JPH08327036A - Steam pressure controller for boiler - Google Patents

Steam pressure controller for boiler

Info

Publication number
JPH08327036A
JPH08327036A JP12995895A JP12995895A JPH08327036A JP H08327036 A JPH08327036 A JP H08327036A JP 12995895 A JP12995895 A JP 12995895A JP 12995895 A JP12995895 A JP 12995895A JP H08327036 A JPH08327036 A JP H08327036A
Authority
JP
Japan
Prior art keywords
boiler
steam pressure
amount
refuse
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12995895A
Other languages
Japanese (ja)
Inventor
Yoshinori Nakano
義則 中野
Takayuki Tanabe
隆之 田辺
Katsunori Nosaka
克紀 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP12995895A priority Critical patent/JPH08327036A/en
Publication of JPH08327036A publication Critical patent/JPH08327036A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

PURPOSE: To vary the steam pressure generated from a boiler according to the type of refuse when the refuse is supplied as a heat source to the boiler and to suppress the change of the steam pressure due to the refuse quality change. CONSTITUTION: The fuel supply amount, steam pressure, supply water flow rate and steam flow rate of the inputs of a boiler are input to an identifier 41, which identifies the boiler time constant and combustion furnace time constant used as the nominal values of an observer. The minimum dimensional observer 42 is formed of the nominal value identified here, and the state amount of the input heat quantity is estimated. Further, the lower heating quantity of the refuse is obtained from the estimated state amount by a calculator 43, the compensating amount valuable for the change is added to the operating amount of a refuse supply unit 25 from a compensating amount output unit 44, thereby suppressing the steam pressure change according to the refuse quality change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は火力発電所やごみ処理発
電所等に用いられるボイラ設備において、ボイラの蒸気
圧力を一定に制御するための圧力制御装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure control device for controlling the steam pressure of a boiler in a boiler facility used in a thermal power plant, a refuse treatment power plant, etc.

【0002】[0002]

【従来の技術】図8は、従来のボイラ蒸気圧力制御装置
の概略を示したもので、突き合わせ部1において蒸気圧
力指令PSと蒸気圧力Yとの偏差を求め、その偏差分が
PI制御器2に入力される。PI制御器2は偏差信号に
基づき比例,微積分演算を行い、その演算信号を燃料供
給部3に導入し、火力発電の場合にはボイラ4への重油
の供給量が制御され、ごみ処理発電ならばごみの供給量
が制御される。なおボイラ4より蒸気圧力Yが検出され
て突き合わせ部1にフィードバックされる。
2. Description of the Related Art FIG. 8 shows an outline of a conventional boiler steam pressure control apparatus, in which a deviation between a steam pressure command PS and a steam pressure Y is obtained at a butt section 1, and the deviation is calculated by a PI controller 2. Entered in. The PI controller 2 performs proportional and fine integration calculation based on the deviation signal, introduces the calculation signal into the fuel supply unit 3, and in the case of thermal power generation, the amount of heavy oil supplied to the boiler 4 is controlled. The amount of garbage supplied is controlled. The steam pressure Y is detected by the boiler 4 and fed back to the butt section 1.

【0003】[0003]

【発明が解決しようとする課題】火力発電所やごみ処理
発電所におけるボイラ設備は、基本的には図9で示すよ
うに燃料炉4aの中に水管4bが通されており、その水
管4bとボイラドラムが水媒体を通してエネルギー的に
直結されている。
Boiler equipment in a thermal power plant or a refuse treatment power plant basically has a water pipe 4b passed through a fuel furnace 4a as shown in FIG. The boiler drum is energetically directly connected through a water medium.

