JPH08327007A - Supercritical variable pressure once-through boiler - Google Patents

Supercritical variable pressure once-through boiler

Info

Publication number
JPH08327007A
JPH08327007A JP13498295A JP13498295A JPH08327007A JP H08327007 A JPH08327007 A JP H08327007A JP 13498295 A JP13498295 A JP 13498295A JP 13498295 A JP13498295 A JP 13498295A JP H08327007 A JPH08327007 A JP H08327007A
Authority
JP
Japan
Prior art keywords
furnace
peripheral wall
heat transfer
transfer tube
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13498295A
Other languages
Japanese (ja)
Inventor
Susumu Sato
佐藤  進
Yoshinori Kobayashi
由則 小林
Takayuki Sudo
隆之 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13498295A priority Critical patent/JPH08327007A/en
Publication of JPH08327007A publication Critical patent/JPH08327007A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure

Abstract

PURPOSE: To eliminate the life consumption of a furnace pressure resistant part by vertically dividing a furnace peripheral wall, providing lower and upper furnace peripheral wall tube outlet and inlet headers, and providing a mixer connected to the headers. CONSTITUTION: Combustion gas generated at the lower part of a furnace 14 is lifted while being heat absorbed, and fed from the upper part of the furnace to a rear flue 12. The peripheral wall of the furnace 14 is vertically divided at the intermediate part of its height, and the lower furnace peripheral wall tube outlet header 21 connected to the outlet of the heat transfer tube 16 for forming the lower furnace peripheral wall, the upper furnace peripheral wall inlet header 17 connected to the inlet of the heat transfer tube 15 for forming the upper furnace peripheral wall and the mixer 19 connected to the headers 21, 17 are provided. Even if the fluid of the tube 16 is irregular and the part has the degree of superheat, it is completely agitated and mixed by the mixer 19, and the fluid of uniform enthalpy level is distributed at the inlet of the tube 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力事業用その他、産
業用の超臨界圧変圧貫流ボイラの火炉系統構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace system configuration of a supercritical pressure transformer once-through boiler for electric power industries and other industries.

【0002】[0002]

【従来の技術】図20は、従来の超臨界圧変圧貫流ボイ
ラの構成の一例を示す系統図である。この図において、
後部煙道(12)内に配置された図示しない節炭器を出
た給水は、火炉入口連絡管(1)を経て火炉(14)の
下部にある火炉周壁蒸発管入口管寄せ(4)に入り、ほ
ぼ垂直に配置された火炉周壁を構成する火炉周壁蒸発管
(2)内を加熱されつつ上昇して火炉最上部に至る。そ
して火炉周壁蒸発管出口管寄せ(5)から火炉出口連絡
管(6)を経て気水分離器(7)に流入し、亜臨界圧領
域での運転においてはここで蒸気とドレンに分離され
る。気水分離器(7)で分離された蒸気は、過熱器入口
連絡管(13)を経て過熱器(9)に流れる。一方、気
水分離器(7)での分離されたドレンは、ドレン排出管
(8)を経て循環ポンプ(11)により前記節炭器の入
口に戻される。この場合当然なことながら、気水分離器
(7)内のドレンレベルが一定レベル以下とならぬよう
に、ドレンレベル調整弁(10)により制御されるよう
になっている。
2. Description of the Related Art FIG. 20 is a system diagram showing an example of the configuration of a conventional supercritical pressure transformer once-through boiler. In this figure,
The feed water exiting the economizer (not shown) arranged in the rear flue (12) passes through the furnace inlet connecting pipe (1) to the furnace peripheral wall evaporation pipe inlet pipe drawer (4) at the lower part of the furnace (14). When entering, the furnace peripheral wall evaporation pipe (2) forming the furnace peripheral wall arranged almost vertically is heated and rises to reach the uppermost part of the furnace. Then, it flows into the steam-water separator (7) from the furnace peripheral wall evaporating pipe outlet header (5) through the furnace outlet connecting pipe (6), and is separated into steam and drain in the operation in the subcritical pressure region. . The steam separated by the steam separator (7) flows to the superheater (9) via the superheater inlet communication pipe (13). On the other hand, the drain separated in the steam separator (7) is returned to the inlet of the economizer by the circulation pump (11) via the drain discharge pipe (8). In this case, as a matter of course, the drain level adjusting valve (10) is controlled so that the drain level in the steam separator (7) does not fall below a certain level.

【0003】このような系統を有する従来のボイラの火
炉周壁蒸発管(2)に対する設計上の考慮点として、貫
流型ということもあり、火炉出口流体のエンタルピレベ
ルは図19に示す火炉の静特性データのように、亜臨界
圧領域では飽和温度よりも高く設定されるが、次項で述
べる理由によって、その過熱度が極力小さくなるように
設計されている。
As a design consideration for the furnace peripheral wall evaporator tube (2) of the conventional boiler having such a system, it may be a once-through type, and the enthalpy level of the furnace outlet fluid is the static characteristics of the furnace shown in FIG. As shown in the data, it is set higher than the saturation temperature in the subcritical pressure region, but it is designed so that its superheat degree is as small as possible due to the reason described in the next section.

【0004】[0004]

【発明が解決しようとする課題】前記のような従来のボ
イラにおいて、火炉周壁蒸発管出口部の管群間で温度ア
ンバランスが発生する問題がある。これは、炉内の燃焼
状況によって壁面内の熱吸収量に偏差が発生した場合
に、これが各蒸発管の出口流体温度のアンバランスとな
って現れるものである。火炉周壁のメタル温度にアンバ
ランスが生じると、それに伴う熱応力による火炉耐圧部
の障害が危惧されるので、この温度アンバランスを防止
する対応策の早期確立が迫られている。
In the conventional boiler as described above, there is a problem that a temperature imbalance occurs between the tube groups at the outlet of the furnace peripheral wall evaporation tube. This is because when there is a deviation in the amount of heat absorption in the wall surface due to the combustion condition in the furnace, this appears as an imbalance in the outlet fluid temperature of each evaporation tube. If an imbalance occurs in the metal temperature of the peripheral wall of the furnace, there is a risk of damage to the pressure-resistant part of the furnace due to the associated thermal stress. Therefore, early establishment of a countermeasure to prevent this temperature imbalance is urgently required.

【0005】これに対する設計上の配慮としては、各蒸
発管の入口にオリフィス等を設け、熱吸収偏差に応じて
給水量を調整することにより、出口流体温度のアンバラ
ンスを抑えることがまず考えられるが、熱吸収量の偏差
や給水配分特性はボイラ負荷によって変化するから、現
実的には温度アンバランスをこの方法で無くすことは難
しい。
As a design consideration for this, it is first considered that an orifice or the like is provided at the inlet of each evaporation pipe and the amount of water supplied is adjusted according to the heat absorption deviation to suppress the imbalance of the outlet fluid temperature. However, it is difficult to eliminate the temperature imbalance by this method because the deviation of the heat absorption amount and the water supply distribution characteristics change depending on the boiler load.

【0006】そこで、この温度アンバランスを無くす根
本的な方法として、火炉周壁蒸発管出口の流体エンタル
ピレベルをウエットの状態として火炉の設計を行なうこ
とが考えられる。そうすれば、先に引用した図19の火
炉静特性データのa〜b間で多少の熱吸収量の差、つま
り流体エンタルピのアンバランスが発生しても、流体の
温度としては飽くまでも飽和温度で一定となるから、温
度差としては表われないことになる。
Therefore, as a fundamental method for eliminating this temperature imbalance, it is conceivable to design the furnace by setting the fluid enthalpy level at the outlet of the furnace peripheral wall evaporator tube to a wet state. Then, even if there is a slight difference in the amount of heat absorption between a and b of the static characteristic data of the furnace shown in FIG. 19 mentioned above, that is, even if an imbalance of the fluid enthalpy occurs, the temperature of the fluid remains saturated at the saturation temperature. Since it becomes constant, it does not appear as a temperature difference.

【0007】しかしながら、火炉の体格寸法は燃料が完
全燃焼するのに必要な空間として決定されるのであるか
ら、それ以下に火炉を小さくして火炉周壁の伝熱面積を
減らすことはできない。そのため、火炉周壁出口のボイ
ラ水系統に付加して、更に蒸発器の役割を果たす伝熱面
を後流側に設けることによって、火炉周壁蒸発管出口の
流体エンタルピレベルをウエットに設計する例もあっ
た。図21は、そのような従来の事例の火炉特性を示す
図である。しかしながらこの場合、静特性的にはウエッ
トとなっても、動特性的には同図に示すように、メタル
の蓄熱容量により「負荷上げ」と「負荷下げ」とでヒス
テリシスを持った特性を示す。特に「負荷下げ」の場合
は、図に示されるように大きな過熱度が発生する可能性
がある。また図22は、上記図21の場合と異なり、蒸
発器からなる伝熱面が後部煙道に設けられてないボイラ
の場合である。
However, since the size of the furnace is determined as the space required for complete combustion of the fuel, it is not possible to make the furnace smaller than that and reduce the heat transfer area of the peripheral wall of the furnace. Therefore, there is an example in which the fluid enthalpy level at the outlet of the furnace peripheral wall evaporation pipe is designed to be wet by adding it to the boiler water system at the outlet of the furnace peripheral wall and further providing a heat transfer surface that functions as an evaporator on the downstream side. It was FIG. 21 is a diagram showing the furnace characteristics of such a conventional case. However, in this case, even if the static characteristic is wet, as shown in the figure, the dynamic characteristic shows a characteristic that there is a hysteresis between "load increase" and "load decrease" due to the heat storage capacity of the metal. . Especially in the case of "load reduction", a large degree of superheat may occur as shown in the figure. Further, FIG. 22 shows a case of a boiler in which the heat transfer surface composed of the evaporator is not provided in the rear flue unlike the case of FIG. 21.

