JPH08326595A - Excess air ratio detecting device for engine and exhaust gas recirculation control device - Google Patents

Excess air ratio detecting device for engine and exhaust gas recirculation control device

Info

Publication number
JPH08326595A
JPH08326595A JP7136995A JP13699595A JPH08326595A JP H08326595 A JPH08326595 A JP H08326595A JP 7136995 A JP7136995 A JP 7136995A JP 13699595 A JP13699595 A JP 13699595A JP H08326595 A JPH08326595 A JP H08326595A
Authority
JP
Japan
Prior art keywords
amount
exhaust gas
engine
intake
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7136995A
Other languages
Japanese (ja)
Other versions
JP3198873B2 (en
Inventor
Kazuhide Togai
一英 栂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP13699595A priority Critical patent/JP3198873B2/en
Priority to DE69636687T priority patent/DE69636687T2/en
Priority to KR1019970700679A priority patent/KR100205512B1/en
Priority to US08/776,320 priority patent/US5704340A/en
Priority to PCT/JP1996/001498 priority patent/WO1996038660A1/en
Priority to EP96920034A priority patent/EP0774574B1/en
Publication of JPH08326595A publication Critical patent/JPH08326595A/en
Application granted granted Critical
Publication of JP3198873B2 publication Critical patent/JP3198873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE: To perform rapid detection of an excess air ratio by a method wherein based on a detecting intake air amount, an excess air ratio estimated the given number of times beforehand, and an exhaust gas reflux amount, an equivalent intake fresh air amount is estimated and based on the equivalent intake fresh air amount and a fuel feed amount, the excess air ratio of an engine is estimated. CONSTITUTION: In an ECU 8, during operation of an engine 1, a intake air pressure is measured by an intake air pressure sensor 17, and from the intake air pressure, a fuel feed amount, and an engine rotation speed, an intake air amount is calculated. Meanwhile, after an exhaust gas pressure is directly measured by an exhaust pressure sensor or based on other parameter, estimation is effected, from a differential pressure between an exhaust pressure and an intake pressure, and an opening amount of an EGR valve 31 by an EGR position sensor 36, an EGR amount is estimated. From a determined intake air amount and an EGR amount and an excess air ratio a few processes before, an equivalent intake fresh air amount is estimated. From the equivalent intake fresh air amount and a differently detecting fuel feed amount, an excess air ratio is estimated, and according to the excess air ratio, a fuel injection amount is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用ディーゼルエ
ンジン等の燃料供給システムや排気浄化システムに用い
られる、エンジンの空気過剰率検出装置および排気ガス
再循環制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine excess air ratio detection device and an exhaust gas recirculation control device used in a fuel supply system and an exhaust purification system of a diesel engine for automobiles.

【0002】[0002]

【従来の技術】ディーゼルエンジンの主たる有害排出成
分としては、燃料分布の不均一等による黒煙や未燃HC
等の他、高温下での燃焼に起因するNOX が挙げられ
る。ディーゼルエンジンにおけるNOX 低減手段として
は、余剰酸素が多いためにガソリンエンジンのような還
元触媒が適用できず、燃料噴射時期の遅延(タイミング
リタード)や水噴射が研究されている。しかし、前者は
出力や燃費の低下とCOやHCの増加が避けられず、後
者は水噴射装置や水タンクの搭載や潤滑油への水混入等
の問題がある。そこで、構造が比較的簡便で弊害も少な
いことから、不活性物質である排気ガスをEGRガスと
して燃焼室に還流させる排気ガス再循環(EGR)装置
の実用化が進められている。
2. Description of the Related Art The main harmful emission components of diesel engines are black smoke and unburned HC due to uneven fuel distribution.
In addition to the above, NO X due to combustion under high temperature can be mentioned. As a NO X reducing means in a diesel engine, a reduction catalyst such as a gasoline engine cannot be applied because of a large amount of excess oxygen, and delay of fuel injection timing (timing retard) and water injection have been studied. However, the former cannot avoid reduction in output and fuel consumption and increases in CO and HC, and the latter has problems such as mounting a water injection device or a water tank and mixing water into lubricating oil. Therefore, an exhaust gas recirculation (EGR) device that recirculates exhaust gas, which is an inert substance, as EGR gas into the combustion chamber is being put into practical use because of its relatively simple structure and less harmful effects.

【0003】ディーゼルエンジン用のEGR装置では、
EGRガスの還流量(以下、EGR量と記す)が過剰に
なると、空気過剰率の低下による吐煙の悪化やHCの急
増,燃費の低下の他、遊離カーボンやパティキュレート
の混入によるエンジンオイルの劣化から機関耐久性の低
下等が起こる。そのため、これらの不具合を極力抑えな
がらNOX の低減を図るためには、空気過剰率を検出し
て、EGR量をフィードバック制御する電子制御式が望
ましい。空気過剰率を検出する方法としては、CO2
析計を用いる方法と、リニア空燃比センサ(以下、LA
FSと記す)を用いる方法とが一般的である。
In an EGR device for a diesel engine,
If the recirculation amount of EGR gas (hereinafter, referred to as EGR amount) becomes excessive, deterioration of smoke due to decrease of excess air ratio, rapid increase of HC, decrease of fuel consumption, and engine oil due to mixing of free carbon and particulates The deterioration causes deterioration of engine durability. Therefore, in order to reduce NO X while suppressing these problems as much as possible, it is desirable to use an electronic control system that detects the excess air ratio and feedback-controls the EGR amount. As a method of detecting the excess air ratio, a method using a CO 2 analyzer and a linear air-fuel ratio sensor (hereinafter referred to as LA
A method using FS) is generally used.

【0004】ところが、周知のようにCO2 分析計はそ
の体格や重量が大きいため、ベンチテスト等には使用で
きるが、車載用としては現実的ではなかった。一方、L
AFSを用いたEGR装置としては、特開昭55−79
64号公報や特開昭63−201356号公報に記載さ
れたものがある。前者のEGR装置では、排気系にLA
FSを取り付け、その出力電流が所定の閾値を上回った
場合にはEGR弁を開放方向に駆動し、下回った場合に
は逆に閉鎖方向に駆動する。また、後者のEGR装置で
は、燃料噴射ポンプのレバー開度とエンジン回転速度と
をパラメータとするEGR量の制御マップに基づきEG
R弁を駆動する一方、排気系に取り付けられたLAFS
によりEGR弁開度(制御マップ)の補正を行ってい
る。
However, as is well known, since the CO 2 analyzer has a large size and weight, it can be used for a bench test or the like, but it is not realistic for a vehicle. On the other hand, L
An EGR device using an AFS is disclosed in JP-A-55-79.
64 and Japanese Patent Laid-Open No. 63-201356. In the former EGR device, LA is used in the exhaust system.
When the FS is attached and the output current exceeds a predetermined threshold value, the EGR valve is driven in the opening direction, and when the output current is below the predetermined threshold value, the EGR valve is driven in the closing direction. Further, in the latter EGR device, the EG based on the control map of the EGR amount with the lever opening of the fuel injection pump and the engine rotation speed as parameters.
LAFS attached to the exhaust system while driving the R valve
Thus, the EGR valve opening degree (control map) is corrected.