【0004】ここで問題となるのは、燃料としてごみを
燃焼させるごみ処理施設等においては、熱源となるごみ
の種類によって発熱量が変わり、ボイラの蒸気圧力の変
動を直接引き起こすことである。更に、このボイラの蒸
気をエネルギー源としてタービン等に利用した場合、タ
ービンの出力にも影響を及ぼし、ごみ質変化による蒸気
圧力の変動を抑制することが一つの課題となっていた。
The problem here is that in a waste treatment facility or the like in which waste is burned as fuel, the amount of heat generated changes depending on the type of waste that serves as a heat source, which directly causes fluctuations in the steam pressure of the boiler. Further, when the steam of the boiler is used as an energy source in a turbine or the like, it also affects the output of the turbine, and it has been a problem to suppress the fluctuation of the steam pressure due to the change of dust quality.

【0005】本発明は上記の点に鑑み、ごみ質の変化に
よる蒸気圧力変動を抑制し、上記の課題を解決したボイ
ラの蒸気圧力制御装置を提供することを目的とする。
In view of the above points, it is an object of the present invention to provide a steam pressure control device for a boiler that suppresses steam pressure fluctuations due to changes in dust quality and solves the above problems.

【0006】[0006]

【課題を解決するための手段】本発明において、上記の
課題を解決するための手段は、蒸気圧力の目標設定値と
ボイラの蒸気圧力との偏差を検出して制御装置に導入
し、該制御装置により給じん機を操作する操作量を出力
し、この操作量によりボイラの蒸気圧力を制御するよう
にした蒸気圧力制御装置において、最小自乗法でノミナ
ル値を同定する同定部と、該同定部で同定したノミナル
値で最小オブザーバを構成して入力熱量の状態量を推定
するオブザーバ部と、この推定した状態量からごみの低
位発熱量を求める低位発熱量演算部と、求められた低位
発熱量を入力し変動分に値する補償量を出力する補償量
出力部とで補償装置を構成し、前記補償量出力部の出力
を前記給じん機燃焼炉の操作量に付加してごみ質変化に
よる蒸気圧力変動を抑制するようにしたことを特徴とす
る。
Means for Solving the Problems In the present invention, means for solving the above problems is to detect a deviation between a target set value of steam pressure and a steam pressure of a boiler, introduce the deviation into a control device, and perform the control. In the steam pressure control device, which outputs an operation amount for operating the feeder by the device, and controls the steam pressure of the boiler by this operation amount, an identification unit for identifying a nominal value by the least square method, and the identification unit The observer part that configures the minimum observer with the nominal value identified in 1. Compensation device is configured with a compensation amount output unit that outputs a compensation amount corresponding to the fluctuation amount, and the output of the compensation amount output unit is added to the operation amount of the dust-burner combustion furnace to add steam due to dust quality change. Pressure fluctuations It characterized in that as win.

【0007】[0007]

【作用】ボイラの入力である燃料供給量、蒸気圧力、給
水流量、蒸気流量を同定部に入力し、該同定部でオブザ
ーバのノミナル値として用いるボイラ時定数、燃焼炉時
定数を同定する。ここで同定したノミナル値で最小次元
オブザーバを構成し入力熱量の状態量を推定する。更
に、推定された状態量から、ごみの低位発熱量を求め、
変動分に値する補償量を給じん機の操作量に付加して、
ごみ質変化による蒸気圧力変動を抑制する。
The fuel supply amount, the steam pressure, the feed water flow rate, and the steam flow rate, which are the inputs of the boiler, are input to the identification unit, and the boiler time constant and combustion furnace time constant used as the nominal value of the observer are identified by the identification unit. The nominal value identified here constitutes a minimum-dimensional observer to estimate the state quantity of the input heat quantity. Furthermore, from the estimated state quantity, the lower calorific value of the waste is calculated,
Add a compensation amount equivalent to the variation to the operation amount of the dust collector,
Suppresses steam pressure fluctuations due to changes in waste quality.

【0008】[0008]

【実施例】以下、本発明を図面に示す一実施例に基づい
て詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings.

【0009】図1は本発明を実施したボイラ制御システ
ムの全体構成図で、5はボイラ、6は蒸気流量調整弁を
示す。これらボイラ5および蒸気流量調整弁6は、ドラ
ム水位制御部10、蒸気圧力制御部20および蒸気流量
制御部30により制御される。
FIG. 1 is an overall configuration diagram of a boiler control system embodying the present invention. 5 is a boiler, and 6 is a steam flow rate adjusting valve. The boiler 5 and the steam flow rate adjusting valve 6 are controlled by the drum water level control unit 10, the steam pressure control unit 20, and the steam flow rate control unit 30.

