JPH0459522B2 - - Google Patents

Info

Publication number
JPH0459522B2
JPH0459522B2 JP16858585A JP16858585A JPH0459522B2 JP H0459522 B2 JPH0459522 B2 JP H0459522B2 JP 16858585 A JP16858585 A JP 16858585A JP 16858585 A JP16858585 A JP 16858585A JP H0459522 B2 JPH0459522 B2 JP H0459522B2
Authority
JP
Japan
Prior art keywords
water
pipe
cooled wall
pipes
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16858585A
Other languages
Japanese (ja)
Other versions
JPS6233205A (en
Inventor
Masatoshi Kudome
Mutsuo Kuragasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16858585A priority Critical patent/JPS6233205A/en
Publication of JPS6233205A publication Critical patent/JPS6233205A/en
Publication of JPH0459522B2 publication Critical patent/JPH0459522B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、ボイラ火炉水冷壁管構造における
螺旋状に配置した水冷壁管と鉛直に配置した水冷
壁管との接合に使用する非対称分岐管に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an asymmetric branch pipe used for joining a spirally arranged water-cooled wall pipe and a vertically arranged water-cooled wall pipe in a boiler furnace water-cooled wall pipe structure.

従来の技術 例えば水および蒸気の二相流が流れるこの種の
非対称分岐管には、第6a図に示すように傾斜配
置水冷壁管1の一管に対して二管の鉛直配置水冷
壁管2を接合させた二分岐管3、第6b図に示す
ように前記傾斜配置水冷壁管の一管に三管の鉛直
配置水冷壁管2を接合させた三分岐管4、第6c
図に示すように前記傾斜配置水冷壁管の一管に四
管の鉛直配置水冷壁管2を接合させた四分岐管5
などがあり、前記二分岐管で接合された水冷壁管
火炉構造例は第7図に図示するようになつている
が、該水冷壁管内の二分岐管3での入口における
水6および蒸気7の二相流の分岐状況は第8図に
図示するようになつているために、枝管間の流体
性状および流量が不均一になる欠点がある。
BACKGROUND OF THE INVENTION This type of asymmetric branch pipe in which a two-phase flow of water and steam flows, for example, includes two vertically arranged water-cooled wall pipes 2 for one pipe of an inclined water-cooled wall pipe 1, as shown in FIG. 6a. As shown in FIG. 6b, a three-branch pipe 4 has three vertically disposed water-cooled wall pipes 2 joined to one pipe of the inclined water-cooled wall pipe, and a third branch pipe 6c
As shown in the figure, a four-branch pipe 5 in which four vertically arranged water-cooled wall pipes 2 are joined to one pipe of the inclined water-cooled wall pipe.
An example of the structure of a water-cooled wall tube furnace connected by the two-branch pipe is as shown in FIG. Since the two-phase flow is branched as shown in FIG. 8, there is a drawback that the fluid properties and flow rate between the branch pipes are non-uniform.

