0025】次に、室外制御器12の除霜運転について
の制御プログラムを図2のフローチャートに基づいて説
明する。なお、図2中、S1〜S7はフローチャートの
各ステップを示す。
Next, a control program for the defrosting operation of the outdoor controller 12 will be described with reference to the flowchart of FIG. Note that S1 to S7 in FIG. 2 indicate steps of the flowchart.

【0026】まず、S1で室外制御器12は、空気調和
機1の暖房運転を開始させると、S2で蒸発温度センサ
ー11から読み出した室外熱交換器8内で蒸発した冷媒
の蒸発温度TEが例えば−2℃よりも低い(TE<−
2)状態を30分間継続しているか否か繰り返し判断
し、Yesの場合は、除霜の必要性があると判断すると
共に、S3で外気温センサー10から読み込んだ外気温
Toが例えば2℃以下(To≦2)であるか否か判断
し、Yesの場合は室外熱交換器8の除霜負荷が重いと
判断してS4のリバース除霜運転を選択して実行し、N
oの場合は除霜負荷が軽いと判断してS5でメカトロ除
霜運転を選択実行する。
First, when the outdoor controller 12 starts the heating operation of the air conditioner 1 in S1, the evaporation temperature TE of the refrigerant evaporated in the outdoor heat exchanger 8 read from the evaporation temperature sensor 11 in S2 is, for example, Lower than -2 ° C (TE <-
2) It is repeatedly judged whether or not the state is continued for 30 minutes, and if Yes, it is judged that defrosting is necessary, and the outside air temperature To read from the outside air temperature sensor 10 in S3 is, for example, 2 ° C. or less. It is determined whether or not (To ≦ 2). If Yes, it is determined that the defrosting load on the outdoor heat exchanger 8 is heavy, and the reverse defrosting operation of S4 is selected and executed.
In the case of o, it is determined that the defrosting load is light, and the mechatronics defrosting operation is selectively executed in S5.

【0027】リバース除霜運転は図3で示すシーケンス
に従って運転されるものであり、暖房運転中、除霜運転
の開始時に四方弁3をONからOFFに反転させて、そ
の冷媒の循環方向を図1中破線矢印方向に逆転させる。
また、圧縮機2の運転周波数を例えば62Hzに低減
し、室内ファン4の運転を停止させる。但し、室外ファ
ン7については除霜運転開始から所定時間、例えば20
秒後に運転を停止させ、膨張弁(メカトロ弁)6の開度
は暖房運転時のスーパーヒート一定制御の開度とほぼ同
じ開度で一定に保持される。
The reverse defrosting operation is carried out in accordance with the sequence shown in FIG. 3. During the heating operation, the four-way valve 3 is reversed from ON to OFF at the start of the defrosting operation, and the circulation direction of the refrigerant is shown. 1 Reverse in the direction of the dashed arrow.
Further, the operating frequency of the compressor 2 is reduced to, for example, 62 Hz, and the operation of the indoor fan 4 is stopped. However, for the outdoor fan 7, a predetermined time, for example, 20
The operation is stopped after a second, and the opening degree of the expansion valve (mechatronics valve) 6 is kept constant at an opening degree substantially the same as the opening degree of the constant superheat control during the heating operation.

【0028】これにより、圧縮機2からの高温高圧のガ
ス状冷媒は、暖房運転時とは反転した四方弁3により案
内されて、まず室外熱交換器8内に流入し、ここで放熱
する一方で液化する。このために、その放熱により室外
熱交換器8を加熱し、その外面の着霜を加熱溶融して除
霜することができる。なお、除霜開始から約20秒間は
室外ファン7の運転が継続されるので、室外熱交換器8
での熱交換量は大きい。
As a result, the high-temperature and high-pressure gaseous refrigerant from the compressor 2 is guided by the four-way valve 3 which is reversed from that during the heating operation, first flows into the outdoor heat exchanger 8 and radiates heat there. Liquefy with. Therefore, the outdoor heat exchanger 8 can be heated by the heat radiation, and the frost on the outer surface can be heated and melted to remove the frost. Since the operation of the outdoor fan 7 is continued for about 20 seconds from the start of defrosting, the outdoor heat exchanger 8
The amount of heat exchange in is large.