【0010】ドラム水位制御部10は、ボイラ5のドラ
ム水位の目標値を設定するドラム水位目標設定器11
と、該ドラム水位目標設定器11の設定値(目標値)と
現在のドラム水位を検出する水位センサ13の検出値と
を比較する突き合わせ部12と、該突き合わせ部12の
出力により給水バルブ15を制御してドラム水位を一定
に制御する制御装置14により構成され、ドラム水位を
設定水位値に一定制御する。
The drum water level control unit 10 includes a drum water level target setter 11 for setting a target value of the drum water level of the boiler 5.
And a matching section 12 for comparing a set value (target value) of the drum water level target setter 11 with a detected value of a water level sensor 13 for detecting the current drum water level, and the water supply valve 15 by the output of the matching section 12. The control device 14 is configured to control the drum water level to a constant level, and the drum water level is constantly controlled to a set water level value.

【0011】蒸気圧力制御部20は、ボイラ5の蒸気圧
力の目標値を設定する蒸気圧力目標設定器21と、該蒸
気圧力目標設定器21の設定値(目標値)と、ボイラ5
の蒸気圧力を検出する圧力センサ23の検出値とを比較
する突き合わせ部22と、この突き合わせ部22の出力
により給じん機(ごみを供給する装置)・燃焼炉25を
制御してボイラ5の蒸気圧力を一定に制御する制御装置
24とから構成され、ボイラの蒸気圧力を設定圧力値に
一定制御する。
The steam pressure control unit 20 includes a steam pressure target setter 21 for setting a target value of the steam pressure of the boiler 5, a set value (target value) of the steam pressure target setter 21, and a boiler 5
Of the steam pressure of the boiler 5 by controlling the butting unit 22 that compares the detected value of the pressure sensor 23 that detects the steam pressure of It is composed of a control device 24 for controlling the pressure to be constant, and constantly controls the steam pressure of the boiler to a set pressure value.

【0012】また、蒸気流量制御部30は、ボイラ5の
蒸気流量の目標値を設定する蒸気流量目標設定器31
と、該蒸気流量目標設定器31の設定値(目標値)とボ
イラ5の蒸気流量を検出する流量センサ33の検出値と
を比較する突き合わせ部32と、この突き合わせ部32
の出力により流量調整弁6のバルブアクチュエータ35
を制御する制御装置34により構成され、蒸気流量を設
定流量値に一定制御する。
The steam flow rate control unit 30 also sets a steam flow rate target setter 31 for setting a target value of the steam flow rate of the boiler 5.
And a matching section 32 for comparing the set value (target value) of the steam flow rate target setter 31 with the detection value of the flow rate sensor 33 for detecting the steam flow rate of the boiler 5, and the matching section 32.
Output of the valve actuator 35 of the flow control valve 6
The control unit 34 controls the steam flow rate to constantly control the steam flow rate to a set flow rate value.

【0013】40は本発明による補償装置で、該補償装
置40は、ノミナル値を逐次型の最小自乗法で同定する
同定部41と、該同定部41で同定したノミナル値で最
小次元オブザーバを構成して入力熱量の状態量を推定す
るオブザーバ部42と、推定された状態量から、ごみの
低位発熱量を求める推定低位発熱量演算部43と、オブ
ザーバ42によって推定された入力熱量から、低位発熱
量を一定にするための補償を行う補償量出力部44とで
構成され、該低位発熱量を一定化するための補償量を、
蒸気圧力制御部20の制御装置24の出力と加算器50
によって加算する。
Reference numeral 40 denotes a compensator according to the present invention, which composes an identification unit 41 for identifying a nominal value by a recursive least squares method, and a minimum dimension observer with the nominal value identified by the identification unit 41. Then, the observer section 42 for estimating the state quantity of the input heat quantity, the estimated lower heat quantity calculation section 43 for obtaining the lower heat quantity of the waste from the estimated state quantity, and the lower heat quantity estimated from the input heat quantity estimated by the observer 42. And a compensation amount output unit 44 for performing compensation for making the amount constant, and a compensation amount for making the lower heating value constant,
Output of controller 24 of steam pressure controller 20 and adder 50
Add by