【0008】また、火炉周壁蒸発管出口部における管群
間の上記温度アンバランスの問題に対応するため、部分
負荷時に、動的状態においてではあるが、火炉周壁蒸発
管の中間部分で既に過熱度を有する管があることに着目
し、図23に示すように火炉周壁の中間高さの部位に火
炉周壁中間管寄せ(22)を設け、下部の火炉周壁蒸発
管の二相流体をこの中間管寄せ(22)に導入して混合
の上、上部の火炉周壁蒸発管に流す方式を採った例もあ
る。しかしながら、上部の火炉出口で流体温度のアンバ
ランスを小さくするという効果は今一つ不十分である。
これは中間管寄せ(22)内の気水二相の界面レベルに
上部火炉周壁蒸発管への取出口があり、そのため中間部
の流体条件が均一化されるという界面方式の前提条件
が、実際には管寄せ内界面の長手方向のレベル差,脈動
等の原因によって必ずしも満たれていないことによるも
のであり、隣接するチューブ間の流体条件(乾き度な
ど)の差は或る程度均一化することもできるが、図24
のように広い範囲に及んでドライな領域が発生した場合
には、温度アンバランスを低減する手段として機能しな
いことになる。したがって、この中間部における混合方
式も温度アンバランスの問題を完全には解決できず、今
一歩の改善が必要である。
Further, in order to deal with the above-mentioned temperature imbalance problem between the tube groups at the outlet of the furnace peripheral wall evaporation tube, the superheat is already generated in the middle portion of the furnace peripheral wall evaporation tube, although it is in a dynamic state at the time of partial load. Paying attention to the fact that there is a tube having the above, as shown in FIG. 23, a furnace peripheral wall intermediate pipe header (22) is provided at a position of the intermediate height of the furnace peripheral wall, and the two-phase fluid of the lower furnace peripheral wall evaporation pipe is supplied to this intermediate pipe. There is also an example in which the system is introduced into the gather (22), mixed, and then flowed to the upper furnace peripheral wall evaporation pipe. However, the effect of reducing the imbalance of the fluid temperature at the upper furnace outlet is still insufficient.
This is because the precondition of the interfacial method is that there is an outlet to the upper furnace peripheral wall evaporation pipe at the interface level of the two phases of steam and water in the intermediate header (22), so that the fluid conditions in the intermediate part are made uniform. This is due to the fact that it is not always satisfied due to the level difference in the longitudinal direction of the inner interface of the pipe, pulsation, etc., and the difference in fluid conditions (dryness, etc.) between adjacent tubes is made uniform to some extent. You can do that, but Fig. 24
When a dry region is generated over a wide range as described above, it does not function as a means for reducing the temperature imbalance. Therefore, the mixing method in the middle portion cannot completely solve the problem of temperature imbalance, and further improvement is needed.

【0009】このように過熱度の上昇に伴って温度アン
バランスが発生すると、火炉壁面内に大きな熱応力が生
ずるから、負荷変化に伴う熱応力の繰り返しにより、火
炉耐圧部はその寿命を消費し、ひいては損傷によりボイ
ラの運転に支障を来す恐れもある。
When a temperature imbalance occurs due to an increase in the degree of superheat as described above, a large thermal stress is generated in the wall surface of the furnace. Therefore, the thermal resistance of the furnace consumes its life due to the repeated thermal stress caused by the load change. As a result, damage may hinder the operation of the boiler.

【0010】[0010]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、次のような超臨界圧変圧貫流ボ
イラを提案するものである。
In order to solve the above-mentioned conventional problems, the present inventor proposes the following supercritical pressure transformer once-through boiler.

【0011】[1] 周壁が伝熱管により構成された火
炉と、同火炉内下部に燃料および燃焼用空気を投入して
燃焼させるバーナとを備え、上記火炉内で発生した燃焼
ガスが火炉周壁に熱吸収されつつ上昇し上記火炉の上部
から後部煙道へ流れる超臨界圧変圧貫流ボイラにおい
て、上記火炉周壁を上下に分割するとともに、下側の火
炉周壁を構成する伝熱管の出口に接続された下部火炉周
壁管出口管寄せと、上側の火炉周壁を構成する伝熱管の
入口に接続された上部火炉周壁管入口管寄せと、上記下
部火炉周壁管出口管寄せおよび上記上部火炉周壁管入口
管寄せに接続された混合器とを設けたことを特徴とする
超臨界圧変圧貫流ボイラ。
[1] A furnace having a peripheral wall formed of a heat transfer tube and a burner for injecting fuel and combustion air into the lower part of the furnace for combustion are provided, and combustion gas generated in the furnace is formed on the peripheral wall of the furnace. In a supercritical pressure variable pressure once-through boiler that rises while absorbing heat and flows from the upper part of the furnace to the rear flue, the furnace peripheral wall is divided into upper and lower parts, and it is connected to the outlet of the heat transfer tube forming the lower furnace peripheral wall. Lower furnace peripheral wall pipe outlet header, upper furnace peripheral wall pipe inlet header connected to the inlet of the heat transfer tube that constitutes the upper furnace peripheral wall, the lower furnace peripheral wall pipe outlet header and the upper furnace peripheral wall pipe inlet header And a mixer connected to the supercritical pressure transformer once-through boiler.

【0012】[2] 周壁が伝熱管により構成された火
炉と、同火炉内下部に燃料および燃焼用空気を投入して
燃焼させるバーナとを備え、上記火炉内で発生した燃焼
ガスが火炉周壁に熱吸収されつつ上昇し上記火炉の上部
から後部煙道へ流れる超臨界圧変圧貫流ボイラにおい
て、上記火炉周壁を上下に分割するとともに、下側の火
炉周壁を構成する伝熱管の出口と上側の火炉周壁を構成
する伝熱管の入口との両方に接続され、かつ横断面の中
央に180°捩れた仕切壁を有する管寄せを設けたこと
を特徴とする超臨界圧変圧貫流ボイラ。
[2] A furnace having a peripheral wall composed of heat transfer tubes and a burner for injecting fuel and combustion air into the lower part of the furnace for combustion are provided, and combustion gas generated in the furnace is formed on the peripheral wall of the furnace. In a supercritical pressure transformer once-through boiler that rises while absorbing heat and flows from the upper part of the furnace to the rear flue, the furnace peripheral wall is divided into upper and lower parts, and the outlet of the heat transfer tube that constitutes the lower furnace peripheral wall and the upper furnace A supercritical pressure transformer once-through boiler, which is provided with a header having a partition wall which is connected to both an inlet of a heat transfer tube which constitutes a peripheral wall and which is twisted by 180 ° in the center of a cross section.

【0013】[3] 周壁が伝熱管により構成された火
炉と、同火炉内下部に燃料および燃焼用空気を投入して
燃焼させるバーナとを備え、上記火炉内で発生した燃焼
ガスが火炉周壁に熱吸収されつつ上昇し上記火炉の上部
から後部煙道へ流れる超臨界圧変圧貫流ボイラにおい
て、上記火炉周壁を上下に分割するとともに、長手方向
の仕切壁により2つの部屋に仕切られた管寄せを上記火
炉周壁の各壁面に対して設け、かつ上記各壁面の下側左
半部を構成する伝熱管の出口を上記部屋の一方に、上記
各壁面の下側右半部を構成する伝熱管の出口を上記部屋
の他方に、それぞれ接続し、更に上記各壁面の上側右半
部を構成する伝熱管の入口を上記部屋の上記一方に、上
記各壁面の上側左半部を構成する伝熱管の入口を上記部
屋の上記他方に、それぞれ接続したことを特徴とする超
臨界圧変圧貫流ボイラ。
[3] A furnace having a peripheral wall composed of a heat transfer tube, and a burner for injecting and burning fuel and combustion air into the lower part of the furnace, and combustion gas generated in the furnace is formed on the peripheral wall of the furnace. In the supercritical pressure transformer once-through boiler that rises while absorbing heat and flows from the upper part of the furnace to the rear flue, the peripheral wall of the furnace is divided into upper and lower parts, and a partition is divided into two chambers by a longitudinal partition wall. The outlet of the heat transfer tube which is provided for each wall surface of the furnace peripheral wall and which constitutes the lower left half portion of each wall surface is provided in one of the chambers, and the heat transfer tube which constitutes the lower right half portion of each wall surface is The outlet is connected to the other side of the room, and the inlet of the heat transfer tube that constitutes the upper right half of each of the wall surfaces is further connected to the one side of the room, of the heat transfer tube that constitutes the upper left half of the wall surface. The entrance to the other of the above rooms, A supercritical pressure transformer once-through boiler characterized by being connected to each other.