【0005】[0005]

【発明が解決しようとする課題】ところが、これらLA
FSを用いてEGR量をフィードバック制御するEGR
装置にも、以下に述べる問題があった。例えば、LAF
Sは排気系に取り付けられているため、実際に空気過剰
率が変化しても、LAFSに排気ガスが到達するまでに
移送遅れが生じる。また、LAFSは、酸素濃淡電池の
原理により空気過剰率に応じた電流を出力する構造であ
る上、保護管を介してガスがセンサ素子に到達するまで
に時間が掛かるため、空気過剰率の変化に対する応答性
自体が低い。そのため、空気過剰率が急変する加速時や
減速時等には、図5に示したように、空気過剰率の変化
をLAFSが検出するまでに遅れ(通常は十数行程)が
生じる。尚、図5は燃料噴射量を急増させた場合であ
り、実線は実際の空気過剰率変化を示し、二点鎖線はL
AFSによる検出結果を示してある。したがって、EG
R装置の制御にも当然に遅れが生じ、NOX 排出量ある
いは黒煙排出量が増加する不具合があった。特に、もと
もと黒煙が排出されやすい加速直後には、EGR量の過
剰により、黒煙の排出量が更に増加する問題があった。
However, these LAs
EGR for feedback control of EGR amount using FS
The device also had the following problems. For example, LAF
Since S is attached to the exhaust system, a transfer delay occurs before the exhaust gas reaches LAFS even if the excess air ratio actually changes. The LAFS has a structure that outputs a current according to the excess air ratio according to the principle of the oxygen concentration battery, and it takes time for the gas to reach the sensor element through the protective tube, so that the excess air ratio changes. The response itself to is low. Therefore, during acceleration or deceleration where the excess air ratio changes abruptly, as shown in FIG. 5, a delay (usually a dozen or more strokes) occurs before the LAFS detects the change in the excess air ratio. Note that FIG. 5 shows the case where the fuel injection amount is rapidly increased, the solid line shows the actual change in excess air ratio, and the two-dot chain line shows L.
The detection result by AFS is shown. Therefore, EG
Naturally, there was a delay in the control of the R device, and there was a problem that the NO x emission amount or the black smoke emission amount increased. In particular, immediately after acceleration, where black smoke is easily emitted, there is a problem that the exhaust amount of black smoke further increases due to an excessive amount of EGR.

【0006】更に、ディーゼルエンジンでは、排気ガス
中に遊離カーボンやパティキュレートが多く含まれてい
るため、LAFSが短期間で汚損し、空気過剰率に応じ
た電流を出力しなくなる問題もあった。そのため、検出
精度が徐々に悪化してEGR量の制御が正確に行えなく
なる他、LAFS自体が高価な部品であるため、イニシ
ャルコストが高いことはもとより、定期的な点検や交換
等によりランニングコストも高くなる問題もあった。
Further, in the diesel engine, since the exhaust gas contains a large amount of free carbon and particulates, the LAFS is contaminated in a short period of time, and there is a problem that the current corresponding to the excess air ratio is not output. Therefore, the detection accuracy gradually deteriorates, and the EGR amount cannot be controlled accurately. In addition to the high initial cost, LAFS itself is an expensive component, and the running cost due to regular inspection and replacement is also high. There was also the problem of becoming expensive.

【0007】本発明は、上記状況に鑑みなされたもの
で、比較的簡便かつ安価な装置構成を採りながら、ディ
ーゼルエンジン等の空気過剰率を迅速に検出できる空気
過剰率検出装置とその原理を用いた排気ガス再循環制御
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and uses an excess air ratio detecting device and its principle capable of quickly detecting the excess air ratio of a diesel engine or the like while adopting a relatively simple and inexpensive device structure. The present invention aims to provide a conventional exhaust gas recirculation control device.

【0008】[0008]

【課題を解決するための手段】そこで、本発明の請求項
1では、車両に搭載されたエンジンの運転状態に基づ
き、上記エンジンの排気ガス再循環装置が作動中である
ときに当該エンジンに供給される混合気の空気過剰率を
繰り返し検出する空気過剰率検出装置において、上記エ
ンジンの吸気圧力を検出する吸気圧力検出手段と、上記
エンジンの排気圧力を検出する排気圧力検出手段と、上
記吸気圧力検出手段によって検出された吸気圧力と上記
排気圧力検出手段によって検出された排気圧力とに基づ
き、上記排気ガス再循環装置による排気ガスの還流量を
推定する排気ガス還流量推定手段と、上記排気ガス再循
環装置による排気ガス還流量を含む上記エンジンの吸気
量を検出する吸気量検出手段と、上記吸気量検出手段に
よって検出された吸気量と、所定の回数だけ前に推定さ
れた空気過剰率と、上記排気ガス還流量推定手段により
推定された排気ガスの還流量とに基づき、上記エンジン
の等価吸入新気量を推定する等価吸入新気量推定手段
と、上記エンジンの燃料供給量を検出する燃料供給量検
出手段と、同燃料供給量検出手段によって検出された燃
料供給量と上記等価吸入新気量推定手段によって推定さ
れた等価吸入新気量とに基づき、上記エンジンの空気過
剰率を推定する空気過剰率推定手段とを備えたものを提
案する。
Therefore, according to claim 1 of the present invention, the exhaust gas recirculation device for the engine is supplied to the engine mounted on the vehicle while the exhaust gas recirculation device is operating based on the operating state of the engine. In an excess air ratio detecting device for repeatedly detecting the excess air ratio of the air-fuel mixture, an intake pressure detecting means for detecting the intake pressure of the engine, an exhaust pressure detecting means for detecting the exhaust pressure of the engine, and the intake pressure. Exhaust gas recirculation amount estimation means for estimating the recirculation amount of exhaust gas by the exhaust gas recirculation device based on the intake pressure detected by the detection means and the exhaust pressure detected by the exhaust pressure detection means, and the exhaust gas An intake air amount detection means for detecting the intake air amount of the engine including the exhaust gas recirculation amount by the recirculation device, and an intake air amount detected by the intake air amount detection means. Equivalent intake for estimating the equivalent intake fresh air amount of the engine based on the amount, the excess air ratio previously estimated a predetermined number of times, and the exhaust gas recirculation amount estimated by the exhaust gas recirculation amount estimating means. Fresh air amount estimating means, fuel supply amount detecting means for detecting the fuel supply amount of the engine, fuel supply amount detected by the fuel supply amount detecting means, and equivalence estimated by the equivalent intake fresh air amount estimating means An air excess ratio estimating means for estimating the excess air ratio of the engine based on the intake fresh air amount is proposed.