【0014】即ち、この補償装置40は、推定された状
態量から、ごみの低位発熱量を求め、変動分に値する補
償量を給じん機・燃焼炉の給じん機操作量に付加して、
ごみ質変化による蒸気圧力変動を抑制する制御を行うも
のである。
That is, the compensator 40 obtains the lower heating value of the waste from the estimated state quantity, and adds the compensation amount corresponding to the fluctuation amount to the duster operation amount of the dust collector / combustion furnace,
The control is performed to suppress the fluctuation of steam pressure due to the change of dust quality.

【0015】なお、上記のドラムの水位、蒸気圧力、蒸
気流量の制御は、P1およびPIDによる制御で行われ
る。
The control of the water level of the drum, the steam pressure, and the steam flow rate is performed by the control of P1 and PID.

【0016】以下、本発明の補償装置40について更に
詳述する。
The compensator 40 of the present invention will be described in more detail below.

【0017】同定部41によるオブザーバのノミナル値
同定は、ボイラの入力である燃料供給量、蒸気圧力、給
水流量、蒸気流量を同定部に入力し、オブザーバのノミ
ナル値として用いるボイラ時定数、燃焼炉時定数を同定
する。
The identification of the nominal value of the observer by the identification unit 41 is performed by inputting the fuel supply amount, steam pressure, feed water flow rate, and steam flow rate, which are inputs to the boiler, to the identification unit, and is used as the nominal value of the observer boiler time constant Identify the time constant.

【0018】本実施例においては、制御対象のパラメー
タが未知であることを想定しており、オブザーバを構成
するために必要なノミナル値は、逐次型の最小自乗法を
用いて同定する。但し、同定時における低位発熱量は一
定と仮定した。
In the present embodiment, it is assumed that the parameter to be controlled is unknown, and the nominal value required to form the observer is identified by using the recursive least squares method. However, the lower heating value at the time of identification was assumed to be constant.

【0019】燃料投入量Gからボイラ5の蒸気圧力まで
のプロセスを図示すると図2のようになる。図2におい
て、51は低位発熱量、52は燃焼炉の時定数、53は
ボイラの時定数、L1は給水量、L2は蒸気流量を示して
いる。
The process from the fuel input amount G to the steam pressure of the boiler 5 is illustrated in FIG. In FIG. 2, 51 is the lower heating value, 52 is the time constant of the combustion furnace, 53 is the time constant of the boiler, L 1 is the water supply amount, and L 2 is the steam flow rate.

【0020】図2において燃焼炉とボイラのモデルは、
離散系の差分方程式で表されるとすると、蒸気圧力の推
定値は(1)式で表される。
In FIG. 2, the model of the combustion furnace and the boiler is
If it is expressed by a discrete system difference equation, the estimated value of the vapor pressure is expressed by equation (1).

【0021】[0021]

【数1】 蒸気圧力推定値P(∧)=ZθT+r ……(1) 但し、 Z=|G(Z-2)、P(Z-1)、P(Z-2)、L1(Z-1)、L1(Z-2)、
2(Z-1)、L2(Z-2)| θ=|θ1,θ2,θ3,θ4,θ5,θ6,θ7| r=式誤差 (1)式より、式誤差のエネルギーJは(2)式で表さ
れ、最小自乗法によって求められるパラメータ推定値は
(3)式で表される。
[Equation 1] Estimated vapor pressure P (∧) = Zθ T + r (1) However, Z = | G (Z -2 ), P (Z -1 ), P (Z -2 ), L 1 ( Z -1 ), L 1 (Z -2 ),
L 2 (Z -1 ), L 2 (Z -2 ) | θ = | θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 , θ 7 | r = Equation error From equation (1), The energy J of the equation error is represented by the equation (2), and the parameter estimation value obtained by the least square method is represented by the equation (3).