【0014】[4] 周壁が伝熱管により構成された火
炉と、同火炉内下部に燃料および燃焼用空気を投入して
燃焼させるバーナとを備え、上記火炉内で発生した燃焼
ガスが火炉周壁に熱吸収されつつ上昇し上記火炉の上部
から後部煙道へ流れる超臨界圧変圧貫流ボイラにおい
て、上記火炉周壁を上下に分割するとともに、長手方向
の仕切壁により2つの部屋に仕切られた管寄せを上記火
炉周壁の各壁面に対して設け、かつ上記各壁面の下側左
右隅部を構成する伝熱管の出口を上記部屋の一方に、上
記各壁面の下側中央部を構成する伝熱管の出口を上記部
屋の他方に、それぞれ接続し、更に上記各壁面の上側中
央部を構成する伝熱管の入口を上記部屋の上記一方に、
上記各壁面の上側左右隅部を構成する伝熱管の入口を上
記部屋の上記他方に、それぞれ接続したことを特徴とす
る超臨界圧変圧貫流ボイラ。
[4] A furnace having a peripheral wall formed of a heat transfer tube and a burner for injecting fuel and combustion air into the lower part of the furnace for combustion are provided, and combustion gas generated in the furnace is formed on the peripheral wall of the furnace. In the supercritical pressure transformer once-through boiler that rises while absorbing heat and flows from the upper part of the furnace to the rear flue, the peripheral wall of the furnace is divided into upper and lower parts, and a partition is divided into two chambers by a longitudinal partition wall. The outlet of the heat transfer tube provided on each wall surface of the furnace peripheral wall and forming the lower left and right corners of each wall surface is provided in one of the chambers, and the outlet of the heat transfer tube forming the lower center portion of each wall surface To the other side of the room, respectively, further the inlet of the heat transfer tube constituting the upper central portion of the wall surface to the one of the room,
A supercritical pressure variable pressure once-through boiler, wherein inlets of heat transfer tubes constituting upper left and right corners of each wall surface are respectively connected to the other of the chambers.

【0015】[5] 周壁が伝熱管により構成された火
炉と、同火炉内下部に燃料および燃焼用空気を投入して
燃焼させるバーナとを備え、上記火炉内で発生した燃焼
ガスが火炉周壁に熱吸収されつつ上昇し上記火炉の上部
から後部煙道へ流れる超臨界圧変圧貫流ボイラにおい
て、上記火炉周壁を上下に分割するとともに、上記火炉
周壁の各壁面に対して2本1組の管寄せを設け、かつ上
記各壁面の下側左半部を構成する伝熱管の出口を上記2
本1組の管寄せの一方に、上記各壁面の下側右半部を構
成する伝熱管の出口を上記管寄せの他方に、それぞれ接
続し、更に上記各壁面の上側右半部を構成する伝熱管の
入口を上記管寄せの上記一方に、上記各壁面の上側左半
部を構成する伝熱管の入口を上記管寄せの上記他方に、
それぞれ接続したことを特徴とする超臨界圧変圧貫流ボ
イラ。
[5] A furnace having a peripheral wall composed of a heat transfer tube and a burner for injecting fuel and combustion air into the lower part of the furnace for combustion are provided, and combustion gas generated in the furnace is formed on the peripheral wall of the furnace. In a supercritical pressure transformer once-through boiler that rises while absorbing heat and flows from the upper part of the furnace to the rear flue, the peripheral wall of the furnace is divided into upper and lower parts, and a set of two pipes are attached to each wall surface of the peripheral wall of the furnace. And the outlet of the heat transfer tube that constitutes the lower left half of each wall is
The outlet of the heat transfer tube that constitutes the lower right half of each wall surface is connected to one of the pair of headers and is connected to the other of the headers, and the upper right half of each wall surface is further configured. The inlet of the heat transfer tube to the one of the above-mentioned tube drawers, the inlet of the heat transfer tube that constitutes the upper left half of each wall surface to the other of the above tube drawers,
A supercritical pressure transformer once-through boiler characterized by being connected to each other.

【0016】[6] 周壁が伝熱管により構成された火
炉と、同火炉内下部に燃料および燃焼用空気を投入して
燃焼させるバーナとを備え、上記火炉内で発生した燃焼
ガスが火炉周壁に熱吸収されつつ上昇し上記火炉の上部
から後部煙道へ流れる超臨界圧変圧貫流ボイラにおい
て、上記火炉周壁を上下に分割するとともに、上記火炉
周壁の各壁面に対して2本1組の管寄せを設け、かつ上
記各壁面の下側左右隅部を構成する伝熱管の出口を上記
2本1組の管寄せの一方に、上記各壁面の下側中央部を
構成する伝熱管の出口を上記管寄せの他方に、それぞれ
接続し、更に上記各壁面の上側中央部を構成する伝熱管
の入口を上記管寄せの上記一方に、上記各壁面の上側左
右隅部を構成する伝熱管の入口を上記管寄せの上記他方
に、それぞれ接続したことを特徴とする超臨界圧変圧貫
流ボイラ。
[6] A furnace having a peripheral wall composed of a heat transfer tube, and a burner for injecting fuel and combustion air into the lower part of the furnace for combustion are provided, and combustion gas generated in the furnace is formed on the peripheral wall of the furnace. In a supercritical pressure transformer once-through boiler that rises while absorbing heat and flows from the upper part of the furnace to the rear flue, the peripheral wall of the furnace is divided into upper and lower parts, and a set of two pipes are attached to each wall surface of the peripheral wall of the furnace. And the outlet of the heat transfer tube that constitutes the lower left and right corners of each wall surface is provided on one side of the pair of two pipes, and the outlet of the heat transfer tube that constitutes the lower center part of each wall surface is described above. The inlet of the heat transfer tube, which is connected to the other of the headers and which constitutes the upper central portion of each wall surface, is provided with the inlet of the heat transfer tube, which constitutes the upper left and right corners of each wall surface, at the one of the headers. Connected to the other side of the heading A supercritical pressure variable pressure once-through boiler.

【0017】[0017]

【作用】前記解決手段[1]においては、火炉周壁を上
下に分割するとともに、下側の火炉周壁を構成する伝熱
管の出口に接続された下部火炉周壁管出口管寄せと、上
側の火炉周壁を構成する伝熱管の入口に接続された上部
火炉周壁管入口管寄せと、上記下部火炉周壁管出口管寄
せおよび上記上部火炉周壁管入口管寄せに接続された混
合器とを設けたので、下側の火炉周壁伝熱管を出たボイ
ラ水はすべて混合器を経て上側の火炉周壁伝熱管へ流れ
る。したがって下側の火炉周壁伝熱管の流体にバラツキ
があり、場合によっては一部に過熱度を持つものがあっ
ても、混合器により完全に攪拌混合されて、上側の火炉
周壁伝熱管の入口では均一なエンタルピレベルの流体が
分配される。その結果、上側の火炉周壁伝熱管出口部に
おける伝熱管群間の温度差は大幅に減少し、火炉壁メタ
ル温度アンバランスは過渡的な場合にも安全な領域にと
どまるので、負荷変化に伴って発生する熱応力の繰り返
しによる火炉耐圧部の寿命消費がなくなり、更に疲労に
よるボイラ火炉壁の損傷事故等も防止される。
In the solution means [1], the peripheral wall of the furnace is divided into upper and lower parts, and the outlet wall of the lower peripheral wall of the furnace, which is connected to the outlet of the heat transfer tube forming the lower peripheral wall of the furnace, and the upper peripheral wall of the furnace. Since the upper furnace peripheral wall pipe inlet header connected to the inlet of the heat transfer pipe constituting the, and the mixer connected to the lower furnace peripheral wall pipe outlet header and the upper furnace peripheral wall pipe inlet header All the boiler water that has exited from the furnace peripheral wall heat transfer tube on the side flows through the mixer to the furnace peripheral wall heat transfer tube on the upper side. Therefore, even if there is variation in the fluid in the lower furnace peripheral wall heat transfer tube, and in some cases there is some superheat, it is completely agitated and mixed by the mixer, and at the inlet of the upper furnace peripheral wall heat transfer tube. A uniform enthalpy level of fluid is dispensed. As a result, the temperature difference between the heat transfer tube groups at the upper furnace peripheral wall heat transfer tube outlet is greatly reduced, and the furnace wall metal temperature imbalance remains in the safe area even in a transient state. The life of the pressure-resistant part of the furnace due to repeated thermal stress is not consumed, and further damage to the boiler furnace wall due to fatigue is prevented.