【0009】また、請求項2では、請求項1記載の空気
過剰率検出装置において、上記吸気量検出手段は、上記
吸気圧力検出手段によって検出された吸気圧力に基づい
て吸気量を検出するものを提案する。また、請求項3で
は、請求項1または2記載の空気過剰率検出装置におい
て、上記エンジンは、ターボ過給機を有し、上記排気ガ
ス還流量推定手段は、ターボ上流の排気圧力に基づいて
排気ガス還流量を推定するものを提案する。
According to a second aspect of the present invention, in the air excess ratio detecting device according to the first aspect, the intake amount detecting means detects the intake amount based on the intake pressure detected by the intake pressure detecting means. suggest. According to a third aspect of the present invention, in the excess air ratio detection device according to the first or second aspect, the engine has a turbocharger, and the exhaust gas recirculation amount estimating means is based on the exhaust pressure upstream of the turbo. A method for estimating the exhaust gas recirculation amount is proposed.

【0010】また、請求項4では、請求項1〜3記載の
空気過剰率検出装置において、上記排気圧力検出手段
は、エンジン回転速度と燃料供給量とから排気圧力定常
値を求め、同排気圧力定常値と、それぞれ数行程前の排
気ガス還流量と吸気量とからタービン加速圧を求め、同
タービン加速圧と、上記排気圧力定常値とから負荷を求
め、排気圧力の前回値と、上記タービン加速圧と、上記
負荷とから排気圧力の今回値を求めるものを提案する。
According to a fourth aspect of the present invention, in the excess air ratio detecting device according to the first to third aspects, the exhaust pressure detecting means obtains a steady value of the exhaust pressure from the engine speed and the fuel supply amount, and the exhaust pressure is the same. The turbine acceleration pressure is calculated from the steady-state value and the exhaust gas recirculation amount and the intake amount several strokes before, and the load is obtained from the turbine acceleration pressure and the exhaust pressure steady-state value. It is proposed that the present value of the exhaust pressure is obtained from the acceleration pressure and the load.

【0011】また、請求項5では、請求項1〜4記載の
空気過剰率検出装置において、上記排気ガス還流量推定
手段は、排気ガス再循環装置の弁開度に基づき排気ガス
還流量を推定するものを提案する。また、請求項6で
は、請求項1〜5記載の空気過剰率検出装置において、
上記排気ガス還流量推定手段は、排気圧力と吸気圧力と
の差圧からオリフィス係数を求め、エンジン回転速度
と、燃料供給量とから還流排気ガス温度係数を求め、上
記排気ガス再循環装置の弁開度と、同排気ガス再循環装
置の絞り係数と、上記オリフィス係数と、上記還流排気
ガス温度係数とから排気ガス還流量を推定するものを提
案する。
According to a fifth aspect of the present invention, in the excess air ratio detection device according to the first to fourth aspects, the exhaust gas recirculation amount estimation means estimates the exhaust gas recirculation amount based on the valve opening degree of the exhaust gas recirculation device. Suggest what to do. Moreover, in Claim 6, in the air excess ratio detection apparatus of Claims 1-5,
The exhaust gas recirculation amount estimating means obtains an orifice coefficient from a pressure difference between exhaust pressure and intake pressure, obtains a recirculation exhaust gas temperature coefficient from an engine rotation speed and a fuel supply amount, and determines a valve of the exhaust gas recirculation device. It is proposed to estimate the exhaust gas recirculation amount from the opening degree, the throttling coefficient of the exhaust gas recirculation device, the orifice coefficient, and the recirculation exhaust gas temperature coefficient.

【0012】また、請求項7では、請求項1〜6記載の
空気過剰率検出装置において、上記等価吸入新気量推定
手段は、上記吸気量から上記排気ガスの還流量を上記空
気過剰率で除した値を減ずることにより等価吸入新気量
を推定するものを提案する。また、請求項8では、請求
項1〜7記載の空気過剰率検出装置において、上記空気
過剰率推定手段は、空気過剰率の推定を上記エンジンの
一行程毎に行うものを提案する。
According to a seventh aspect of the present invention, in the excess air ratio detecting device according to any of the first to sixth aspects, the equivalent intake fresh air amount estimating means determines the recirculation amount of the exhaust gas from the intake amount as the excess air ratio. We propose to estimate the equivalent fresh air intake by subtracting the divided value. Further, in claim 8, the air excess ratio detecting device according to any one of claims 1 to 7 proposes that the excess air ratio estimating means estimates the excess air ratio for each stroke of the engine.

【0013】また、請求項9では、車両に搭載されたエ
ンジンの運転状態に基づき、上記エンジンの排気ガス再
循環装置の開弁量を制御する排気ガス再循環制御装置に
おいて、上記エンジンに供給される混合気の空気過剰率
を検出する空気過剰率検出手段と、上記エンジンに供給
される混合気の目標空気過剰率を設定する目標空気過剰
率設定手段と、上記空気過剰率と上記目標空気過剰率と
の偏差が無くなるように上記排気ガス再循環装置の目標
開弁量を設定する開弁量設定手段と、上記目標開弁量に
基づき、上記排気ガス再循環装置を駆動制御する駆動制
御装置とを備えたものを提案する。
According to a ninth aspect of the present invention, the exhaust gas recirculation control device for controlling the valve opening amount of the exhaust gas recirculation device of the engine is supplied to the engine based on the operating state of the engine mounted on the vehicle. Excess air ratio detecting means for detecting an excess air ratio of the air-fuel mixture, target air excess ratio setting means for setting a target air excess ratio of the air-fuel mixture supplied to the engine, the air excess ratio and the target air excess. Rate setting means for setting a target valve opening amount of the exhaust gas recirculation device so that there is no deviation from the rate, and a drive control device for driving and controlling the exhaust gas recirculation device based on the target valve opening amount. Propose one with and.

【0014】また、請求項10では、請求項9記載の排
気ガス再循環制御装置において、上記目標空気過剰率設
定手段は、エンジン回転速度と燃料供給量とに基づき目
標空気過剰率を設定するものを提案する。また、請求項
11では、請求項9または10記載の排気ガス再循環制
御装置において、上記開弁量設定手段は、少なくとも比
例積分制御により上記開弁量を設定するものであり、上
記偏差の絶対値が所定値より大きい場合には、当該比例
積分制御における積分項の積算を行わないものを提案す
る。
According to a tenth aspect of the present invention, in the exhaust gas recirculation control device according to the ninth aspect, the target excess air ratio setting means sets the target excess air ratio based on the engine speed and the fuel supply amount. To propose. According to claim 11, in the exhaust gas recirculation control device according to claim 9 or 10, the valve opening amount setting means sets the valve opening amount by at least proportional integral control, and the absolute value of the deviation is set. If the value is larger than a predetermined value, it is proposed that the integral term in the proportional-plus-integral control is not integrated.