そもそも、貫流形状ボイラにおいては、ボイラ
負荷とともにほぼ比例的に給水量が減少するため
に、負荷低下に応じて火炉水冷壁管内の流量、し
たがつて流速が減少して最低貫流負荷(この負荷
以下ではボイラ循環ポンプまたはボイラ給水ポン
プによる缶水の再循環が行なわれる)において
も、水冷壁管保護に必要な管内流速を保持できる
ように火炉水冷壁管を螺旋状に配置して火炉水冷
壁を構成する並列管数を減少させ、一方熱負荷の
低い火炉上部においては、水冷壁管保護に必要な
管内流速は熱負荷の高い下部火炉(螺旋状水冷壁
を構成)部分の数分の一程度であるので、圧力損
失の低減およびボイラ構造の有利性のために、火
炉上部では並列管数が下部火炉の数倍の垂直管構
造にさせており、このように下部および上部火炉
では構成水冷壁管本数が異なるから、該部接続に
は管寄せによる方法、分岐管による方法の二
方法があり、前者は管寄せ部、水冷壁管構造、炉
壁構造等が複雑であるので、炉壁構造の信頼性の
点から後者の方法が有利である。しかし、この後
者方法においてもつぎに述べる点で改善の要があ
る。すなわち、下部火炉では水冷壁管が鉛直でな
くて水平線に対して若干の傾斜を有する程度(通
常15〜30度)に配置されており、また最低貫流負
荷域においては管内流速が遅くてボイド率が高い
ために管内の二相流はほぼ分離して管内上部を蒸
気、管底部を水が流れる層状流あるいは波状流の
流動様式をとり、この傾向は最低貫流負荷域で流
体圧力が最も低下して蒸気対水の比重差が大とな
る変圧運転ボイラにおいては顕著である。
In the first place, in a once-through boiler, the amount of water supplied decreases almost proportionally with the boiler load, so as the load decreases, the flow rate in the furnace water-cooled wall pipes, and therefore the flow velocity, decreases to the minimum once-through load (below this load). Even in cases where canned water is recirculated by a boiler circulation pump or a boiler feed water pump, the furnace water-cooled wall tubes are arranged in a spiral to maintain the flow velocity in the tubes necessary to protect the water-cooled wall tubes. By reducing the number of parallel tubes in the furnace, on the other hand, in the upper part of the furnace where the heat load is low, the flow velocity in the pipes required to protect the water-cooled wall tubes is only a fraction of that in the lower part of the furnace (which has a spiral water-cooled wall) where the heat load is high. Therefore, in order to reduce pressure loss and improve the boiler structure, the upper part of the furnace has a vertical pipe structure in which the number of parallel tubes is several times that of the lower furnace. Since the number of pipes is different, there are two ways to connect the section: one using a header and the other using a branch pipe.The former has a complicated header, water-cooled wall tube structure, furnace wall structure, etc., so the furnace wall structure The latter method is advantageous in terms of reliability. However, this latter method also requires improvement in the following points. In other words, in the lower furnace, the water-cooled wall tubes are not vertical but are placed at a slight inclination to the horizontal (usually 15 to 30 degrees), and in the lowest once-through load region, the flow velocity in the tubes is slow and the void ratio is low. Because of the high flow rate, the two-phase flow inside the pipe is almost separated, forming a laminar or wavy flow pattern with steam flowing in the upper part of the pipe and water flowing in the bottom part of the pipe. This is noticeable in variable pressure boilers where the difference in specific gravity between steam and water is large.

このように分岐管入口流体が層状流または波状
流となつて管底部を水が流れるために、枝管内流
動は必ずしも一様にならず、最後流側枝管ほど水
が流れて上流側枝管ほど蒸気が流れ、すなわち、
蒸気の流れる垂直管と水の流れる垂直管とが隣接
して存在することになるが、蒸気の流れる管は垂
直管部の加熱によつて管内が過熱蒸気となり、ま
た水の流れる管は飽和蒸気あるいは二相流となつ
て垂直管間には温度差を生じることになるから、
炉壁構造の障害となる場合がある。前述したよう
に、管寄せによる方法には炉壁構造についての
不具合点があり、また分岐管による方法におい
ては枝管間に多少の流動不均衡が生じ易いという
欠点がある。
In this way, the fluid at the branch pipe inlet becomes a laminar flow or a wavy flow, and the water flows at the bottom of the pipe, so the flow within the branch pipe is not necessarily uniform. flows, that is,
A vertical pipe through which steam flows and a vertical pipe through which water flows exist adjacent to each other, but in the pipe through which steam flows, the inside of the pipe becomes superheated steam due to heating of the vertical pipe section, and in the pipe through which water flows, the inside becomes saturated steam. Alternatively, it becomes a two-phase flow and a temperature difference occurs between the vertical pipes, so
It may cause damage to the furnace wall structure. As mentioned above, the method using a header has drawbacks regarding the furnace wall structure, and the method using branch pipes has the drawback that some flow imbalance tends to occur between the branch pipes.

発明が解決しようとする問題点 この発明は、構成本数の異なる下部および上部
火炉の夫々の水冷壁管の接続を枝管間の流動均一
性を確保させた分岐管によつて行なわせることに
ある。
Problems to be Solved by the Invention The present invention is to connect the water-cooled wall pipes of the lower and upper furnaces, which have different numbers of pipes, by means of branch pipes that ensure uniformity of flow between the branch pipes. .