【0018】次に前記解決手段[2]ないし[6]にお
いては、火炉周壁を上下に分割するとともに、下側の火
炉周壁を構成する伝熱管の出口と上側の火炉周壁を構成
する伝熱管の入口との両方に接続され、かつ横断面の中
央に180°捩れた仕切壁を有する管寄せを設けるか、
または火炉周壁を上下に分割するとともに、長手方向の
仕切壁により2つの部屋に仕切られた管寄せを火炉周壁
の各壁面に対して設け、かつ上記各壁面の下側左半部を
構成する伝熱管の出口を上記部屋の一方に、上記各壁面
の下側右半部を構成する伝熱管の出口を上記部屋の他方
に、それぞれ接続し、更に上記各壁面の上側右半部を構
成する伝熱管の入口を上記部屋の上記一方に、上記各壁
面の上側左半部を構成する伝熱管の入口を上記部屋の上
記他方に、それぞれ接続するか、もしくは上記各壁面の
下側左右隅部を構成する伝熱管の出口を上記部屋の一方
に、上記各壁面の下側中央部を構成する伝熱管の出口を
上記部屋の他方に、それぞれ接続し、更に上記各壁面の
上側中央部を構成する伝熱管の入口を上記部屋の上記一
方に、上記各壁面の上側左右隅部を構成する伝熱管の入
口を上記部屋の上記他方に、それぞれ接続するか、また
は火炉周壁を上下に分割するとともに、火炉周壁の各壁
面に対して2本1組の管寄せを設け、かつ上記各壁面の
下側左半部を構成する伝熱管の出口を上記2本1組の管
寄せの一方に、上記各壁面の下側右半部を構成する伝熱
管の出口を上記管寄せの他方に、それぞれ接続し、更に
上記各壁面の上側右半部を構成する伝熱管の入口を上記
管寄せの上記一方に、上記各壁面の上側左半部を構成す
る伝熱管の入口を上記管寄せの上記他方に、それぞれ接
続するか、もしくは上記各壁面の下側左右隅部を構成す
る伝熱管の出口を上記2本1組の管寄せの一方に、上記
各壁面の下側中央部を構成する伝熱管の出口を上記管寄
せの他方に、それぞれ接続し、更に上記各壁面の上側中
央部を構成する伝熱管の入口を上記管寄せの上記一方
に、上記各壁面の上側左右隅部を構成する伝熱管の入口
を上記管寄せの上記他方に、それぞれ接続するかしたの
で、下側の火炉周壁伝熱管の流体は、火炉の中間高さに
設けられた管寄せ内を移動して、上側の別の位置の火炉
周壁伝熱管に流れる。そしてその移動の際に流体の混合
も促進される。したがって、部分負荷、負荷降下時,あ
るいは亜臨界圧時に、図24に見られるように火炉周壁
の各壁面中央部の相当な幅に亘ってドライ領域が生じて
も、飽和温度に止まっている左右両隅部周辺の流体と上
記ドライ領域の流体が十分に混合される。
Next, in the above-mentioned solving means [2] to [6], the peripheral wall of the furnace is divided into upper and lower parts, and the outlets of the heat transfer tubes forming the lower peripheral wall of the furnace and the heat transfer tubes forming the upper peripheral wall of the furnace are formed. Or a pipe head connected to both the inlet and having a partition wall twisted 180 ° in the center of the cross section,
Alternatively, the furnace peripheral wall is divided into upper and lower parts, and a pipe partitioning into two chambers by longitudinal partition walls is provided for each wall surface of the furnace peripheral wall, and the lower left half part of each wall surface is formed. The outlet of the heat pipe is connected to one of the rooms, the outlet of the heat transfer tube forming the lower right half of each wall is connected to the other of the room, and the transfer forming the upper right half of each wall is connected. The inlet of the heat tube is connected to the one side of the room, the inlet of the heat transfer tube forming the upper left half of each wall is connected to the other side of the room, or the lower left and right corners of each wall are connected. The outlet of the heat transfer tube that constitutes the above is connected to one of the chambers, the outlet of the heat transfer tube that configures the lower central portion of each of the wall surfaces is connected to the other of the chamber, and the upper central portion of each of the wall surfaces is configured. Set the inlet of the heat transfer tube to the above one side of the above room and The inlet of the heat transfer tube that constitutes the upper left and right corners is connected to the other of the above-mentioned chambers respectively, or the furnace peripheral wall is divided into upper and lower parts, and two pairs of pipes are attached to each wall surface of the furnace peripheral wall. The outlet of the heat transfer tube that is provided and constitutes the lower left half of each wall surface is provided to one of the pair of pipes, and the outlet of the heat transfer tube that constitutes the lower right half of each wall is described above. The inlet of the heat transfer tube, which is connected to the other of the headers and further constitutes the upper right half of each wall surface, is provided with the inlet of the heat transfer tube, which constitutes the upper left half of each wall surface, to the one of the headers. Is connected to the other of the headers, or the outlet of the heat transfer tube that constitutes the lower left and right corners of each of the wall surfaces is connected to one of the pair of headers and the lower side of each wall surface. The outlet of the heat transfer tube that constitutes the central portion is connected to the other of the above-mentioned tube drawers, respectively, Note: The inlet of the heat transfer tube that constitutes the upper center portion of each wall surface is connected to the one side of the above-mentioned header, and the inlet of the heat transfer tube that constitutes the upper left and right corners of each wall surface is connected to the other one of the above header. Therefore, the fluid in the furnace peripheral wall heat transfer tube on the lower side moves in the header provided at the intermediate height of the furnace and flows to the furnace peripheral wall heat transfer tube at another position on the upper side. And the mixing of the fluids is promoted during the movement. Therefore, even if a dry region is formed over a considerable width of the central portion of each wall of the furnace peripheral wall during partial load, load drop, or subcritical pressure, as shown in FIG. The fluid around the corners and the fluid in the dry area are sufficiently mixed.

【0019】[0019]

【実施例】図1は本発明の第1実施例に係る超臨界圧変
圧貫流ボイラを示す系統図、図2は上記超臨界圧変圧貫
流ボイラの火炉周壁中間管寄せ部を詳細に示す系統図、
図3は同じく火炉周壁中間管寄せ部を示す水平断面図
(図4の III−III 断面)、図4は図3のIV−IV縦断側
面図、図5は図3のV−V矢視背面図、図6は同じく火
炉周壁中間管寄せ部の部分詳細図、図7は図6の VII−
VII 矢視側面図である。
FIG. 1 is a system diagram showing a supercritical pressure transformer once-through boiler according to a first embodiment of the present invention, and FIG. 2 is a system diagram showing in detail a furnace peripheral wall intermediate pipe header of the supercritical pressure transformer once-through boiler. ,
Fig. 3 is a horizontal sectional view (section III-III in Fig. 4) showing the intermediate part of the furnace peripheral wall, Fig. 4 is a vertical sectional side view taken along line IV-IV in Fig. 3, and Fig. 5 is a rear view taken along the line V-V in Fig. 3. 6 and 6 are partial detailed views of the intermediate portion of the intermediate wall of the furnace wall, and FIG. 7 is VII- of FIG.
FIG. 7 is a side view taken along the arrow VII.

【0020】まず図1に示されるように、本実施例のボ
イラは、周壁が伝熱管により構成されて、ほぼ鉛直に立
つ火炉(14)と、その下部に燃料と燃焼用空気を投入
して燃焼させるバーナ,空気噴出口等より成る燃焼設備
を備え、火炉(14)の下部で発生した燃焼ガスが火炉
周壁に熱吸収されつつ上昇し、火炉上部から後部煙道
(12)に流れるようになっている。本実施例では火炉
(14)の周壁がその高さの中間部で上下に分割され、
下側の火炉周壁を構成する伝熱管(16)の出口に接続
された下部火炉周壁管出口管寄せ(21)と、上側の火
炉周壁を構成する伝熱管(15)の入口に接続された上
部火炉周壁管入口管寄せ(17)と、上記下部火炉周壁
管出口管寄せ(21)および上記上部火炉周壁管入口管
寄せ(17)に接続された混合器(19)とが設けられ
ている。
First, as shown in FIG. 1, in the boiler of this embodiment, a peripheral wall is constituted by a heat transfer tube, and a furnace (14) which stands almost vertically, and fuel and combustion air are introduced into the lower part thereof. Combustion equipment consisting of burners, air jets, etc. for combustion is provided so that combustion gas generated in the lower part of the furnace (14) rises while being absorbed by the peripheral wall of the furnace and flows from the upper part of the furnace to the rear flue (12). Has become. In this embodiment, the peripheral wall of the furnace (14) is divided into upper and lower parts at the middle part of its height,
Lower furnace peripheral wall pipe outlet header (21) connected to the outlet of the lower furnace peripheral wall (16) and upper part connected to the inlet of the upper furnace peripheral wall (15) A furnace peripheral wall tube inlet header (17), a lower furnace peripheral wall tube outlet header (21) and a mixer (19) connected to the upper furnace peripheral wall tube inlet header (17) are provided.

【0021】給水,蒸気系統について言えば、後部煙道
(12)に設置された図示しない節炭器の出口から火炉
入口連絡管(1)を経て下部火炉周壁管入口管寄せ(2
0)に入った給水は、下部火炉周壁伝熱管(16)に入
って火炉(14)内の燃焼ガスから熱吸収しつつ上昇
し、火炉(14)高さの中間部に設けられた下部火炉周
壁管出口管寄せ(21)に出る。この下部火炉周壁管出
口管寄せ(21)は、図2に示されるように、火炉(1
4)を取り巻く四角いリング状の構造であり、これに4
個の混合器(19)がその入口部を直結して固定されて
いる。その位置は前壁左右のコーナ側に寄せて2基,後
壁側にも同様に2基配されている。下部火炉周壁管出口
管寄せ(21)はリング状なので、図2の(21)の両
端部は連結されている。混合器(19)により充分攪
拌,混合された二相流体は連絡管により平均的に上部火
炉周壁管入口管寄せ(17)に流れていく。図示例で
は、この上部火炉周壁管入口管寄せ(17)は4つの壁
面に対応して4つに分割されている。
Speaking of the water supply and steam system, from the outlet of the economizer (not shown) installed in the rear flue (12), through the furnace inlet connecting pipe (1), the lower furnace peripheral wall pipe inlet pipe (2)
The feed water that entered 0) enters the lower furnace peripheral wall heat transfer tube (16) and rises while absorbing heat from the combustion gas in the furnace (14), and is installed in the middle part of the height of the furnace (14). It goes out to the peripheral wall pipe outlet pipe header (21). As shown in FIG. 2, the lower furnace peripheral wall tube outlet header (21) is connected to the furnace (1
4) It is a square ring-shaped structure that surrounds
The mixer (19) is fixed by directly connecting its inlet. Two of them are arranged near the corners on the left and right of the front wall, and two are similarly arranged on the rear wall side. Since the lower furnace peripheral wall pipe outlet pipe header (21) is ring-shaped, both ends of (21) in FIG. 2 are connected. The two-phase fluid that has been sufficiently stirred and mixed by the mixer (19) flows through the connecting pipe to the inlet (17) of the upper furnace peripheral wall pipe on average. In the illustrated example, the upper furnace peripheral wall pipe inlet pipe header (17) is divided into four parts corresponding to the four wall faces.