【0015】[0015]

【作用】請求項1の空気過剰率検出装置では、吸気圧検
出手段が吸気圧センサにより吸気圧力を直接計測した
後、吸気量検出手段はその吸気圧力と燃料供給量とエン
ジン回転速度とから吸気量を算出する。一方、排気圧検
出手段が、排気圧力を排気圧センサにより直接計測する
か、あるいは、他のエンジンパラメータに基づき推定し
た後、排気ガス還流量推定手段は排気圧力と吸気圧力の
差圧と排気ガス再循環装置の開弁量とから排気ガス還流
量を推定する。次に、等価吸入新気量推定手段は、算出
あるいは推定された吸気量および排気ガス還流量と数行
程前の空気過剰率とから等価吸入新気量を推定し、空気
過剰率推定手段が、この等価吸入新気量と燃料供給量検
出手段により検出された燃料供給量とから空気過剰率を
推定する。
In the excess air ratio detecting device of the present invention, after the intake pressure detecting means directly measures the intake pressure by the intake pressure sensor, the intake amount detecting means detects the intake pressure from the intake pressure, the fuel supply amount and the engine rotation speed. Calculate the amount. On the other hand, the exhaust pressure detecting means directly measures the exhaust pressure by the exhaust pressure sensor or estimates it based on other engine parameters, and then the exhaust gas recirculation amount estimating means determines the exhaust gas recirculation amount and the differential pressure between the exhaust pressure and the exhaust gas. The exhaust gas recirculation amount is estimated from the valve opening amount of the recirculation device. Next, the equivalent intake fresh air amount estimating means estimates the equivalent intake fresh air amount from the calculated or estimated intake air amount and exhaust gas recirculation amount and the excess air ratio several strokes ago, and the excess air ratio estimating means The excess air ratio is estimated from the equivalent intake fresh air amount and the fuel supply amount detected by the fuel supply amount detecting means.

【0016】また、請求項2の空気過剰率検出装置で
は、吸気量検出手段は、吸気圧力と1シリンダ当たりの
排気量との積に体積効率補正や吸気温度補正を行うこと
により、吸気量を検出する。また、請求項3の空気過剰
率検出装置では、排気ガス還流量推定手段は、ターボ上
流の排気圧力と吸気圧力との差圧を求め、この差圧に他
の制御パラメータを乗じることにより排気ガス還流量を
推定する。
Further, in the excess air ratio detecting device of the second aspect, the intake air amount detecting means performs the volumetric efficiency correction and the intake air temperature correction on the product of the intake pressure and the exhaust gas amount per cylinder to determine the intake air amount. To detect. Further, in the excess air ratio detecting device according to claim 3, the exhaust gas recirculation amount estimating means obtains a differential pressure between the exhaust pressure upstream of the turbo and the intake pressure, and multiplies the differential pressure by another control parameter to exhaust gas. Estimate the amount of reflux.

【0017】また、請求項4の空気過剰率検出装置で
は、排気圧力検出手段は、タービン加速圧から負荷を減
じたものをタービン慣性係数で除し、これを排気圧力の
前回値に加えることにより、排気圧力を検出する。ま
た、請求項5の空気過剰率検出装置では、排気ガス還流
量推定手段は、排気ガス再循環装置の弁開度を検出し、
この弁開度に他の制御パラメータを乗じることにより排
気ガス還流量を推定する。
Further, in the excess air ratio detecting device of the fourth aspect, the exhaust pressure detecting means divides the turbine acceleration pressure minus the load by the turbine inertia coefficient, and adds this to the previous value of the exhaust pressure. , Exhaust pressure is detected. Further, in the excess air ratio detection device of claim 5, the exhaust gas recirculation amount estimation means detects the valve opening degree of the exhaust gas recirculation device,
The exhaust gas recirculation amount is estimated by multiplying this valve opening by another control parameter.

【0018】また、請求項6の空気過剰率検出装置で
は、排気ガス還流量推定手段は、オリフィス係数と排気
ガス再循環装置の弁開度とを乗じ、これに絞り係数や排
気ガス温度係数等を更に乗じることにより排気ガス還流
量を推定する。また、請求項7の空気過剰率検出装置で
は、等価吸入新気量推定手段は、数行程前の空気過剰率
で排気ガス還流量を除して還流排気ガス中の不活性ガス
量を算出し、その値を吸気量から減じることにより等価
吸入新気量を推定する。
Further, in the excess air ratio detecting device of the sixth aspect, the exhaust gas recirculation amount estimating means multiplies the orifice coefficient by the valve opening degree of the exhaust gas recirculation device, and multiplies this by the throttling coefficient, the exhaust gas temperature coefficient, etc. The exhaust gas recirculation amount is estimated by further multiplying by. Further, in the excess air ratio detecting device of claim 7, the equivalent intake fresh air amount estimating means calculates the amount of inert gas in the recirculated exhaust gas by dividing the exhaust gas recirculation amount by the excess air ratio of several strokes ago. , The equivalent intake fresh air amount is estimated by subtracting that value from the intake amount.

【0019】また、請求項8の空気過剰率検出装置で
は、空気過剰率推定手段は、クランク角センサ等からの
出力信号に基づき、例えば、各気筒の吸気行程の開始時
点で空気過剰率を推定する。また、請求項9の排気ガス
再循環制御装置では、検出した空気過剰率と目標空気過
剰率との偏差を求め、現状がリッチ状態であれば排気ガ
ス再循環装置の開弁量を小さくして新気量を増大させ、
逆にリーン状態であれば排気ガス再循環装置の開弁量を
大きくして新気量を減少させる。
Further, in the excess air ratio detecting device of the eighth aspect, the excess air ratio estimating means estimates the excess air ratio based on the output signal from the crank angle sensor or the like, for example, at the start of the intake stroke of each cylinder. To do. Further, in the exhaust gas recirculation control device according to claim 9, the deviation between the detected excess air ratio and the target excess air ratio is obtained, and if the current state is rich, the valve opening amount of the exhaust gas recirculation device is reduced. Increase fresh air,
On the contrary, in the lean state, the valve opening amount of the exhaust gas recirculation device is increased to reduce the fresh air amount.

【0020】また、請求項10の排気ガス再循環制御装
置では、目標空気過剰率設定手段は、例えば、エンジン
回転速度と燃料供給量とをパラメータとするマップに基
づき目標空気過剰率を設定する。また、請求項11の排
気ガス再循環制御装置では、開弁量設定手段は、偏差の
絶対値が所定値より大きい場合には積分項の積算を中止
し、積分項の絶対値が過大とならないようにする。
Further, in the exhaust gas recirculation control device according to the tenth aspect, the target excess air ratio setting means sets the target excess air ratio on the basis of a map having the engine speed and the fuel supply amount as parameters, for example. Further, in the exhaust gas recirculation control device according to claim 11, the valve opening amount setting means stops integration of the integral term when the absolute value of the deviation is larger than a predetermined value, and the absolute value of the integral term does not become excessive. To do so.