問題点を解決するための手段 この発明は、傾斜して配置させて炉壁を形成さ
せてある水冷壁管、および該水冷壁管の一管に複
数管連結して鉛直に配置してある他の水冷壁管か
らなるボイラ火炉壁において、前記傾斜配置水冷
壁管内部の該鉛直配置水冷壁管との連結部分から
流体流れ上流側に流体攪拌手段を内蔵させてなる
ものである。
Means for Solving the Problems This invention provides a water-cooled wall tube that is arranged at an angle to form a furnace wall, and a plurality of water-cooled wall tubes that are connected to one water-cooled wall tube and are arranged vertically. In the boiler furnace wall made of water-cooled wall tubes, a fluid stirring means is built in on the upstream side of the fluid flow from the connection part with the vertically disposed water-cooled wall tubes inside the inclined water-cooled wall tubes.

作 用 したがつて、この発明の構成によれば、傾斜配
置および鉛直配置の各管との連結部分の上流側の
入口流体が攪拌されて均質化されるとともに、前
記鉛直配置の各管の流量配分も均等化される。
Therefore, according to the configuration of the present invention, the inlet fluid on the upstream side of the connecting portion with each of the inclined and vertically arranged pipes is stirred and homogenized, and the flow rate of each of the vertically arranged pipes is Distribution will also be equalized.

実施例 つぎに、この発明の第一実施例を第1aおよび
1b図によつて説明すれば、以下に述べる各実施
例においては二分岐管3によつて二管の鉛直配置
水冷壁管2に傾斜配置水冷壁管1の一管を接続し
てある場合を挙例するものとし、該傾斜配置水冷
壁管の接続部分の上流側の分岐管入口側管底部に
キツカ9を局部突設させて層状あるいは波状の水
6の流れを飛散させることによつて均質二相流に
させ前記鉛直配置水冷壁管の各管内の流体を均一
化させるもので、ついでこの発明の第二実施例を
示す第2図においては、該分岐管の入口側管内に
旋回翼10を装置させて前述実施例同様に内部流
体の均質化あるいは環状流化を行なわせて各枝管
内流体を均質化するもので、第3図に図示する第
三実施例では、前述第二実施例の該旋回翼に代え
てコイル状のリボン11を装着させ、また第4図
に示す第四実施例は前記リボンに代えて螺旋状の
リブまたは溝12を配設させ、さらに第5aおよ
び5b図に示す第五実施例では前述第一実施例の
キツカ9にほぼ類似したキツカ13を分岐管入口
側管頂部に局部突設させることによつて蒸気7の
後流に渦流を発生させて層状あるいは波状流を攪
乱するとともに分岐管入口部動圧を低下させるよ
うにしてなるもので、前述各実施例は同様な作用
効果が発揮できる。
Embodiments Next, a first embodiment of the present invention will be described with reference to FIGS. 1a and 1b. In each of the embodiments described below, two vertically disposed water-cooled wall pipes 2 are connected to each other by a bifurcated pipe 3. Let us take as an example a case in which one pipe of the inclined water-cooled wall pipes 1 is connected, and a cutter 9 is locally protruded from the bottom of the branch pipe inlet side upstream of the connection part of the inclined water-cooled wall pipes. By scattering the flow of laminar or wavy water 6, it becomes a homogeneous two-phase flow and the fluid in each pipe of the vertically arranged water-cooled wall pipe is made uniform. In FIG. 2, a swirler vane 10 is installed in the inlet side pipe of the branch pipe to homogenize or annularly flow the internal fluid as in the previous embodiment, thereby homogenizing the fluid in each branch pipe. In the third embodiment shown in FIG. 3, a coiled ribbon 11 is installed in place of the swirling blade of the second embodiment, and in the fourth embodiment shown in FIG. Furthermore, in the fifth embodiment shown in FIGS. 5a and 5b, a punch 13, which is substantially similar to the punch 9 of the first embodiment, is locally protruded from the top of the pipe on the inlet side of the branch pipe. This is designed to generate a vortex flow in the wake of the steam 7 to disturb the laminar or wavy flow and to reduce the dynamic pressure at the branch pipe inlet, and each of the above-mentioned embodiments can exhibit the same effects. .