【0022】図1に戻り、上部火炉周壁管入口管寄せ
(17)から上部火炉周壁伝熱管(15)に入った流体
は、火炉上部で再加熱され、上部火炉周壁管出口管寄せ
(18)に出る。そして火炉出口連絡管(6)を経て気
水分離器(7)に流入し、ここで蒸気とドレンに分離さ
れる。気水分離器(7)で分離された蒸気は、過熱器入
口連絡管(13)を経て過熱器(9)へ導かれる。一
方、気水分離器(7)で分離されたドレンは、ドレン排
出管(8)を経て循環ポンプ(11)により前記節炭器
の入口に戻される。この場合当然ながら、気水分離器
(7)内のドレン液面が一定レベル以下とならぬよう
に、ドレンレベル調整弁(10)により制御されるよう
になっている。
Returning to FIG. 1, the fluid that has entered the upper furnace peripheral wall pipe inlet pipe inlet (17) into the upper furnace peripheral wall heat transfer pipe (15) is reheated in the upper part of the furnace, and the upper furnace peripheral wall pipe outlet outlet (18) is reheated. Go to. Then, it flows into the steam separator (7) through the furnace outlet communication pipe (6), and is separated into steam and drain there. The steam separated by the steam separator (7) is guided to the superheater (9) through the superheater inlet communication pipe (13). On the other hand, the drain separated by the steam separator (7) is returned to the inlet of the economizer by the circulation pump (11) via the drain discharge pipe (8). In this case, of course, the drain level adjusting valve (10) is controlled so that the drain liquid level in the steam separator (7) does not fall below a certain level.

【0023】次に上記火炉中間管寄せ部の具体的構造を
図3ないし図6により説明する。側面図で、火炉(1
4)高さの中間部に、火炉(14)を取り巻くように下
部火炉周壁管出口管寄せ(21)が設けられており、前
壁左右と後壁左右に合計4個の混合器(19)がこの管
寄せ(21)に縦方向に直接接続していることが平面図
で理解されよう。そうして混合器(19)で混合された
気水二相のボイラ水は連絡管によって、前後壁、側壁合
わせて4つに分かれた上部火炉周壁管入口管寄せ(1
7)に入ることになる。この管寄せと取り合う連絡管は
全部で48本あり、混合器1個当たりその1/4の12
本の連絡管で結合されていて、各混合器(19)間でほ
ぼ同様の管配置となっている。
Next, a concrete structure of the furnace intermediate pipe pulling portion will be described with reference to FIGS. In side view, the furnace (1
4) In the middle part of the height, a lower furnace peripheral wall tube outlet outlet (21) is provided so as to surround the furnace (14), and a total of four mixers (19) are provided on the left and right front walls and the left and right rear walls. It can be seen in plan view that is connected directly to this header (21) in the longitudinal direction. Then, the steam-water two-phase boiler water mixed in the mixer (19) was divided into four parts by the connecting pipe, including the front and rear walls and the side wall.
7) You will enter. There are a total of 48 connecting pipes that fit this heading, one quarter of which is 12
They are connected by a connecting pipe of a book, and the pipe arrangement between the mixers (19) is almost the same.

【0024】本実施例では、下部火炉周壁管出口管寄せ
(21)が四角いリング状の単一構造であり、上部火炉
周壁管入口管寄せ(17)は4つの壁面に対応して4つ
に分割されている。しかしこれらの管寄せ(17),
(21)はいずれも、その担当する周壁伝熱管が、それ
ぞれ独立に火炉周壁の全数か、もしくはこれを幾つかに
分割した周壁伝熱管数であったり、またはこれらの管寄
せが火炉周壁を囲繞した単一の管寄せか、周壁の単一な
いし複数の壁面に面する複数の管寄せとして設置されて
もよい。
In this embodiment, the lower furnace peripheral wall tube outlet header (21) has a square ring-shaped single structure, and the upper furnace peripheral wall tube inlet header (17) has four walls corresponding to the four wall surfaces. It is divided. However, these headers (17),
In all of (21), the peripheral wall heat transfer tubes in charge are the total number of furnace peripheral walls independently, or the number of peripheral wall heat transfer tubes obtained by dividing the peripheral wall, or the number of peripheral wall heat transfer tubes surrounding the peripheral wall of the furnace. It may be installed as a single header or a plurality of headers facing a single or a plurality of wall surfaces of the peripheral wall.

【0025】次に図8は本発明の第2実施例における火
炉周壁中間管寄せ部を示す平面図、図9は図8のIX−IX
矢視横断側面図である。本実施例においては、鉛直な火
炉の中間高さ部に断面の中央に長手方向に沿う仕切壁
(25)を備えた火炉周壁中間管寄せ(22)を火炉
(14)の四周壁面に対してそれぞれ設ける。その仕切
壁(25)は要所で180°捩れている。そしてこの火
炉周壁中間管寄せ(22)に下部火炉周壁伝熱管(1
6)および上部火炉周壁伝熱管(15)の両者を接続す
る。その際、各火炉周壁中間管寄せ(22)が、各壁面
の周壁伝熱管の下部左半分側を上部の右半分側へ、逆に
下部右半分側は上部左半分側に接続するように、管寄せ
内の仕切壁(25)により隔離された2つの流れを形成
可能としたものである。すなわち、図9に見られるよう
に、右半部の下部火炉周壁伝熱管(16)内の流体は火
炉周壁中間管寄せ(22)に水平に左横から流入し、同
中間管寄せ(22)内を横移動して左右の中間部で仕切
壁(25)が180°捩じられて取付けてある個所を通
過した後、炉幅方向にずれた位置から水平に右横へ出て
いき、左半部の上部火炉周壁伝熱管(15)に流れてゆ
く。
Next, FIG. 8 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in the second embodiment of the present invention, and FIG. 9 is IX-IX of FIG.
It is an arrow crossing side view. In the present embodiment, a furnace peripheral wall intermediate pipe (22) provided with a partition wall (25) along the longitudinal direction at the center of the cross section at the middle height portion of the vertical furnace is provided with respect to the four peripheral wall surfaces of the furnace (14). Provide each. The partition wall (25) is twisted 180 ° at a key point. Then, the lower furnace peripheral wall heat transfer tube (1
6) and the upper furnace peripheral wall heat transfer tube (15) are both connected. At that time, each furnace peripheral wall intermediate pipe header (22) connects the lower left half side of the peripheral wall heat transfer tube of each wall surface to the upper right half side, and conversely connects the lower right half side to the upper left half side, It is possible to form two streams separated by a partition wall (25) in the header. That is, as shown in FIG. 9, the fluid in the lower furnace peripheral wall heat transfer tube (16) in the right half part horizontally flows into the furnace peripheral wall intermediate tube header (22) from the left side, and the intermediate tube header (22). After moving inside, the partition wall (25) was twisted 180 ° at the middle part on the left and right and passed through the place where it was installed. Then, from the position shifted in the width direction of the furnace, move horizontally to the right and to the left. It flows into the upper furnace peripheral wall heat transfer tube (15) in the half part.

【0026】図示はしないが、混合し合う炉幅方向の部
位が左右両コーナ部と中央部の場合には、仕切壁(2
5)の180°捩じりは2か所となり、その位置は両コ
ーナ部と中央部の境界,管寄せの左右端部から管寄せ長
さの約1/4の位置に設けられる。
Although not shown in the drawing, when the parts in the width direction of the furnace for mixing are the left and right corners and the central part, the partition wall (2
There are two 180 ° twists in 5), and the positions are provided at the boundary between both corners and the central part, and from the left and right ends of the header to about ¼ of the header length.

【0027】次に図10は本発明の第3実施例における
火炉周壁中間管寄せ部を示す平面図、図11は図10の
XI−XI矢視横断側面図、図12は図10の XII−XII 矢
視横断側面図である。この実施例が前記第2実施例と相
違する点は管寄せ内の仕切壁(26)が捩れておらず平
面状となっていることである。そのため、下部火炉周壁
伝熱管(16)から来た流体が火炉周壁中間管寄せ(2
2)を通って上部火炉周壁伝熱管(15)に流れ、管寄
せ内の横移動して流体の混合を行なうことは同じである
が、左半部のXI−XI断面(図11)と右半部の XII−XI
I 断面(図12)では周壁伝熱管の出入りが反対とな
る。また前記第2実施例と同様、例示していないが、混
合し合う炉幅方向の部位が左右両コーナ部と中央部の場
合もあり得る。
Next, FIG. 10 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a third embodiment of the present invention, and FIG. 11 is a plan view of FIG.
XI-XI arrow cross-sectional side view, FIG. 12 is a XII-XII arrow cross-sectional side view of FIG. The difference of this embodiment from the second embodiment is that the partition wall (26) in the header is flat and not twisted. Therefore, the fluid coming from the lower furnace peripheral wall heat transfer tube (16) moves to the furnace peripheral wall intermediate pipe (2
It is the same as flowing through 2) to the upper furnace peripheral wall heat transfer tube (15) and moving laterally in the header to mix the fluid, but the left half XI-XI cross section (Fig. 11) and right Half of XII-XI
In the I section (Fig. 12), the entrance and exit of the peripheral wall heat transfer tubes are opposite. Although not illustrated, as in the case of the second embodiment, there may be cases where the parts in the width direction of the furnace where they are mixed are the left and right corner parts and the central part.