【0021】[0021]

【実施例】以下、図面を参照して、本発明に係る空気過
剰率検出装置および排気ガス再循環制御装置の一実施例
を詳細に説明する。図1は、EGR装置が取付けられた
エンジン制御システムの概略構成図であり、同図におい
て1は自動車用の直列4気筒ディーゼルエンジンエンジ
ン(以下、単にエンジンと記す)を示す。エンジン1の
シリンダヘッド2には、渦流室3が形成されると共に、
この渦流室3に燃料を噴射する燃料噴射ノズル4が各気
筒毎に取り付けられている。エンジン1には電子ガバナ
5を有する分配型の燃料噴射ポンプ6が付設されてお
り、燃料噴射管7を介して、各燃料噴射ノズル4に燃料
を供給する。尚、燃料噴射ポンプ6は、エンジン1の図
示しないクランクシャフトにより駆動されると共に、E
CU(エンジン制御ユニット)8に制御された電子ガバ
ナ5により燃料の噴射時期や噴射期間が設定される。図
中、9はシリンダヘッド2に取付けられて冷却水温Tw
を検出する水温センサであり、10は燃料噴射ポンプ6
に取り付けられてエンジン回転速度Ne を検出するNe
センサである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an excess air ratio detection device and an exhaust gas recirculation control device according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic configuration diagram of an engine control system to which an EGR device is attached, in which FIG. 1 shows an in-line four-cylinder diesel engine engine (hereinafter simply referred to as engine) for an automobile. A swirl chamber 3 is formed in the cylinder head 2 of the engine 1, and
A fuel injection nozzle 4 for injecting fuel into the swirl chamber 3 is attached to each cylinder. A distributed fuel injection pump 6 having an electronic governor 5 is attached to the engine 1, and supplies fuel to each fuel injection nozzle 4 via a fuel injection pipe 7. The fuel injection pump 6 is driven by a crankshaft (not shown) of the engine 1 and
The electronic governor 5 controlled by the CU (engine control unit) 8 sets the fuel injection timing and injection period. In the figure, 9 is attached to the cylinder head 2 and the cooling water temperature Tw
Is a water temperature sensor for detecting the
Ne attached to the engine to detect the engine speed Ne
It is a sensor.

【0022】シリンダヘッド2には、吸気マニホールド
11を介して、図示しないエアクリーナからの新気を導
入する吸気管12が接続しており、その管路にはターボ
過給機13のコンプレッサ14とインタークーラ15と
が配設されている。図中、16は吸気温度Ta を検出す
る吸気温センサ、17は吸気管圧力(Manifold Absolut
e Pressure)Pb を検出するブースト圧センサであり、
共に吸気マニホールド11に取り付けられている。ま
た、シリンダヘッド2には、排気マニホールド20を介
して、ターボ過給機13のタービン21と排気管22と
が接続している。図中、23は過給圧の過上昇時に排気
マニホールド20からタービン21の下流に排気ガスを
逃がすウエストゲートバルブであり、24はウエストゲ
ートアクチュエータである。また、25は排気ガス中の
COやHCを浄化する酸化触媒である。
An intake pipe 12 for introducing fresh air from an air cleaner (not shown) is connected to the cylinder head 2 via an intake manifold 11, and a compressor 14 of a turbocharger 13 and an intake pipe 12 are connected in the pipe line. A cooler 15 is provided. In the figure, 16 is an intake air temperature sensor that detects the intake air temperature Ta, and 17 is an intake pipe pressure (Manifold Absolut
e Pressure) A boost pressure sensor that detects Pb,
Both are attached to the intake manifold 11. A turbine 21 of the turbocharger 13 and an exhaust pipe 22 are connected to the cylinder head 2 via an exhaust manifold 20. In the figure, 23 is a wastegate valve that allows exhaust gas to escape from the exhaust manifold 20 to the downstream of the turbine 21 when the boost pressure is excessively increased, and 24 is a wastegate actuator. Further, 25 is an oxidation catalyst for purifying CO and HC in the exhaust gas.

【0023】一方、エンジン1の排気マニホールド20
と吸気マニホールド11とはEGRパイプ30を介して
連通されており、このEGRパイプ30の管路が吸気マ
ニホールド11側に設けられたEGR弁31の弁体32
により開放・遮断されるようになっている。EGR弁3
1は負圧作動式で、弁体32,ダイヤフラム33,リタ
ーンスプリング34,負圧室35からなっている。図
中、36はEGR弁31の開度AE を検出するEGRポ
ジションセンサである。
On the other hand, the exhaust manifold 20 of the engine 1
The intake manifold 11 and the intake manifold 11 are communicated with each other through an EGR pipe 30, and the conduit of the EGR pipe 30 is a valve body 32 of an EGR valve 31 provided on the intake manifold 11 side.
It is designed to be opened / closed by. EGR valve 3
Reference numeral 1 denotes a negative pressure actuating type, which includes a valve body 32, a diaphragm 33, a return spring 34, and a negative pressure chamber 35. In the figure, 36 is an EGR position sensor for detecting the opening A E of the EGR valve 31.

【0024】EGR弁31の負圧室35は、ホース4
0,41と負圧側EGRソレノイド42とを介してバキ
ュームポンプ43に接続すると共に、ホース44と大気
側EGRソレノイド45とを介して大気に連通してい
る。バキュームポンプ43は、オルタネータ46の回転
軸により駆動され、エンジン1の運転中は常に負圧を発
生する。負圧側EGRソレノイド42は、ON状態でホ
ース40,41を連通し、OFF状態でホース40,4
1を遮断する。また、大気側EGRソレノイド45はO
FF状態でホース44を大気に連通し、ON状態でホー
ス44を遮断する。したがって、両EGRソレノイド4
2,45を適宜ONあるいはOFF状態にすることで、
EGR弁31の負圧室35に負圧あるいは大気が導入さ
れ、EGR弁31の開度AE が制御されることになる。
The negative pressure chamber 35 of the EGR valve 31 is connected to the hose 4
It is connected to the vacuum pump 43 through 0 and 41 and the negative pressure side EGR solenoid 42, and is connected to the atmosphere through the hose 44 and the atmosphere side EGR solenoid 45. The vacuum pump 43 is driven by the rotating shaft of the alternator 46 and constantly generates a negative pressure while the engine 1 is operating. The negative pressure side EGR solenoid 42 communicates the hoses 40 and 41 in the ON state, and connects the hoses 40 and 4 in the OFF state.
Cut off 1. In addition, the atmosphere side EGR solenoid 45 is O
The hose 44 communicates with the atmosphere in the FF state, and shuts off the hose 44 in the ON state. Therefore, both EGR solenoids 4
By turning 2, 45 on or off as appropriate,
Negative pressure or the atmosphere is introduced into the negative pressure chamber 35 of the EGR valve 31, and the opening A E of the EGR valve 31 is controlled.