【0029】そして、室外熱交換器8で液化した液冷媒
は所定開度の膨張弁6を通って、室内ファン4の運転が
停止されている室内熱交換器5内へ流入し、ここで自然
対流により吸熱して蒸発してから四方弁3により案内さ
れて再び圧縮機2内へ吸込口から戻される。したがっ
て、液冷媒が圧縮機2へ戻される液バック量を減少させ
ることができる。これの繰返しにより室外熱交換器8が
加熱され、その着霜が除霜されるので、次のS6で、蒸
発温度TEが5℃よりも高い(TE>5)か否か繰り返
し判断し、TE>5が成立したときには除霜が完了した
ものと判断して、再びS1へ戻って、暖房運転を開始
し、以下のステップを再び繰り返す。
Then, the liquid refrigerant liquefied in the outdoor heat exchanger 8 flows through the expansion valve 6 having a predetermined opening degree into the indoor heat exchanger 5 in which the operation of the indoor fan 4 is stopped, where it naturally flows. After absorbing heat by convection and evaporating, it is guided by the four-way valve 3 and returned to the compressor 2 from the suction port again. Therefore, it is possible to reduce the liquid back amount of the liquid refrigerant returned to the compressor 2. By repeating this, the outdoor heat exchanger 8 is heated and the frost is defrosted. Therefore, in the next S6, it is repeatedly determined whether or not the evaporation temperature TE is higher than 5 ° C. (TE> 5), and TE When> 5 is satisfied, it is determined that the defrosting is completed, the process returns to S1 again, the heating operation is started, and the following steps are repeated again.

【0030】一方、S5のメカトロ除霜は、図4のシー
ケンスに示すようにその除霜運転を開始しても、四方弁
3をオンからオフに反転させずに引き続きオン状態を保
持する一方、膨張弁6の開度を全開またはそれに近い開
度に制御する点でリバース除霜運転とは相違する。
On the other hand, in the mechatronic defrosting of S5, even if the defrosting operation is started as shown in the sequence of FIG. 4, the four-way valve 3 is continuously turned on without being inverted from on to off. It is different from the reverse defrosting operation in that the opening of the expansion valve 6 is controlled to be fully opened or close to it.

【0031】したがって、冷房の循環方向は図1中実線
矢印方向に示すように暖房運転時と同じである。このた
めに、圧縮機2からの高温高圧のガス状冷媒がオン中の
四方弁3に案内されて、室内熱交換器5,膨張弁6を順
次経て、室外熱交換器8内に流入する。この時、室内フ
ァン4の運転は停止しているので室内熱交換器5では冷
媒の放熱・液化は殆ど行なわれず、室外熱交換器8にお
いて冷媒は放熱して液化し、その放熱により室外熱交換
器8を加熱して、その除霜を加熱溶融し除霜する。室外
熱交換器8で液化した液冷媒は再び圧縮機2内へ、その
吸込口から吸い込まれ、ここで冷媒は圧縮機2の保有熱
を吸熱し、かつ圧縮されて再び四方弁3へ吐出される。
以下、これの繰返しにより室外熱交換器8の着霜が除霜
される。次に、S7で冷媒蒸発温度TEが、例えば5℃
を超えたか(TE>5)否か繰り返し判断し、Yesの
場合は再びS1へ戻って暖房運転を開始させる。
Therefore, the circulation direction of the cooling is the same as that during the heating operation, as shown by the solid arrow in FIG. For this reason, the high-temperature and high-pressure gaseous refrigerant from the compressor 2 is guided by the four-way valve 3 that is on, sequentially passes through the indoor heat exchanger 5 and the expansion valve 6, and then flows into the outdoor heat exchanger 8. At this time, since the operation of the indoor fan 4 is stopped, the heat dissipation and liquefaction of the refrigerant are hardly performed in the indoor heat exchanger 5, and the refrigerant radiates and liquefies in the outdoor heat exchanger 8, and the heat dissipation causes the outdoor heat exchange. The vessel 8 is heated to heat and melt the defrost to defrost it. The liquid refrigerant liquefied in the outdoor heat exchanger 8 is again sucked into the compressor 2 through its suction port, where the refrigerant absorbs the heat of the compressor 2 and is compressed and discharged again to the four-way valve 3. It
Hereinafter, by repeating this, the frost on the outdoor heat exchanger 8 is defrosted. Next, in S7, the refrigerant evaporation temperature TE is, for example, 5 ° C.
It is repeatedly determined whether or not (TE> 5) is exceeded, and in the case of Yes, the process returns to S1 again to start the heating operation.