【0028】次に図13は本発明の第4実施例における
火炉周壁中間管寄せ部を示す平面図、図14は図13の
XIV−XIV 矢視横断側面図、図15は図13のXV−XV矢
視横断側面図である。この第4実施例の構成は、前記第
2,第3実施例の場合と同様に、鉛直な火炉の中間高さ
位置に下部火炉周壁伝熱管(16)と上部火炉周壁伝熱
管(15)の両者に接続する火炉周壁中間管寄せを、火
炉(14)の四周壁面に対応してそれそれ設ける点は同
じであるが、管寄せ仕切壁(25),(26)を用い
ず、その代わりに各壁面毎に2本の火炉周壁中間管寄せ
(22a),(22b) を用いて構成されている点が相違する。つ
まり逆方向の2つの流体流れを、管寄せ仕切壁(2
5),(26)の代わりに2本の火炉周壁中間管寄せ(2
2a),(22b) を用いることにより実現したものである。そ
の一方向は下部火炉周壁伝熱管(16)の左半分側を上
部火炉周壁伝熱管(15)の右半分側へ、他の一方向は
逆に下部火炉周壁伝熱管(16)の右半分側を上部火炉
周壁伝熱管(15)の左半分側に接続するもので、この
間の管寄せ内の横移動時に左右の流体が混合されるよう
になっている。
Next, FIG. 13 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a fourth embodiment of the present invention, and FIG. 14 is a plan view of FIG.
XIV-XIV arrow cross-sectional side view, FIG. 15 is a XV-XV arrow cross-sectional side view of FIG. As in the case of the second and third embodiments, the configuration of the fourth embodiment includes a lower furnace peripheral wall heat transfer tube (16) and an upper furnace peripheral wall heat transfer tube (15) at an intermediate height position of a vertical furnace. The same is the point that the furnace peripheral wall intermediate pipe headers connected to both are provided correspondingly to the four peripheral wall faces of the furnace (14), but the pipe divider partition walls (25) and (26) are not used, but instead. Two furnace peripheral wall intermediate pipes for each wall
The difference is that it is configured using (22a) and (22b). In other words, the two fluid flows in the opposite directions are moved to the partition wall (2
5), (26) instead of two furnace peripheral wall intermediate pipe (2
This is realized by using 2a) and (22b). One direction is the left half side of the lower furnace peripheral wall heat transfer tube (16) to the right half side of the upper furnace peripheral wall heat transfer tube (15), and the other direction is the reverse half of the lower furnace peripheral wall heat transfer tube (16). Is connected to the left half side of the upper furnace peripheral wall heat transfer tube (15), and the left and right fluids are mixed during lateral movement within the header of the tube.

【0029】次に図16は本発明の第5実施例における
火炉周壁中間管寄せ部を示す平面図、図17は図16の
XVII−XVII矢視横断側面図、図18は図16の XVIII−
XVIII 矢視横断側面図である。前記の第4実施例におい
ては、下部火炉周壁伝熱管(16)から受入れて上部火
炉周壁伝熱管(15)に分配する炉幅方向の混合部位
が、下部の左半分側を上部の右半分側へ、下部の右半分
側を上部の左半分側に、それぞれ接続していたのに対し
て、この第5実施例では、下部火炉周壁伝熱管(16)
の両コーナ側(左右両隅部)の管を上部火炉周壁伝熱管
(15)の中央部の管に、逆に下部火炉周壁伝熱管(1
6)の中央部の管を上部火炉周壁伝熱管(15)の両コ
ーナ側の管に、それぞれ接続する点が相違するものであ
る。
Next, FIG. 16 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a fifth embodiment of the present invention, and FIG. 17 is a plan view of FIG.
XVII-XVII arrow cross-sectional side view, FIG. 18 is XVIII- of FIG.
It is a cross-sectional side view taken along the arrow XVIII. In the above-described fourth embodiment, the mixing portion in the furnace width direction that receives from the lower furnace peripheral wall heat transfer tube (16) and distributes to the upper furnace peripheral wall heat transfer tube (15) is such that the lower left half side is the upper right half side. While the lower right half side was connected to the upper left half side, respectively, in the fifth embodiment, the lower furnace peripheral wall heat transfer tube (16)
The tubes on both corner sides (both left and right corners) of the upper furnace peripheral wall heat transfer tube (15) are opposite to the lower furnace peripheral wall heat transfer tube (1
6) is different in that the central pipe is connected to both corner side pipes of the upper furnace peripheral wall heat transfer pipe (15).

【0030】以上のような構成を有する各実施例に特有
な作用・効果について以下に説明する。
The operation and effect peculiar to each embodiment having the above-mentioned structure will be described below.

【0031】まず第1実施例から説明すれば、火炉周壁
伝熱管を二相流域の中間高さ部で二分するとともに管寄
せを設ける点は、本実施例も前記図23により説明した
従来の方式と同様であるが、本実施例では、管寄せとし
て下部火炉周壁管出口管寄せ(21)と上部火炉周壁管
入口管寄せ(17)を設け、かつその間に4つの混合器
(19)を設けて、各下部火炉周壁伝熱管から出てく
る、場合によっては過熱度を持つ、バラツキのある流体
を全てこの混合器(19)のいずれかを必ず経由させ完
全に攪拌混合する。これにより、上部火炉周壁伝熱管
(15)入口でボイラ水の流体条件が均一となるので、
上部火炉周壁伝熱管(15)出口部における伝熱管群間
の温度差は大幅に減少し、火炉壁メタル温度アンバラン
スは過渡的な場合にも安全な領域にとどまる。こうして
負荷変化に伴い発生する熱応力の繰り返しによる火炉耐
圧部の寿命消費をなくし、更に疲労によるボイラ火炉壁
の損傷事故等を防止することができる。
First, the first embodiment will be described. The point that the furnace heat transfer tube heat transfer tube is divided into two parts at the intermediate height part of the two-phase flow region and a pipe offset is provided is the conventional method described in FIG. In the present embodiment, the lower furnace peripheral wall pipe outlet pipe outlet (21) and the upper furnace peripheral wall pipe inlet pipe inlet (17) are provided, and four mixers (19) are provided between them. Then, all the fluids which come out from the heat transfer tubes of the lower furnace peripheral wall and which have a superheat degree in some cases and have variations are always passed through one of the mixers (19) to be completely stirred and mixed. As a result, the fluid condition of the boiler water becomes uniform at the inlet of the upper furnace peripheral wall heat transfer tube (15).
The temperature difference between the heat transfer tube groups at the outlet of the upper furnace peripheral wall heat transfer tube (15) is significantly reduced, and the furnace wall metal temperature imbalance remains in a safe region even in a transient case. In this way, it is possible to eliminate the lifetime consumption of the furnace pressure-resistant portion due to the repeated thermal stress caused by the load change, and to prevent damage accidents of the boiler furnace wall due to fatigue.

【0032】次に第2ないし第5実施例は、部分負荷で
負荷降下時、圧力は亜臨界圧時というような場合に、図
24に見られるように火炉周壁の各壁面中央部の相当な
幅に亘ってドライ領域が生じること、そしてこのような
時にも左右両隅部とその周辺は飽和温度に止まっている
ことに注目して、各壁面の火炉中央高さ位置に管寄せを
設け、同管寄せ位置よりも下方の火炉周壁伝熱管の炉幅
方向の位置による流体条件差を打ち消すように、上方の
別の位置の伝熱管に接続することにより、火炉特有の熱
吸収の偏りを平準化するものである。またその時、流体
が管寄せ内を移動し、それによって同時に流体が混合さ
れるので、この両者相俟って混合効果が大きくなる。特
に第5実施例は炉幅方向の中央部と左右両隅部とを管寄
せの上下で入れ換える方式であり、火炉周壁のバーナレ
ベル以上の火炉周壁伝熱管の炉幅方向の位置による熱吸
収の特徴を考慮する時、平準化効果は大きいものと考え
られる。
Next, in the second to fifth embodiments, when the load is dropped by partial load and the pressure is subcritical pressure, as shown in FIG. 24, a considerable amount of the central portion of each wall surface of the furnace peripheral wall is provided. Paying attention to the fact that a dry region is generated over the width and that the left and right corners and their surroundings remain at the saturation temperature even at such a time, a header is provided at the furnace center height position on each wall, The deviation of heat absorption peculiar to the furnace is leveled by connecting to the heat transfer tube at another upper position so as to cancel the fluid condition difference due to the position in the furnace width direction of the furnace peripheral wall heat transfer tube below the tube draw position. It will be transformed. Further, at that time, the fluid moves in the pipe header, and thereby the fluids are mixed at the same time, so that the mixing effect becomes large in combination with both of them. In particular, the fifth embodiment is a system in which the central portion in the furnace width direction and the left and right corners are interchanged at the upper and lower sides of the tube shift, and the heat absorption by the position in the furnace width direction of the furnace peripheral wall heat transfer tube above the burner level of the furnace peripheral wall is absorbed. Considering the characteristics, the leveling effect is considered to be great.