【0025】前述したECU8は、車室内に設置されて
おり、図示しない入出力装置,制御プログラムを内蔵し
た記憶装置(ROM,RAM等),中央処理装置(CP
U)等を具えている。ECU8の入力側には、上述した
各センサを始め種々のセンサやスイッチ類からの検出情
報が入力し、ECU8は、これらの検出情報と制御マッ
プとに基づき、電子ガバナ5を始めとして、両EGRソ
レノイド42,45等の駆動制御を行う。
The above-mentioned ECU 8 is installed in the passenger compartment, and includes an input / output device (not shown), a storage device (ROM, RAM, etc.) containing a control program, and a central processing unit (CP).
U) etc. On the input side of the ECU 8, detection information from various sensors and switches including the above-mentioned sensors is input, and the ECU 8 starts the electronic governor 5 and both EGRs based on the detection information and the control map. The drive control of the solenoids 42, 45 and the like is performed.

【0026】以下、本実施例における空気過剰率の検出
手順とEGR装置の制御手順とを説明する。運転者がイ
グニッションキーをONにしてエンジン1がスタート
し、所定の制御条件(本実施例の場合、水温TW が70
℃以上、始動後30秒以上経過、ブースト圧センサ17
やEGRポジションセンサ36が正常であること等)が
満たされると、ECU8は、エンジン1の一行程毎に、
図2のフローチャートに示した空気過剰率検出サブルー
チンを繰り返し実行する。このサブルーチンを開始する
と、ECU8は、先ずステップS2で、吸気温センサ1
6やブースト圧センサ17等の出力に基づき、エンジン
1に吸引される今回の全吸気量QIN(i)(g/st)を下式
により算出する。下式中、Pb は吸気管圧力(mmH
2O)であり、Vは1シリンダ当たりの排気量(l)で
あり、KVEはエンジン回転速度Ne(rpm)や吸気管圧力P
b に基づき図示しないマップから得られる体積効率補正
係数であり、Ta は吸気温度(℃)である QIN(i)= (Pb/760)・V・KVE・1.2・(293/(273+T
a)) 次に、ECU8は、ステップS4で、エンジン回転速度
Ne と燃料噴射量Qfとに基づき、図示しないマップか
らタービン上流圧定常値PTOを検索し、ステップS6
で、以下の手順により今回のタービン上流圧PT(i)を算
出する。
The procedure for detecting the excess air ratio and the control procedure for the EGR device in this embodiment will be described below. The driver turns on the ignition key to start the engine 1, and a predetermined control condition (in this embodiment, the water temperature TW is 70
℃ or more, 30 seconds or more after starting, boost pressure sensor 17
And that the EGR position sensor 36 is normal), the ECU 8
The excess air ratio detection subroutine shown in the flowchart of FIG. 2 is repeatedly executed. When this subroutine is started, the ECU 8 firstly proceeds to step S2, where the intake air temperature sensor 1
Based on the outputs of 6 and the boost pressure sensor 17, etc., the current total intake air amount Q IN (i) (g / st) sucked into the engine 1 is calculated by the following equation. In the following formula, Pb is the intake pipe pressure (mmH
2 O), V is the displacement per cylinder (l), and K VE is the engine speed Ne (rpm) and intake pipe pressure P.
It is a volumetric efficiency correction coefficient obtained from a map not shown based on b, and Ta is the intake air temperature (° C) Q IN (i) = (Pb / 760) ・ V ・ K VE・ 1.2 ・ (293 / (273 + T
a)) Next, in step S4, the ECU 8 searches the turbine upstream pressure steady value P TO from a map (not shown) based on the engine rotation speed Ne and the fuel injection amount Qf, and then in step S6.
Then, the turbine upstream pressure P T (i) of this time is calculated by the following procedure.

【0027】タービン上流圧PT(i)の算出にあたって、
ECU8は、先ず、下式によりタービン加速圧PA を算
出する。下式中、QE(i-3)とQIN(i-3) とは、それぞれ
3行程前のEGR量と全吸気量とである。 PA =PTO・(1−QE(i-3)/QIN(i-3)) 次に、ECU8は、タービン加速圧PA とタービン上流
圧定常値PTOとから、負荷PL を下式により算出する。
In calculating the turbine upstream pressure P T (i) ,
The ECU 8 first calculates the turbine acceleration pressure PA by the following formula. In the following equation, Q E (i-3) and Q IN (i-3) are the EGR amount and the total intake amount before three strokes, respectively. PA = P TO · (1-Q E (i-3) / Q IN (i-3) ) Next, the ECU 8 calculates the load PL from the turbine acceleration pressure PA and the turbine upstream pressure steady value P TO by the following equation. Calculate by

【0028】PL =PA2/PTO 最後に、ECU8は、前回値PT(i-1)とタービン加速圧
PA と負荷PL とを用いて、タービン上流圧PT(i)を下
式により算出する。下式中、IT はタービン慣性係数で
ある。 PT(i)=PT(i-1)+(PA −PL )/IT このようにして、タービン上流圧PT(i)を求めると、E
CU8は、ステップS8で今回のEGR量QE(i)( g/s
t )を下式により算出する。下式中、AE はEGRポジ
ションセンサ36により検出されたEGR弁31の開度
(%)であり、Ks は絞り係数(一定値)であり、KO
はタービン上流圧PT(i)と吸気管圧力Pb との差圧ΔP
に基づき図示しないマップから検索されるオリフィス係
数であり、KETはエンジン回転速度Ne と燃料噴射量Q
f とに基づき図示しないマップから検索されるEGR温
度係数である。
PL = PA 2 / P TO Finally, the ECU 8 uses the previous value P T (i-1) , the turbine acceleration pressure PA and the load PL to calculate the turbine upstream pressure P T (i) by the following equation. calculate. In the following formula, I T is a turbine inertia coefficient. P T (i) = P T (i-1) + in the (PA -PL) / I T Thus, when obtaining the turbine upstream pressure P T (i), E
In step S8, the CU 8 determines the current EGR amount Q E (i) (g / s
t) is calculated by the following formula. In the following equation, A E is the opening degree (%) of the EGR valve 31 detected by the EGR position sensor 36, Ks is the throttle coefficient (constant value), and K O
Is the pressure difference ΔP between the turbine upstream pressure P T (i) and the intake pipe pressure Pb.
Is an orifice coefficient retrieved from a map (not shown) based on the above, and K ET is the engine speed Ne and the fuel injection amount Q.
It is an EGR temperature coefficient retrieved from a map (not shown) based on f.

【0029】 QE(i)=AE・Ks・KO・KET・60/(2・Ne) EGR量QE(i)を求めると、ECU8は、次にステップ
S10で全吸気量QIN (i)を新気に換算した等価吸入新
気量Qa(i) を算出する。ここで、λ(i-3) は3行程前
の推定空気過剰率であり、サブルーチンの開始から2回
目の処理(すなわち、2行程目)までは所定値(例え
ば、1.2)に設定されている。
[0029] When obtaining the Q E (i) = A E · Ks · K O · K ET · 60 / (2 · Ne) EGR quantity Q E (i), ECU 8 is, then the total intake air amount Q in step S10 Equivalent intake fresh air amount Qa (i) is calculated by converting IN (i) into fresh air. Here, λ (i-3) is the estimated excess air ratio three strokes ago, and is set to a predetermined value (for example, 1.2) from the start of the subroutine to the second processing (that is, the second stroke). ing.