【0032】したがって本実施例によれば、室外熱交換
器8の除霜負荷が重い場合にはリバース除霜運転により
圧縮機2からの吐出冷媒を直接室外熱交換器8に導くの
で確実に着霜を除霜するので、液バックを低減すること
ができる。このために、液バックによる圧縮機2の故障
の発生を有効に防止することができるので、信頼性を向
上させることができる。
Therefore, according to the present embodiment, when the defrosting load on the outdoor heat exchanger 8 is heavy, the refrigerant discharged from the compressor 2 is directly guided to the outdoor heat exchanger 8 by the reverse defrosting operation, so that the outdoor heat exchanger 8 is reliably attached. Since frost is defrosted, liquid back can be reduced. Therefore, it is possible to effectively prevent the occurrence of the failure of the compressor 2 due to the liquid back, and thus the reliability can be improved.

【0033】また、除霜負荷が軽い場合はメカトロ除霜
運転により除霜するが、除霜負荷が軽いので、その除霜
運転時間を短縮することができると共に、圧縮機2から
の吐出冷媒をはじめに室内熱交換器5に導くので室内熱
交換器5の温度を高いままに維持でき、除霜終了後の暖
房運転立上り時の温風吹出の立上げを早めることがで
き、快適性を高めることができる。
When the defrosting load is light, defrosting is performed by the mechatronics defrosting operation. However, since the defrosting load is light, the defrosting operation time can be shortened and the refrigerant discharged from the compressor 2 can be discharged. First, since it is guided to the indoor heat exchanger 5, the temperature of the indoor heat exchanger 5 can be maintained at a high level, and the warm air blow-up can be speeded up at the start of heating operation after the completion of defrosting, thus improving comfort. You can

【0034】図5は上記室外制御器12によりリバース
除霜運転を行なう場合の他のシーケンスを示しており、
これは除霜開始時に運転が停止される室内ファン4の当
該停止時から例えば約30秒の所定時間経過内は四方弁
3を直ちにオフせずに、オンのまま保持し、その所定時
間経過後にオフにして反転させる点と、その室内ファン
4の運転停止時から例えば約30秒の所定時間だけ膨張
弁6の開度を全開とし、その後、所定開度に絞る点に特
徴がある。
FIG. 5 shows another sequence when the reverse defrosting operation is performed by the outdoor controller 12.
This is because the four-way valve 3 is not turned off immediately but kept on for a predetermined time of, for example, about 30 seconds after the stop of the indoor fan 4 whose operation is stopped at the start of defrosting, and after the predetermined time has passed. It is characterized in that it is turned off and reversed, and that the opening degree of the expansion valve 6 is fully opened for a predetermined time of, for example, about 30 seconds after the operation of the indoor fan 4 is stopped, and then it is narrowed down to the predetermined opening degree.

【0035】つまり、リバース除霜運転開始とほぼ同時
に四方弁3をオフにして反転させると、室内熱交換器5
内に溜っている高温高圧の冷媒熱が冷媒配管9やサクシ
ョンカップ2aで放熱してしまい、除霜に利用すること
ができない。そこで、本実施例ではリバース除霜運転の
開始とほぼ同時に四方弁3をオフにせず、例えば30秒
間引き続きオン状態に保持するので、その間、室内熱交
換器5内に溜っている高温高圧のガス状冷媒をオン状態
の四方弁3と全開中の膨張弁6を通して室外熱交換器8
内に導入して除霜に利用するこどがてきる。したがっ
て、その分、除霜運転時間を短縮することができるの
で、快適性を向上させることができる。
That is, when the four-way valve 3 is turned off and reversed at almost the same time as the start of the reverse defrosting operation, the indoor heat exchanger 5
The high-temperature and high-pressure refrigerant heat accumulated inside is radiated by the refrigerant pipe 9 and the suction cup 2a and cannot be used for defrosting. Therefore, in the present embodiment, the four-way valve 3 is not turned off almost at the same time as the start of the reverse defrosting operation, and is kept in the on state for, for example, 30 seconds. The heat exchanger 8 through the four-way valve 3 in the on state and the expansion valve 6 in the fully opened state.
It can be introduced inside and used for defrosting. Therefore, the defrosting operation time can be shortened accordingly, and the comfort can be improved.