【0033】[0033]

【発明の効果】本発明によれば、超臨界圧変圧貫流ボイ
ラの部分負荷運転時、負荷降下時に従来発生していた火
炉壁メタル温度アンバランスが動的にも生じなくなるの
で、負荷変化に伴い発生する熱応力の繰り返しによる火
炉耐圧部の寿命消費がなくなり、更に疲労によるボイラ
火炉壁の損傷事故等を防止する効果がある。
EFFECTS OF THE INVENTION According to the present invention, the temperature imbalance of the furnace wall metal, which has been conventionally generated when the load is lowered during partial load operation of the supercritical pressure transformer once-through boiler, does not dynamically occur. The life of the pressure-resistant portion of the furnace is not consumed due to repeated thermal stress generated, and further, there is an effect of preventing damage to the boiler furnace wall due to fatigue.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例に係る超臨界圧変圧
貫流ボイラを示す系統図である。
FIG. 1 is a system diagram showing a supercritical pressure transformer once-through boiler according to a first embodiment of the present invention.

【図2】図2は上記超臨界圧変圧貫流ボイラの火炉周壁
中間管寄せ部を詳細に示す系統図である。
FIG. 2 is a system diagram showing in detail a furnace peripheral wall intermediate pipe pulling section of the above-mentioned supercritical pressure variable pressure once-through boiler.

【図3】図3は上記火炉周壁中間管寄せ部を示す水平断
面図(図4の III−III 断面)である。
FIG. 3 is a horizontal cross-sectional view (cross-section III-III in FIG. 4) showing the furnace peripheral wall intermediate pipe pulling portion.

【図4】図4は図3のIV−IV縦断側面図である。FIG. 4 is a vertical sectional side view taken along the line IV-IV of FIG.

【図5】図5は図3のV−V矢視背面図である。5 is a rear view taken along the line VV of FIG.

【図6】図6は上記火炉周壁中間管寄せ部の部分詳細図
である。
FIG. 6 is a partial detailed view of the furnace peripheral wall intermediate pipe pulling portion.

【図7】図7は図6の VII−VII 矢視側面図である。FIG. 7 is a side view taken along the line VII-VII of FIG.

【図8】図8は本発明の第2実施例における火炉周壁中
間管寄せ部を示す平面図である。
FIG. 8 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a second embodiment of the present invention.

【図9】図9は図8のIX−IX矢視横断側面図である。9 is a lateral cross-sectional view taken along the line IX-IX of FIG.

【図10】図10は本発明の第3実施例における火炉周
壁中間管寄せ部を示す平面図である。
FIG. 10 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a third embodiment of the present invention.

【図11】図11は図10のXI−XI矢視横断側面図であ
る。
11 is a lateral cross-sectional view taken along the line XI-XI of FIG.

【図12】図12は図10の XII−XII 矢視横断側面図
である。
12 is a lateral cross-sectional view taken along the line XII-XII of FIG.

【図13】図13は本発明の第4実施例における火炉周
壁中間管寄せ部を示す平面図である。
FIG. 13 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a fourth embodiment of the present invention.

【図14】図14は図13の XIV−XIV 矢視横断側面図
である。
14 is a lateral cross sectional view taken along the line XIV-XIV of FIG.

【図15】図15は図13のXV−XV矢視横断側面図であ
る。
15 is a cross-sectional side view taken along the line XV-XV of FIG.

【図16】図16は本発明の第5実施例における火炉周
壁中間管寄せ部を示す平面図である。
FIG. 16 is a plan view showing a furnace peripheral wall intermediate pipe pulling portion in a fifth embodiment of the present invention.

【図17】図17は図16のXVII−XVII矢視横断側面図
である。
17 is a lateral cross-sectional view taken along the arrow XVII-XVII in FIG.

【図18】図18は図16の XVIII−XVIII 矢視横断側
面図である。
18 is a lateral cross sectional view taken along the line XVIII-XVIII of FIG.

【図19】図19は超臨界圧変圧貫流ボイラの火炉静特
性データである。
FIG. 19 is the furnace static characteristic data of the supercritical pressure transformer once-through boiler.

【図20】図20は従来の超臨界圧変圧貫流ボイラの構
成の一例を示す系統図である。
FIG. 20 is a system diagram showing an example of a configuration of a conventional supercritical pressure variable pressure once-through boiler.

【図21】図21は従来の超臨界圧変圧貫流ボイラの火
炉特性の一例を示す図である。
FIG. 21 is a diagram showing an example of furnace characteristics of a conventional supercritical pressure variable pressure once-through boiler.

【図22】図22は従来の超臨界圧変圧貫流ボイラの火
炉特性の他の例を示す図である。
FIG. 22 is a diagram showing another example of furnace characteristics of a conventional supercritical pressure variable pressure once-through boiler.

【図23】図23は従来の変圧貫流ボイラに設けられた
火炉周壁中間管寄せの一例を示す斜視図である。
[Fig. 23] Fig. 23 is a perspective view showing an example of a furnace peripheral wall intermediate pipe provided in a conventional variable pressure once-through boiler.

【図24】図24は火炉周壁中間管寄せ入口部における
流体温度分布を例示する図である。
FIG. 24 is a view exemplifying a fluid temperature distribution in a furnace peripheral wall intermediate pipe inlet / outlet portion.

【符号の説明】[Explanation of symbols]

(1) 火炉入口連絡管 (2) 火炉周壁蒸発管 (3) 火炉周壁蒸発管出口 (4) 火炉周壁蒸発管入口管寄
せ (5) 火炉周壁蒸発管出口管寄
せ (6) 火炉出口連絡管 (7) 気水分離器 (8) ドレン排出管 (9) 過熱器 (10) ドレンレベル調整弁 (11) 循環ポンプ (12) 後部煙道 (13) 過熱器入口連絡管 (14) 火炉 (15) 上部火炉周壁伝熱管 (16) 下部火炉周壁伝熱管 (17) 上部火炉周壁管入口管寄
せ (18) 上部火炉周壁管出口管寄
せ (19) 混合器 (20) 下部火炉周壁管入口管寄
せ (21) 下部火炉周壁管出口管寄
せ (22),(22a) ,(22b) 火炉周壁中間管寄せ (25),(26) 管寄せ仕切壁
(1) Furnace inlet connection pipe (2) Furnace peripheral wall evaporation pipe (3) Furnace peripheral wall evaporation pipe outlet (4) Furnace peripheral wall evaporation pipe inlet pipe (5) Furnace peripheral wall evaporation pipe outlet pipe (6) Furnace outlet communication pipe ( 7) Steam separator (8) Drain discharge pipe (9) Superheater (10) Drain level control valve (11) Circulation pump (12) Rear flue (13) Superheater inlet connection pipe (14) Furnace (15) Upper furnace peripheral wall heat transfer pipe (16) Lower furnace peripheral wall heat transfer pipe (17) Upper furnace peripheral wall pipe inlet pipe (18) Upper furnace peripheral wall pipe outlet pipe (19) Mixer (20) Lower furnace peripheral wall pipe inlet pipe (21) ) Lower furnace peripheral wall pipe outlet outlet (22), (22a), (22b) Furnace peripheral wall intermediate outlet (25), (26) Pipe divider