【0030】Qa(i)=QIN(i)−QE(i)/λ(i-3) 次に、ECU8は、このようにして得られた等価吸入新
気量Qa(i) と燃料噴射量Qf とから、ステップS12
で今回の推定空気過剰率λ(i) を算出する。ここで、1
4.5はディーゼルエンジンの理論空燃比である。 λ(i) =Qa(i) /(Qf ・14.5) 次に、ECU8は、ステップS14で今回の推定空気過
剰率λ(i) を用いてRAMに記憶された推定空気過剰率
λ(i) ,λ(i-1) ,λ(i-2) …の更新を行った後、スタ
ートに戻って空気過剰率の検出を繰り返す。尚、検出さ
れた推定空気過剰率λ(i) が目標λ以下であった場合、
ECU8は、黒煙の排出を抑制するべく、後述するEG
R制御サブルーチンでEGR弁31を閉弁方向に駆動制
御して等価吸入新気量Qa(i) を増大させる他、ここに
述べない燃料噴射制御サブルーチンでも電子ガバナ5を
駆動制御して燃料噴射量Qf の増加を抑制する。
Qa (i) = QIN (i) -QE (i) / λ (i-3) Next, the ECU 8 controls the equivalent intake fresh air amount Qa (i) thus obtained and the fuel. Based on the injection amount Qf, step S12
Then, the estimated excess air ratio λ (i) at this time is calculated. Where 1
4.5 is the theoretical air-fuel ratio of the diesel engine. λ (i) = Qa (i ) / (Qf · 14.5) Next, ECU 8, the estimated excess air rate stored in the RAM by using the estimated excess air ratio of the current lambda (i) in step S14 lambda (i) , Λ (i-1) , λ (i-2) ... are updated, and then the process returns to the start and the detection of the excess air ratio is repeated. When the detected estimated excess air ratio λ (i) is less than or equal to the target λ,
The ECU 8 uses an EG described later to suppress the emission of black smoke.
In the R control subroutine, the EGR valve 31 is driven in the closing direction to increase the equivalent intake fresh air amount Qa (i). In the fuel injection control subroutine not described here, the electronic governor 5 is also driven to control the fuel injection amount. It suppresses the increase of Qf.

【0031】一方、空気過剰率検出サブルーチンと並行
して、ECU8は、図3,図4のフローチャートに示し
た、EGR制御サブルーチンを実行する。このサブルー
チンを開始すると、ECU8は、先ずステップS20
で、空気過剰率検出サブルーチンにより得られた現在の
推定空気過剰率λ(i) をRAMから読み出した後、ステ
ップS22で、エンジン回転速度Ne と燃料噴射量Qf
とに基づき、図示しないマップから目標空気過剰率λta
rgetを検索する。
On the other hand, in parallel with the excess air ratio detection subroutine, the ECU 8 executes the EGR control subroutine shown in the flowcharts of FIGS. When this subroutine is started, the ECU 8 firstly executes step S20.
Then, after the current estimated excess air ratio λ (i) obtained by the excess air ratio detection subroutine is read from the RAM, in step S22, the engine speed Ne and the fuel injection amount Qf
Based on the
Search for rget.

【0032】次に、ECU8は、ステップS24で、目
標空気過剰率λtargetと推定空気過剰率λ(i) との偏差
Δλを下式により算出する。 Δλ=λtarget−λ(i) 次に、ECU8は、ステップS26,S28で、比例ゲ
インKp と積分ゲインKI を用いて、EGR制御の比例
項EP と積分項EI とを下式によりそれぞれ算出する。
尚、積分項EI の算出において、偏差の絶対値|Δλ|
が所定の上限値DλO より大きい場合にはΔλを0とす
る。これは、偏差の絶対値|Δλ|が大き過ぎた場合、
偏差Δλをそのまま積算すると、積分項EI の絶対値|
EI |が大きくなり過ぎ、運転状態の変化に対する制御
追従性が悪くなるためである。
Next, in step S24, the ECU 8 calculates the deviation Δλ between the target excess air ratio λ target and the estimated excess air ratio λ (i) by the following equation. [Delta] [lambda] = [lambda] target- [lambda] (i) Next, in steps S26 and S28, the ECU 8 uses the proportional gain Kp and the integral gain KI to calculate the proportional term EP and the integral term EI of the EGR control by the following equations, respectively.
In the calculation of the integral term EI, the absolute value of the deviation | Δλ |
Is larger than a predetermined upper limit value Dλ O , Δλ is set to 0. This is because if the absolute value of deviation | Δλ | is too large,
If the deviation Δλ is integrated as it is, the absolute value of the integral term EI |
This is because EI | becomes too large and control followability with respect to changes in operating conditions deteriorates.

【0033】EP =KP ・Δλ EI =KI ・∫Δλ 比例項EP と積分項EI とを算出した後、ECU8は、
図4のステップS30で、下式により基本補正値EPIを
算出する。 EPI=EP +EI 次に、ECU8は、ステップS32で、算出した基本補
正値EPIを所定の上下限値でクリップするリミッタ処理
を行い、EGR弁31の開度補正値Eposcを決定する。
After calculating the proportional term EP and the integral term EI, the ECU 8 determines that EP = KP.multidot..DELTA..lambda.EI = KI.multidot..DELTA..lambda.
In step S30 of FIG. 4, the basic correction value EPI is calculated by the following equation. EPI = EP + EI Next, in step S32, the ECU 8 performs limiter processing for clipping the calculated basic correction value EPI to a predetermined upper and lower limit value to determine the opening correction value Eposc of the EGR valve 31.

【0034】次に、ECU8は、ステップS34で、エ
ンジン回転速度Ne と燃料噴射量Qf とに基づきマップ
からEGR弁31の基本開度Eo を検索し、ステップS
36で下式により目標EGR弁開度Epos を算出する。 Epos =Eo +Eposc 次に、ECU8は、ステップS38で目標EGR弁開度
Epos に基づきEGR弁31を駆動制御した後、スター
トに戻って制御を繰り返す。
Next, in step S34, the ECU 8 searches the map for the basic opening Eo of the EGR valve 31 based on the engine speed Ne and the fuel injection amount Qf, and then in step S34.
At 36, the target EGR valve opening Epos is calculated by the following equation. Epos = Eo + Eposc Next, the ECU 8 drives and controls the EGR valve 31 based on the target EGR valve opening degree Epos in step S38, then returns to the start and repeats the control.

【0035】このように、上記実施例では、吸気圧力と
燃料噴射量等に基づいて空気過剰率を推定するようにし
たため、LAFS等の高価なセンサを用いることなく、
正確かつ迅速に空気過剰率を検出ことができるようにな
った。また、検出した空気過剰率に基づきEGR弁31
の駆動制御を行うことで、加速時や減速時等にもEGR
ガスの還流を適切に行うことができ、黒煙やNOX の排
出量を極めて低く抑えることができた。
As described above, in the above embodiment, the excess air ratio is estimated on the basis of the intake pressure, the fuel injection amount, etc., so that an expensive sensor such as LAFS is not used.
The excess air ratio can now be detected accurately and quickly. Further, based on the detected excess air ratio, the EGR valve 31
By controlling the driving of the EGR, the EGR is performed even during acceleration or deceleration.
Can be appropriately performed under reflux of the gas, it could be suppressed very low emissions of black smoke and NO X.