【0036】また、本実施例では室内ファン4の運転停
止時から例えば約30秒間だけ膨張弁6の開度を全開に
しているので、この全開中の膨張弁6を通して、室内熱
交換器5内に溜っている高温高圧のガス状冷媒の一部
を、室外熱交換器8内へ、その液ライン側(リバース除
霜時の冷媒出口側)から導入することができる。このた
めに、リバース除霜時に冷媒温度が低下し、図1に13
で示すような液ライン側端部外面での残霜をリバース除
霜開始前に加熱し除霜することができるので、リバース
除霜終了後に残霜13を生じることがなくなる。
Further, in the present embodiment, since the opening degree of the expansion valve 6 is fully opened for, for example, about 30 seconds after the operation of the indoor fan 4 is stopped, the inside of the indoor heat exchanger 5 is passed through the expansion valve 6 which is being fully opened. A part of the high-temperature and high-pressure gaseous refrigerant accumulated in the above can be introduced into the outdoor heat exchanger 8 from the liquid line side (refrigerant outlet side during reverse defrosting). For this reason, the temperature of the refrigerant decreases during reverse defrosting, and as shown in FIG.
Since the residual frost on the outer surface of the end portion on the liquid line side can be heated and defrosted before the reverse defrosting is started, the residual frost 13 is not generated after the reverse defrosting is completed.

【0037】なお、上記各実施例では除霜負荷検知手段
として、外気温センサー10と蒸気温度センセンサー1
1とを組み合せて使用する場合について説明したが、本
発明はこれらセンサー10,11のほかに、湿度センサ
ー,室外ファン7の回転数を検出する室外ファン回転数
検知手段,圧縮機2の運転周波数を検出する運転周波数
検知手段のいずれか、またはこれらの適宜組合せでもよ
い。
In each of the above-mentioned embodiments, the outside air temperature sensor 10 and the steam temperature sensor 1 are used as defrosting load detecting means.
1 and 2 are used in combination, the present invention, in addition to these sensors 10 and 11, a humidity sensor, an outdoor fan rotation speed detecting means for detecting the rotation speed of the outdoor fan 7, an operating frequency of the compressor 2. Any of the operating frequency detecting means for detecting the above, or an appropriate combination thereof may be used.

【0038】[0038]

【発明の効果】以上説明したように請求項1〜4の発明
においては、除霜負荷検知手段により検知された除霜負
荷が軽いときには制御手段によりメカトロ除霜運転が選
択され、かつ実行されるので、室内熱交換器の温度が高
い状態のままで除霜運転を行なうことができる。また、
除霜負荷が軽いので、除霜運転時間を短縮することがで
きる。このために、除霜運転終了後の暖房運転の立上げ
を早めることができるので、快適性と暖房効率の向上と
を共に図ることができる。
As described above, in the inventions of claims 1 to 4, when the defrosting load detected by the defrosting load detecting means is light, the control means selects and executes the mechatronic defrosting operation. Therefore, the defrosting operation can be performed while the temperature of the indoor heat exchanger remains high. Also,
Since the defrosting load is light, the defrosting operation time can be shortened. For this reason, it is possible to speed up the start-up of the heating operation after the completion of the defrosting operation, so that it is possible to improve both comfort and heating efficiency.

【0039】一方、除霜負荷が重いときには制御手段に
よりリバース除霜運転が選択され、かつ実行されるの
で、確実に除霜が行なえると共に、圧縮機に戻される冷
媒の液バック量を低減することができる。このために、
液バックによる圧縮機の故障を未然に防止することがで
きるので、信頼性を向上させることができる。
On the other hand, when the defrosting load is heavy, the reverse defrosting operation is selected and executed by the control means, so that defrosting can be reliably performed and the liquid back amount of the refrigerant returned to the compressor is reduced. be able to. For this,
Since it is possible to prevent breakdown of the compressor due to liquid back, reliability can be improved.