なお、第9図によつて分岐管入口部流体状態の
各性状をボイラ負荷に対して表示させている。
In addition, each property of the fluid state at the inlet of the branch pipe is displayed with respect to the boiler load in FIG.

発明の効果 上述したように、この発明は、構成本数の異な
る下部および上部水冷壁管の接続に際して下部水
冷壁管内に簡単な流体攪拌手段を内蔵させること
によつて上部水冷壁管各管への流量配分を均等し
て該各管内の流体温度および壁管温度を均等にで
きるから、産業上の利用価値が極めて広く、かつ
多大である。
Effects of the Invention As described above, the present invention incorporates a simple fluid stirring means in the lower water-cooled wall tube when connecting lower and upper water-cooled wall tubes having different numbers of configurations, thereby improving the flow of water to each upper water-cooled wall tube. Since the fluid temperature and the wall tube temperature in each tube can be made equal by equalizing the flow rate distribution, the industrial value is extremely wide and great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は、この発明の第一実施例を示す要部
の縦断側面図、第1b図は、前図のA−A切断面
図、第2,3および4図は、夫々この発明の第
二、三および四実施例を示す要部の縦断側面図、
第5a図は、この発明の第五実施例を示す要部の
縦断側面図、第5b図は、前図のB−B切断面
図、第6a,6bおよび6c図は、夫々二分岐
管、三分岐管および四分岐管による傾斜配置水冷
壁管の鉛直配置水冷壁管との接続状態を示す要部
の縦断側面図、第7図は、二分岐管による水冷壁
管による火炉構造を示す説明図、第8図は、二分
岐管によつて接続してある水冷壁管内の二相流々
体流動状態を示す要部の縦断側面図、第9図は、
分岐管入口部流体状態の諸性状をボイラ負荷に対
して表示した曲線図である。 1……傾斜配置水冷壁管、2……鉛直配置水冷
壁管、3……二分岐管、4……三分岐管、5……
四分岐管、6……水、7……蒸気、8……欠番、
9……底部キツカ、10……旋回翼、11……リ
ボン、12……螺旋状リブまたは溝、13……頂
部キツカ。
FIG. 1a is a longitudinal sectional side view of the main part showing the first embodiment of the present invention, FIG. 1b is a sectional view taken along the line A-A in the previous figure, and FIGS. A vertical sectional side view of the main parts showing the second, third and fourth embodiments,
Fig. 5a is a vertical sectional side view of the main part showing the fifth embodiment of the present invention, Fig. 5b is a sectional view taken along the line BB in the previous figure, and Figs. 6a, 6b and 6c are respectively a bifurcated pipe, A longitudinal sectional side view of the main part showing the connection state of the inclined water-cooled wall pipes with the vertically arranged water-cooled wall pipes using three-branch pipes and four-branch pipes; FIG. 8 is a vertical cross-sectional side view of the main part showing the two-phase fluid flow state in the water-cooled wall pipe connected by a bifurcated pipe, and FIG.
FIG. 3 is a curve diagram showing various properties of the fluid state at the inlet of the branch pipe with respect to the boiler load. 1... Inclined water-cooled wall pipe, 2... Vertical water-cooled wall pipe, 3... Two-branch pipe, 4... Three-branch pipe, 5...
Four-branch pipe, 6...water, 7...steam, 8...missing number,
9...Bottom cover, 10...Swirl blade, 11...Ribbon, 12...Spiral rib or groove, 13...Top cover.