【0022】[0022]

【数2】 [Equation 2]

【0023】[0023]

【数3】 (Equation 3)

【0024】(3)式で算出された値は、離散計で表さ
れた係数行列であり、これに連続系変換をかけることに
よって、オブザーバのノミナル値として用いるボイラ時
定数(TB)、燃料炉時定数(TF)を同定することが
できる。
The value calculated by the equation (3) is a coefficient matrix represented by a discrete meter, and by subjecting this to a continuous system conversion, the boiler time constant (TB) used as the nominal value of the observer, the fuel furnace The time constant (TF) can be identified.

【0025】次に、最小自乗法で求めた時定数TF
(∧),TF(∧)を用いて、入力熱量X1(∧)を求
める最小次元オブザーバ42について述べる。
Next, the time constant TF obtained by the method of least squares.
The minimum dimensional observer 42 for calculating the input heat quantity X 1 (∧) using (∧) and TF (∧) will be described.

【0026】図2のブロック図より、入力熱量X1とし
た状態方程式で表した式を式(4),(5)に示す。
From the block diagram of FIG. 2, equations (4) and (5) represented by the state equation with the input heat quantity X1 are shown.

【0027】[0027]

【数4】 [Equation 4]

【0028】[0028]

【数5】 (Equation 5)

【0029】状態方程式より、ゲインをK1,K2と
し、入力熱量X1を推定するオブザーバを図3に示す。
FIG. 3 shows an observer for estimating the input heat quantity X1 with gains K1 and K2 from the equation of state.

【0030】次に、オブザーバによって推定された入力
熱量から、低位発熱量を一定にするための補償を図4に
示し、算式を(6)式に表す。
Next, FIG. 4 shows compensation for keeping the lower heating value constant from the input heat value estimated by the observer, and the formula is expressed by the formula (6).

【0031】理想的に実際の低位発熱量と推定された低
位発熱量が一致したとすると、ボイラに入力される熱量
X1は(7)式となり、見かけ上目標の低位発熱量で動
作していることになる。
Assuming that the estimated lower calorific value and the actual lower calorific value are ideally matched, the calorific value X1 input to the boiler is expressed by the equation (7), and the apparent lower calorific value is operating. It will be.

【0032】[0032]

【数6】 (Equation 6)

【0033】[0033]

【数7】 (Equation 7)

【0034】但し、 Q:低位発熱量 Q(∧):推定された低位発熱量 QT:目標の低位発熱量 図5〜図7はシミュレーション結果を示すグラフで、オ
ブザーバのパラメータ同定は、オフラインの状態で低位
発熱量が一定である重油等を燃料として運転していると
想定し、燃料供給量、蒸気圧力、給水流量、蒸気流量の
時系列データから逐次型最小自乗法を用いて、低位発熱
量、燃焼炉時定数(TF)、ボイラ時定数(TB)を同
定した。その結果を図5に示す。同図からボイラ時定
数、燃焼炉時定数ともに5%以内で同定されていること
がわかる。
However, Q: lower heating value Q (∧): estimated lower heating value Q T : target lower heating value FIGS. 5 to 7 are graphs showing simulation results, and observer parameter identification is offline. Assuming that fuel oil is used as fuel for which the lower heating value is constant, the lower heating value is calculated from the time series data of the fuel supply amount, steam pressure, feed water flow rate, and steam flow rate using the sequential least squares method. The amount, the combustion furnace time constant (TF), and the boiler time constant (TB) were identified. The result is shown in FIG. It can be seen from the figure that both the boiler time constant and the combustion furnace time constant are identified within 5%.

【0035】また、低位発熱量一定化補償について、同
定されたボイラ時定数、燃焼炉時定数を用いてオブザー
バを構成し、低位発熱量一定化補償を入れた場合のボイ
ラ蒸気圧力結果は図6に示すようになった。
Regarding the compensation for lower calorific value stabilization, the boiler steam pressure result when the observer is constructed by using the identified boiler time constant and combustion furnace time constant and the lower calorific value stabilization compensation is included is shown in FIG. It came to be shown in.