【0040】請求項3の発明においては、リバース除霜
運転を行なう際、直ちに四方弁を反転(OFF)させず
に、室内ファンを停止させてから四方弁を反転(OF
F)させるので、室内熱交換器内に溜っている高温高圧
の冷媒を除霜運転開始直後に、ON中の四方弁を通して
室外熱交換器内に導入して除霜に有効に利用でき、その
分、除霜時間を短縮することができる。
In the third aspect of the present invention, when the reverse defrosting operation is performed, the four-way valve is reversed (OFF) without stopping the indoor fan without immediately reversing (OFF) the four-way valve.
F), the high-temperature and high-pressure refrigerant accumulated in the indoor heat exchanger can be introduced into the outdoor heat exchanger through the ON four-way valve immediately after the defrosting operation is started, and can be effectively used for defrosting. The time required for defrosting can be shortened.

【0041】請求項4の発明は、リバース除霜運転の開
始により室内ファンの運転が停止した時に、膨張弁を全
開するので、暖房運転時に室内熱交換器内に溜っている
高温高圧の冷媒の一部を、全開中の膨張弁を通して室外
熱交換器内へ、そのリバース除霜運転時冷媒出口側から
導入することができる。このために、この冷媒出口側端
部の残霜を高温高圧のガス状冷媒により加熱して除霜す
ることができる。
According to the fourth aspect of the present invention, the expansion valve is fully opened when the operation of the indoor fan is stopped by the start of the reverse defrosting operation, so that the high temperature and high pressure refrigerant accumulated in the indoor heat exchanger during the heating operation is A part of the refrigerant can be introduced into the outdoor heat exchanger from the refrigerant outlet side during the reverse defrosting operation through the expansion valve that is fully open. Therefore, the residual frost on the refrigerant outlet side end can be defrosted by heating it with a high-temperature and high-pressure gaseous refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和機の一実施例の冷凍サイ
クル図。
FIG. 1 is a refrigeration cycle diagram of an embodiment of an air conditioner according to the present invention.

【図2】図1で示す室外制御器の制御プログラムのフロ
ーチャート。
FIG. 2 is a flowchart of a control program of the outdoor controller shown in FIG.

【図3】図1で示す実施例によるリバース除霜運転のシ
ーケンス図。
FIG. 3 is a sequence diagram of a reverse defrosting operation according to the embodiment shown in FIG.

【図4】図1で示す実施例によるメカトロ除霜運転のシ
ーケンス図。
FIG. 4 is a sequence diagram of a mechatronic defrosting operation according to the embodiment shown in FIG.

【図5】図4で示す実施例による他のメカトロ除霜運転
のシーケンス図。
5 is a sequence diagram of another mechatronic defrosting operation according to the embodiment shown in FIG.

【図6】従来のリバース除霜運転のシーケンス図。FIG. 6 is a sequence diagram of a conventional reverse defrosting operation.

【符号の説明】[Explanation of symbols]

1 空気調和機 2 圧縮機 2a サクションカップ 3 四方弁 4 室内ファン 5 室内熱交換器 6 膨張弁(流量制御弁) 7 室外ファン 8 室外熱交換器 9 冷媒配管 10 外気温センサー 11 蒸発温度センサー 12 室外制御器(制御手段) 13 残霜 1 Air Conditioner 2 Compressor 2a Suction Cup 3 Four Way Valve 4 Indoor Fan 5 Indoor Heat Exchanger 6 Expansion Valve (Flow Control Valve) 7 Outdoor Fan 8 Outdoor Heat Exchanger 9 Refrigerant Piping 10 Outside Air Temperature Sensor 11 Evaporation Temperature Sensor 12 Outdoor Controller (control means) 13 Residual frost

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F24F 11/02 101 F24F 11/02 101Q ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F24F 11/02 101 F24F 11/02 101Q