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 周壁が伝熱管により構成された火炉と、
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割するとともに、下側の火炉周壁を
構成する伝熱管の出口に接続された下部火炉周壁管出口
管寄せと、上側の火炉周壁を構成する伝熱管の入口に接
続された上部火炉周壁管入口管寄せと、上記下部火炉周
壁管出口管寄せおよび上記上部火炉周壁管入口管寄せに
接続された混合器とを設けたことを特徴とする超臨界圧
変圧貫流ボイラ。
1. A furnace having a peripheral wall formed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In the critical pressure transformer once-through boiler, the furnace peripheral wall is divided into upper and lower parts, and the lower furnace peripheral wall tube outlet pipe header connected to the outlet of the heat transfer tube forming the lower furnace peripheral wall and the transfer forming the upper furnace peripheral wall are connected. An upper furnace peripheral wall pipe inlet header connected to the inlet of the heat pipe, and a mixer connected to the lower furnace peripheral wall pipe outlet header and the upper furnace peripheral wall pipe inlet header are provided. Pressure-transforming once-through boiler.
【請求項2】 周壁が伝熱管により構成された火炉と、
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割するとともに、下側の火炉周壁を
構成する伝熱管の出口と上側の火炉周壁を構成する伝熱
管の入口との両方に接続され、かつ横断面の中央に18
0°捩れた仕切壁を有する管寄せを設けたことを特徴と
する超臨界圧変圧貫流ボイラ。
2. A furnace having a peripheral wall formed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In the critical pressure once-through boiler, the furnace peripheral wall is divided into upper and lower parts, and is connected to both the outlet of the heat transfer tube forming the lower furnace peripheral wall and the inlet of the heat transfer tube forming the upper furnace peripheral wall and crossing 18 in the center of the plane
A supercritical pressure transformer once-through boiler, which is provided with a header having a partition wall twisted by 0 °.
【請求項3】 周壁が伝熱管により構成された火炉と、
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割するとともに、長手方向の仕切壁
により2つの部屋に仕切られた管寄せを上記火炉周壁の
各壁面に対して設け、かつ上記各壁面の下側左半部を構
成する伝熱管の出口を上記部屋の一方に、上記各壁面の
下側右半部を構成する伝熱管の出口を上記部屋の他方
に、それぞれ接続し、更に上記各壁面の上側右半部を構
成する伝熱管の入口を上記部屋の上記一方に、上記各壁
面の上側左半部を構成する伝熱管の入口を上記部屋の上
記他方に、それぞれ接続したことを特徴とする超臨界圧
変圧貫流ボイラ。
3. A furnace having a peripheral wall composed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In the critical pressure once-through boiler, the peripheral wall of the furnace is divided into upper and lower parts, and a pipe partitioning into two chambers is provided for each wall surface of the peripheral wall of the furnace under the respective wall surfaces. The outlet of the heat transfer tube forming the left side half is connected to one of the rooms, the outlet of the heat transfer tube forming the lower right half of each wall is connected to the other side of the room, and The inlet of the heat transfer tube forming the upper right half is connected to the one side of the room, and the inlet of the heat transfer tube forming the upper left half of each wall is connected to the other side of the room. Supercritical pressure transformer once-through boiler.
【請求項4】 周壁が伝熱管により構成された火炉と、
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割するとともに、長手方向の仕切壁
により2つの部屋に仕切られた管寄せを上記火炉周壁の
各壁面に対して設け、かつ上記各壁面の下側左右隅部を
構成する伝熱管の出口を上記部屋の一方に、上記各壁面
の下側中央部を構成する伝熱管の出口を上記部屋の他方
に、それぞれ接続し、更に上記各壁面の上側中央部を構
成する伝熱管の入口を上記部屋の上記一方に、上記各壁
面の上側左右隅部を構成する伝熱管の入口を上記部屋の
上記他方に、それぞれ接続したことを特徴とする超臨界
圧変圧貫流ボイラ。
4. A furnace having a peripheral wall formed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In the critical pressure once-through boiler, the peripheral wall of the furnace is divided into upper and lower parts, and a pipe partitioning into two chambers is provided for each wall surface of the peripheral wall of the furnace under the respective wall surfaces. The outlet of the heat transfer tube that constitutes the left and right side corners is connected to one of the chambers, the outlet of the heat transfer tube that constitutes the lower center of each of the wall surfaces is connected to the other of the room, and the upper side of each of the wall surfaces is connected. The supercritical characterized in that the inlet of the heat transfer tube forming the central portion is connected to the one side of the room, and the inlet of the heat transfer tube forming the upper left and right corners of each wall surface is connected to the other side of the room, respectively. Voltage-transforming once-through boiler
【請求項5】 周壁が伝熱管により構成された火炉と、
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割するとともに、上記火炉周壁の各
壁面に対して2本1組の管寄せを設け、かつ上記各壁面
の下側左半部を構成する伝熱管の出口を上記2本1組の
管寄せの一方に、上記各壁面の下側右半部を構成する伝
熱管の出口を上記管寄せの他方に、それぞれ接続し、更
に上記各壁面の上側右半部を構成する伝熱管の入口を上
記管寄せの上記一方に、上記各壁面の上側左半部を構成
する伝熱管の入口を上記管寄せの上記他方に、それぞれ
接続したことを特徴とする超臨界圧変圧貫流ボイラ。
5. A furnace having a peripheral wall formed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In a critical pressure transformer once-through boiler, the peripheral wall of the furnace is divided into upper and lower parts, and a set of two pipes is provided for each wall surface of the peripheral wall of the furnace, and a lower left half part of each wall surface is constituted. The outlet of the heat pipe is connected to one of the two pairs of the headers, the outlet of the heat transfer tube forming the lower right half of each wall is connected to the other of the headers, and the upper side of each wall is connected. The inlet of the heat transfer tube that constitutes the right half part is connected to the one of the above-mentioned tube headers, and the inlet of the heat transfer tube that constitutes the upper left half part of each wall surface is connected to the other of the above-mentioned tube headers, respectively. Supercritical pressure transformer once-through boiler.
【請求項6】 周壁が伝熱管により構成された火炉と、
同火炉内下部に燃料および燃焼用空気を投入して燃焼さ
せるバーナとを備え、上記火炉内で発生した燃焼ガスが
火炉周壁に熱吸収されつつ上昇し上記火炉の上部から後
部煙道へ流れる超臨界圧変圧貫流ボイラにおいて、上記
火炉周壁を上下に分割するとともに、上記火炉周壁の各
壁面に対して2本1組の管寄せを設け、かつ上記各壁面
の下側左右隅部を構成する伝熱管の出口を上記2本1組
の管寄せの一方に、上記各壁面の下側中央部を構成する
伝熱管の出口を上記管寄せの他方に、それぞれ接続し、
更に上記各壁面の上側中央部を構成する伝熱管の入口を
上記管寄せの上記一方に、上記各壁面の上側左右隅部を
構成する伝熱管の入口を上記管寄せの上記他方に、それ
ぞれ接続したことを特徴とする超臨界圧変圧貫流ボイ
ラ。
6. A furnace having a peripheral wall composed of a heat transfer tube,
A burner for injecting fuel and combustion air into the lower part of the furnace for combustion is provided, and the combustion gas generated in the furnace rises while being absorbed by the peripheral wall of the furnace and rises from the upper part of the furnace to the rear flue. In the critical pressure transformer once-through boiler, the peripheral wall of the furnace is divided into upper and lower parts, and a set of two pipes is provided for each wall surface of the peripheral wall of the furnace, and the lower left and right corners of each wall surface are formed. The outlet of the heat pipe is connected to one of the two pairs of the headers, and the outlet of the heat transfer tube forming the lower central portion of each wall surface is connected to the other of the headers,
Further, the inlet of the heat transfer tube forming the upper center portion of each wall surface is connected to the one of the headers, and the inlet of the heat transfer tube forming the upper left and right corners of each wall surface is connected to the other of the header. A supercritical pressure variable pressure once-through boiler.
JP13498295A 1995-06-01 1995-06-01 Supercritical variable pressure once-through boiler Pending JPH08327007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13498295A JPH08327007A (en) 1995-06-01 1995-06-01 Supercritical variable pressure once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13498295A JPH08327007A (en) 1995-06-01 1995-06-01 Supercritical variable pressure once-through boiler

Publications (1)

Publication Number Publication Date
JPH08327007A true JPH08327007A (en) 1996-12-10

Family

ID=15141162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13498295A Pending JPH08327007A (en) 1995-06-01 1995-06-01 Supercritical variable pressure once-through boiler

Country Status (1)

Country Link
JP (1) JPH08327007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529467A (en) * 2013-08-06 2016-09-23 シーメンス アクティエンゲゼルシャフト Continuous flow steam generator with two-pass boiler structure
CN108716666A (en) * 2018-06-20 2018-10-30 华润电力(渤海新区)有限公司 A kind of hot purging method of super critical boiler system and system
CN109764328A (en) * 2018-12-12 2019-05-17 华中科技大学 A kind of supercritical carbon dioxide boiler cooling wall and boiler and its application method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529467A (en) * 2013-08-06 2016-09-23 シーメンス アクティエンゲゼルシャフト Continuous flow steam generator with two-pass boiler structure
US9671105B2 (en) 2013-08-06 2017-06-06 Siemens Aktiengesellschaft Continuous flow steam generator with a two-pass boiler design
CN108716666A (en) * 2018-06-20 2018-10-30 华润电力(渤海新区)有限公司 A kind of hot purging method of super critical boiler system and system
CN108716666B (en) * 2018-06-20 2023-11-10 华润电力(渤海新区)有限公司 Thermal state flushing method and system for supercritical boiler system
CN109764328A (en) * 2018-12-12 2019-05-17 华中科技大学 A kind of supercritical carbon dioxide boiler cooling wall and boiler and its application method

Similar Documents

Publication Publication Date Title
CA2006576C (en) Quadrangular type multi-tube once-through boiler
US7194983B2 (en) Circulating fluidized bed boiler
WO2011078910A1 (en) Fire tube heater
CA1182698A (en) Boiler
JP2989520B2 (en) Once-through steam generator
CN102734832B (en) Water-cooled wall of boiler with double collecting boxes at middle part
JPH08327007A (en) Supercritical variable pressure once-through boiler
CA2270800A1 (en) Heat-exchange coil assembly
US4331105A (en) Forced-flow once-through boiler for variable supercritical pressure operation
US4632064A (en) Boiler
US4754725A (en) Supercritical sliding pressure operation boiler with rear gas duct
KR840000583B1 (en) Vapour generator with a partition between two combustion chambers
US3301224A (en) Steam generator organization
JPH09137905A (en) Steam separator
US4262637A (en) Vapor generator
CA2205452C (en) Boiler with downcomers forming part of support structure
US3245385A (en) Forced flow vapor generating unit
US3172396A (en) Wall arrangement for vapor generator
JP3085873B2 (en) Supercritical pressure once-through boiler
KR200195801Y1 (en) Finned heat exchanger
JP5193006B2 (en) Boiler structure
JPH0459522B2 (en)
JPH0448105A (en) Variable pressure once-through boiler furnace vaporizing tube
JPH11351506A (en) Fluid mixing and distributing device
US3342166A (en) Wall structure for vapor generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000905