Claims (1)

【特許請求の範囲】[Claims] 1 傾斜して配置させて炉壁を形成させてある水
冷壁管、および該水冷壁管の一管に複数管連結し
て鉛直に配置してある他の水冷壁管からなるボイ
ラ火炉壁において、前記傾斜配置水冷壁管内部の
該鉛直配置水冷壁管との連結部分から流体流れ上
流側に流体攪拌手段を内蔵させたことを特徴とす
る非対称分岐管。
1. In a boiler furnace wall consisting of a water-cooled wall tube arranged at an angle to form a furnace wall, and a plurality of water-cooled wall tubes connected to one water-cooled wall tube and arranged vertically, An asymmetrical branch pipe characterized in that a fluid stirring means is built in the upstream side of the fluid flow from a connecting portion with the vertically arranged water-cooled wall pipe inside the inclined water-cooled wall pipe.
JP16858585A 1985-08-01 1985-08-01 Asymmetric branch pipe Granted JPS6233205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16858585A JPS6233205A (en) 1985-08-01 1985-08-01 Asymmetric branch pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16858585A JPS6233205A (en) 1985-08-01 1985-08-01 Asymmetric branch pipe

Publications (2)

Publication Number Publication Date
JPS6233205A JPS6233205A (en) 1987-02-13
JPH0459522B2 true JPH0459522B2 (en) 1992-09-22

Family

ID=15870782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16858585A Granted JPS6233205A (en) 1985-08-01 1985-08-01 Asymmetric branch pipe

Country Status (1)

Country Link
JP (1) JPS6233205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139323A1 (en) 2008-05-15 2009-11-19 株式会社旭電化研究所 Connector structure
WO2010047141A1 (en) 2008-10-21 2010-04-29 株式会社旭電化研究所 Female connector, male connector assembled thereto, and electric/electronic apparatus using the connectors
WO2014069327A1 (en) 2012-10-29 2014-05-08 株式会社旭電化研究所 Connector structure, female connector and male connector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1016532B (en) * 1985-09-23 1992-05-06 劳舍兄弟有限公司 Fossil-fuel-fired vapour producer
JP2015132453A (en) * 2014-01-15 2015-07-23 三菱日立パワーシステムズ株式会社 Boiler water wall tube overheat damage diagnostic apparatus and boiler water wall tube overheat damage diagnostic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139323A1 (en) 2008-05-15 2009-11-19 株式会社旭電化研究所 Connector structure
WO2010047141A1 (en) 2008-10-21 2010-04-29 株式会社旭電化研究所 Female connector, male connector assembled thereto, and electric/electronic apparatus using the connectors
WO2014069327A1 (en) 2012-10-29 2014-05-08 株式会社旭電化研究所 Connector structure, female connector and male connector

Also Published As

Publication number Publication date
JPS6233205A (en) 1987-02-13

Similar Documents

Publication Publication Date Title
CN1584482B (en) Heat exchanger
RU2411410C2 (en) Pipe of steam generator, once-through steam generator and manufacturing method of steam generator pipe
JPH07151108A (en) Piffuser
JPH09503284A (en) Method of operating once-through steam generator and once-through steam generator operated by this method
JPH0459522B2 (en)
US3110288A (en) Heat exchanger construction
US4331105A (en) Forced-flow once-through boiler for variable supercritical pressure operation
US5755188A (en) Variable pressure once-through steam generator furnace having all welded spiral to vertical tube transition with non-split flow circuitry
JP2551561B2 (en) Fossil fuel burning steam generator
US2965360A (en) Heat exchangers
CN114076301A (en) Linear temperature-uniforming plate steam boiler
JP3810560B2 (en) Fluid mixing and dispensing device
JPS6213958A (en) Warm-water heat exchanger
JP2005538336A (en) Horizontal boiler operation method and boiler for carrying out this operation method
CN113623629B (en) Steam boiler with complementary temperature-equalizing plates
CN113669711B (en) Arc-shaped plate steam boiler with quantity-controlled temperature-equalizing plates
RU2150644C1 (en) Heat exchanger
US2209658A (en) Steam superheater
JP3655482B2 (en) Fluid mixer
JPH01159571A (en) Multiphase fluid distributor
JPH09189403A (en) Intermediate header
JPH065755A (en) Semiconductor cooling unit
KR19990076766A (en) Continuous Flow Steam Generator with Spirally Placed Evaporator Tube
US3478235A (en) Tubular combustion chamber for an mhd generator
JPS6275194A (en) Fluid mixing pipe