【0036】図7はこれと比較するために、補償がない
場合のボイラ蒸気圧力結果を示したものである。
FIG. 7 shows the boiler steam pressure result without compensation for comparison with this.

【0037】低位発熱量は±50%をステップで100
S周期で変動させている。
The lower heating value is 100% in steps of ± 50%.
It varies in S cycles.

【0038】補償がない場合、蒸気圧力は2.8kg/
cm2の変動を示しているが、本発明による補償を付加
することによって1/3以下に変動を抑制することがで
きた。
Without compensation, steam pressure is 2.8 kg /
Although the fluctuation of cm 2 is shown, the fluctuation could be suppressed to 1/3 or less by adding the compensation according to the present invention.

【0039】[0039]

【発明の効果】以上のように、本発明は熱源となるごみ
の種類が変わっても蒸気圧力の変動は抑制され、ボイラ
の蒸気圧力が一定に制御されるので、蒸気をエネルギー
源として用いる蒸気タービン等の出力を安定にできる。
As described above, according to the present invention, even if the type of dust as a heat source is changed, the fluctuation of the steam pressure is suppressed and the steam pressure of the boiler is controlled to be constant, so that steam is used as an energy source. The output of the turbine etc. can be stabilized.

【0040】また、熱源の有効利用による省エネルギー
が可能となる。
Further, energy can be saved by effectively using the heat source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したボイラ制御システムの全体構
成図。
FIG. 1 is an overall configuration diagram of a boiler control system embodying the present invention.

【図2】燃料の投入量からボイラの蒸気圧力までのブロ
ック線図。
FIG. 2 is a block diagram from a fuel input amount to a steam pressure of a boiler.

【図3】状態方程式よりゲインを入力とし入力熱量を推
定するオブザーバ。
FIG. 3 is an observer that estimates a heat input with a gain as an input from a state equation.

【図4】低位発熱量の一定化補償説明図。FIG. 4 is an explanatory diagram of compensation for lowering the lower heating value.

【図5】低位発熱量、燃焼炉時定数、ボイラ時定数の同
定値。
[Fig. 5] Identification values of lower heating value, combustion furnace time constant, and boiler time constant.

【図6】本発明によるボイラ蒸気圧力のグラフ。FIG. 6 is a graph of boiler steam pressure according to the present invention.

【図7】補償なしのボイラ蒸気圧力のグラフ。FIG. 7 is a graph of boiler steam pressure without compensation.

【図8】ボイラ蒸気圧力簡略図。FIG. 8 is a simplified diagram of boiler steam pressure.

【図9】ボイラ設備の概念図。FIG. 9 is a conceptual diagram of boiler equipment.

【符号の説明】[Explanation of symbols]