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機,四方弁,室内ファン
を具備した室内熱交換器,膨張弁,室外ファンを具備し
た室外熱交換器を冷媒配管により順次接続して冷媒を循
環せしめる冷暖房自在の冷凍サイクルを有する空気調和
機において、上記冷凍サイクルの暖房運転時に上記室外
熱交換器に生ずる着霜を除霜するために必要な負荷を検
知する除霜負荷検知手段と、 この除霜負荷検知手段により検知した除霜負荷に応じ
て、上記冷凍サイクルを循環する冷媒の循環方向が暖房
運転時と同じであって上記膨脹弁を開くと共に、上記室
内,室外ファンの運転を停止せしめるメカトロ除霜運転
と、上記冷凍サイクルを循環する冷媒の循環方向が暖房
運転時と逆であって上記室内,外ファンの運転を停止せ
しめるリバース除霜運転と、のいずれかを選択し実行せ
しめる制御手段と、を有することを特徴とする空気調和
機。
1. A refrigerating system capable of cooling and heating in which at least a compressor, a four-way valve, an indoor heat exchanger equipped with an indoor fan, an expansion valve, and an outdoor heat exchanger equipped with an outdoor fan are sequentially connected by a refrigerant pipe to circulate a refrigerant. In an air conditioner having a cycle, a defrost load detection means for detecting a load necessary for defrosting frost formed on the outdoor heat exchanger during a heating operation of the refrigeration cycle, and the defrost load detection means In accordance with the detected defrost load, the circulation direction of the refrigerant circulating in the refrigeration cycle is the same as that during the heating operation, the expansion valve is opened, and the mechatronics defrosting operation is performed to stop the operation of the indoor and outdoor fans. , A reverse defrosting operation in which the circulation direction of the refrigerant circulating in the refrigeration cycle is opposite to that in the heating operation and the operation of the indoor and outdoor fans is stopped. An air conditioner characterized in that it has an execution allowed to control means.
【請求項2】 請求項1記載の空気調和機において、制
御手段は、除霜負荷が軽いと判断したときには、メカト
ロ除霜運転を行ない、重いと判断したときには、リバー
ス除霜運転を行なう構成であることを特徴とする空気調
和機。
2. The air conditioner according to claim 1, wherein the control means performs a mechatronics defrosting operation when it is determined that the defrosting load is light, and performs a reverse defrosting operation when it is determined that the defrosting load is heavy. An air conditioner characterized by being present.
【請求項3】 請求項2記載の空気調和機において、制
御手段は、リバース除霜運転を行なう際、室内ファンを
停止させてから四方弁を反転させる構成であることを特
徴とする空気調和機。
3. The air conditioner according to claim 2, wherein the control means is configured to reverse the four-way valve after stopping the indoor fan when performing the reverse defrosting operation. .
【請求項4】 請求項3記載の空気調和機において、制
御手段は、室内ファンの運転停止時に膨張弁を、全開に
する一方、四方弁の反転後に所定開度に絞る構成である
ことを特徴とする空気調和機。
4. The air conditioner according to claim 3, wherein the control means is configured to fully open the expansion valve when the operation of the indoor fan is stopped, and to throttle the expansion valve to a predetermined opening after reversing the four-way valve. And an air conditioner.
【請求項5】 請求項1〜4のいずれか1項に記載の空
気調和機において、除霜負荷検知手段は、外気温を検出
する外気温センサー、室外熱交換器における冷媒の蒸発
温度を検出する蒸発温度センサー、空調空間の湿度を検
出する湿度センサー,室外ファンの回転数を検出する室
外ファン回転数検出手段,圧縮機の運転周波数を検出す
る運転周波数検出手段のうちの少なくともいずれかであ
ることを特徴とする空気調和機。
5. The air conditioner according to any one of claims 1 to 4, wherein the defrosting load detecting means detects an outside air temperature sensor for detecting an outside air temperature and an evaporation temperature of the refrigerant in the outdoor heat exchanger. At least one of an evaporating temperature sensor, a humidity sensor for detecting the humidity of the air-conditioned space, an outdoor fan rotation speed detecting means for detecting the rotation speed of the outdoor fan, and an operating frequency detecting means for detecting the operating frequency of the compressor. An air conditioner characterized by that.
JP7134182A 1995-05-31 1995-05-31 Air conditioner Pending JPH08327193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7134182A JPH08327193A (en) 1995-05-31 1995-05-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7134182A JPH08327193A (en) 1995-05-31 1995-05-31 Air conditioner