10…ドラム水位制御部 20…蒸気圧力制御部 30…蒸気流量制御部 40…補償装置 41…同定部 42…オブザーバ部 43…低位発熱量演算部 44…補償量出力部 10 ... Drum water level control unit 20 ... Steam pressure control unit 30 ... Steam flow rate control unit 40 ... Compensation device 41 ... Identification unit 42 ... Observer unit 43 ... Low heating value calculation unit 44 ... Compensation amount output unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気圧力の目標設定値とボイラの蒸気圧
力との偏差を検出して制御装置に導入し、該制御装置に
より給じん機を操作する操作量を出力し、この操作量に
よりボイラの蒸気圧力を制御するようにした蒸気圧力制
御装置において、 最小自乗法でノミナル値を同定する同定部と、該同定部
で同定したノミナル値で最小オブザーバを構成して入力
熱量の状態量を推定するオブザーバ部と、この推定した
状態量からごみの低位発熱量を求める低位発熱量演算部
と、求められた低位発熱量を入力し変動分に値する補償
量を出力する補償量出力部とで補償装置を構成し、前記
補償量出力部の出力を前記給じん機燃焼炉の操作量に付
加てごみ質変化による蒸気圧力変動を抑制するようにし
たことを特徴とするボイラの蒸気圧力制御装置。
1. A deviation between a target set value of steam pressure and a steam pressure of a boiler is detected and introduced into a controller, and the controller outputs an operation amount for operating a duster, and the operation amount outputs a boiler. In the steam pressure control device that controls the steam pressure of, the estimation unit that identifies the nominal value by the least square method and the minimum observer with the nominal value identified by the identification unit estimates the state quantity of the input heat quantity. Compensation is performed by the observer unit, the lower heating value calculation unit that calculates the lower heating value of the waste from this estimated state quantity, and the compensation amount output unit that inputs the calculated lower heating value and outputs the compensation amount corresponding to the fluctuation A steam pressure control device for a boiler, wherein a steam pressure control device for a boiler is configured so that an output of the compensation amount output unit is added to an operation amount of the dust-burner combustion furnace to suppress steam pressure fluctuation due to a change in dust quality.
JP12995895A 1995-05-29 1995-05-29 Steam pressure controller for boiler Pending JPH08327036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12995895A JPH08327036A (en) 1995-05-29 1995-05-29 Steam pressure controller for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12995895A JPH08327036A (en) 1995-05-29 1995-05-29 Steam pressure controller for boiler

Publications (1)

Publication Number Publication Date
JPH08327036A true JPH08327036A (en) 1996-12-10

Family

ID=15022647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12995895A Pending JPH08327036A (en) 1995-05-29 1995-05-29 Steam pressure controller for boiler

Country Status (1)

Country Link
JP (1) JPH08327036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096619A (en) * 2011-10-31 2013-05-20 Toshiba Mitsubishi-Electric Industrial System Corp Boiler controller
WO2018225481A1 (en) * 2017-06-09 2018-12-13 出光興産株式会社 Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096619A (en) * 2011-10-31 2013-05-20 Toshiba Mitsubishi-Electric Industrial System Corp Boiler controller
WO2018225481A1 (en) * 2017-06-09 2018-12-13 出光興産株式会社 Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program
AU2018280740B2 (en) * 2017-06-09 2023-05-25 Idemitsu Kosan Co.,Ltd. Fuel reduction rate output system, fuel reduction rate output method, and fuel reduction rate output program

Similar Documents

Publication Publication Date Title
CN102374519B (en) Dynamic tuning of dynamic matrix control of steam temperature
CN102374518B (en) Steam temperature control using dynamic matrix control
CN109002068B (en) Temperature optimization control method for flame path
CN108508870B (en) Method for evaluating performance and optimizing parameters of boiler drum water level control system
CN110145761A (en) A kind of BFG boiler negative pressure optimal control method
CN111413865B (en) Disturbance compensation single-loop superheated steam temperature active disturbance rejection control method
CN110658721B (en) Self-adaptive pre-coal-feeding method and system applied to AGC-R mode of thermal power generating unit
JPH08327036A (en) Steam pressure controller for boiler
JPH079288B2 (en) Fuel supply control method for solid combustion device
JP2000056805A (en) Predictive control unit
JP2008001816A (en) Combustion-controlling method in coke oven
JP2009286983A (en) Method and device for controlling coke oven collecting pipe pressure
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
CN113282043A (en) Multivariable state space model-based ultra-supercritical unit coordination control method
JPH07111268B2 (en) Water heater controller
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH0814364B2 (en) Control method of garbage incinerator
CN113885326B (en) Closed loop system identification method based on set value effective excitation by considering feedforward
JPH07332602A (en) Steam temperature prediction control device
JPH0565883B2 (en)
JPH079287B2 (en) Combustion control method for solid combustion device
JP4381628B2 (en) Concentration control device and concentration control method for concentration equipment
JP2574387B2 (en) Coal-fired boiler control method
JP2003120217A (en) Device and method for controlling gas turbine combined cycle steam temperature
JPH10318503A (en) Method and system for controlling fluidized bed incinerator