Publications (1)

Publication Number Publication Date
JPH08327193A true JPH08327193A (en) 1996-12-13

Family

ID=15122363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7134182A Pending JPH08327193A (en) 1995-05-31 1995-05-31 Air conditioner

Country Status (1)

Country Link
JP (1) JPH08327193A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032395B2 (en) * 2002-04-29 2006-04-25 Thermo King Corporation Transport temperature control unit and methods of defrosting an evaporator coil of the same
CN103742987A (en) * 2014-01-22 2014-04-23 苏州翔箭智能科技有限公司 Defrosting method of fresh-air machine system
JP2015098953A (en) * 2013-11-18 2015-05-28 株式会社東芝 Air conditioner
JP2016023848A (en) * 2014-07-18 2016-02-08 株式会社コロナ Composite heat source heat pump device
CN106594908A (en) * 2017-01-25 2017-04-26 天津大学 Novel frostless air source heat pump system with runner dehumidification
CN107202420A (en) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 Teat pump boiler
CN108072188A (en) * 2017-10-30 2018-05-25 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN108072214A (en) * 2017-10-30 2018-05-25 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN110953662A (en) * 2018-09-26 2020-04-03 东芝开利株式会社 Air conditioner
CN115183400A (en) * 2022-06-30 2022-10-14 海信空调有限公司 Air conditioner and defrosting control method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032395B2 (en) * 2002-04-29 2006-04-25 Thermo King Corporation Transport temperature control unit and methods of defrosting an evaporator coil of the same
JP2015098953A (en) * 2013-11-18 2015-05-28 株式会社東芝 Air conditioner
CN103742987A (en) * 2014-01-22 2014-04-23 苏州翔箭智能科技有限公司 Defrosting method of fresh-air machine system
CN103742987B (en) * 2014-01-22 2016-06-08 苏州翔箭智能科技有限公司 The Defrost method of new blower fan system
JP2016023848A (en) * 2014-07-18 2016-02-08 株式会社コロナ Composite heat source heat pump device
CN107202420A (en) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 Teat pump boiler
CN106594908A (en) * 2017-01-25 2017-04-26 天津大学 Novel frostless air source heat pump system with runner dehumidification
CN108072188A (en) * 2017-10-30 2018-05-25 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN108072214A (en) * 2017-10-30 2018-05-25 青岛海尔空调器有限总公司 Air-conditioning device and its control method
CN110953662A (en) * 2018-09-26 2020-04-03 东芝开利株式会社 Air conditioner
CN115183400A (en) * 2022-06-30 2022-10-14 海信空调有限公司 Air conditioner and defrosting control method thereof
CN115183400B (en) * 2022-06-30 2023-07-14 海信空调有限公司 Air conditioner and defrosting control method thereof

Similar Documents

Publication Publication Date Title
JP2504437B2 (en) air conditioner
JP2002107014A (en) Air conditioner
JP2009228979A (en) Air conditioner
JPH079331B2 (en) Operation control method for heat pump type air conditioner
JPH0828969A (en) Cooling system
JP2008082589A (en) Air conditioner
US20190360725A1 (en) Refrigeration apparatus
JPH08327193A (en) Air conditioner
JPH09119736A (en) Multi-chamber type cooling and heating apparatus and operating method therefor
JP2012167860A (en) Heat pump type air conditioner and defrosting method of the same
JP4622901B2 (en) Air conditioner
JP3004676B2 (en) Refrigeration cycle device
JP5517891B2 (en) Air conditioner
JP3416897B2 (en) Air conditioner
JP3676327B2 (en) Air conditioner and indoor heat exchanger frost prevention method for air conditioner
JP4023387B2 (en) Refrigeration equipment
JP4252184B2 (en) Refrigerant flow control device for air conditioner
JP2007051840A (en) Air conditioner
JP2011153789A (en) Refrigerating cycle device
JPH0752031B2 (en) Heat pump type air conditioner
JP2002277098A (en) Refrigerator
JP3434094B2 (en) High pressure protection device and condensing pressure control device in refrigeration system
JP7387057B2 (en) Refrigeration cycle equipment
JP2005037003A (en) Air-conditioner
JP3133647B2 (en) Air conditioner