【0036】以上で具体的実施例の説明を終えるが、本
発明の態様はこの実施例に限るものではない。例えば、
上記実施例はターボ過給機を備えたディーゼルエンジン
に本発明を適用したものであるが、自然吸気のディーゼ
ルエンジンや希薄燃焼方式のガソリンエンジン等にも好
適である。また、上記空気過剰率検出サブルーチンで
は、タービン上流圧を、タービン加速圧やタービン上流
圧定常値等から算出するようにしたが、これを排気圧セ
ンサ等を用いて実測するようにしてもよい。また、上記
EGR制御サブルーチンでは、空気過剰率検出サブルー
チンで推定した空気過剰率λを用いてEGR制御を行う
ようにしたが、吸気管等にLAFSを取付けてその検出
結果に基づいてこれを行うようにしてもよい。また、上
記実施例では、空気過剰率の推定を3行程前の運転パラ
メータ(EGR量や全吸気量)に基づき行ったが、運転
状態等に応じて2行程以前あるいは4行程以降の運転パ
ラメータを用いる可変方式を採ってもよい。また、上記
実施例では空気過剰率を1吸気行程毎に推定するように
したが、行程と非同期で推定を行うようにしてもよい。
更に、エンジン制御システムの具体的構成や制御手順等
については、本発明の主旨を逸脱しない範囲で変更する
ことが可能である。
Although the description of the specific embodiment has been completed, the embodiment of the present invention is not limited to this embodiment. For example,
The above-described embodiment applies the present invention to a diesel engine equipped with a turbocharger, but is also suitable for a naturally aspirated diesel engine, a lean-burn gasoline engine, and the like. Further, in the above-described air excess ratio detection subroutine, the turbine upstream pressure is calculated from the turbine acceleration pressure, the turbine upstream pressure steady value, or the like, but it may be measured using an exhaust pressure sensor or the like. Further, in the EGR control subroutine, the EGR control is performed using the excess air ratio λ estimated in the excess air ratio detection subroutine. However, the LAFS is attached to the intake pipe or the like and the EGR control is performed based on the detection result. You may Further, in the above-mentioned embodiment, the excess air ratio is estimated based on the operating parameters (EGR amount and total intake air amount) before three strokes, but the operating parameters before two strokes or after four strokes are determined depending on the operating condition. The variable method used may be adopted. In the above embodiment, the excess air ratio is estimated for each intake stroke, but it may be estimated asynchronously with the stroke.
Further, the specific configuration of the engine control system, the control procedure, and the like can be changed without departing from the gist of the present invention.

【0037】[0037]

【発明の効果】本発明の請求項1によれば、車両に搭載
されたエンジンの運転状態に基づき、上記エンジンの排
気ガス再循環装置が作動中であるときに当該エンジンに
供給される混合気の空気過剰率を繰り返し検出する空気
過剰率検出装置において、上記エンジンの吸気圧力を検
出する吸気圧力検出手段と、上記エンジンの排気圧力を
検出する排気圧力検出手段と、上記吸気圧力検出手段に
よって検出された吸気圧力と上記排気圧力検出手段によ
って検出された排気圧力とに基づき、上記排気ガス再循
環装置による排気ガスの還流量を推定する排気ガス還流
量推定手段と、上記排気ガス再循環装置による排気ガス
還流量を含む上記エンジンの吸気量を検出する吸気量検
出手段と、上記吸気量検出手段によって検出された吸気
量と、所定の回数だけ前に推定された空気過剰率と、上
記排気ガス還流量推定手段により推定された排気ガスの
還流量とに基づき、上記エンジンの等価吸入新気量を推
定する等価吸入新気量推定手段と、上記エンジンの燃料
供給量を検出する燃料供給量検出手段と、同燃料供給量
検出手段によって検出された燃料供給量と上記等価吸入
新気量推定手段によって推定された等価吸入新気量とに
基づき、上記エンジンの空気過剰率を推定する空気過剰
率推定手段とを備えるようにしたため、信頼性に乏しく
且つ高コストなLAFS等を用いることなく、ディーゼ
ルエンジン等における空気過剰率を正確かつ迅速に検出
でき、NOX 排出量や黒煙排出量を削減させるべく燃料
噴射量やEGR量の適切な制御を行うことが可能とな
る。
According to the first aspect of the present invention, the air-fuel mixture supplied to the engine mounted on the vehicle while the exhaust gas recirculation system of the engine is operating is based on the operating state of the engine. In the excess air ratio detecting device for repeatedly detecting the excess air ratio, the intake pressure detecting means for detecting the intake pressure of the engine, the exhaust pressure detecting means for detecting the exhaust pressure of the engine, and the intake pressure detecting means are detected. An exhaust gas recirculation amount estimating means for estimating a recirculation amount of exhaust gas by the exhaust gas recirculation device based on the intake pressure and an exhaust pressure detected by the exhaust pressure detection device, and the exhaust gas recirculation device. Intake amount detecting means for detecting the intake amount of the engine including exhaust gas recirculation amount, intake amount detected by the intake amount detecting means, and a predetermined number of times And an equivalent intake fresh air amount estimating means for estimating the equivalent intake fresh air amount of the engine based on the excess air ratio estimated before the start and the exhaust gas recirculation amount estimated by the exhaust gas recirculation amount estimating means. A fuel supply amount detecting means for detecting a fuel supply amount of the engine, a fuel supply amount detected by the fuel supply amount detecting means, and an equivalent intake fresh air amount estimated by the equivalent intake fresh air amount estimating means. Based on the above, the air excess ratio estimating means for estimating the excess air ratio of the engine is provided, so that the excess air ratio in the diesel engine or the like can be accurately and promptly without using the LAFS or the like which is poor in reliability and costly. can be detected, it is possible to perform appropriate control of the fuel injection amount and the EGR amount in order to reduce NO X emissions and black smoke emissions.

【0038】また、請求項2によれば、請求項1の空気
過剰率検出装置において、上記吸気量検出手段は、上記
吸気圧力検出手段によって検出された吸気圧力に基づい
て吸気量を検出するようにしたため、高価なエアフロー
センサ等を備える必要がなくなる。また、請求項3によ
れば、請求項1または2の空気過剰率検出装置におい
て、上記エンジンは、ターボ過給機を有し、上記排気ガ
ス還流量推定手段は、ターボ上流の排気圧力に基づいて
排気ガス還流量を推定するようにしたため、還流排気ガ
ス用の流量センサ等を備える必要がなくなり、コストや
部品点数等の上昇が抑えられる。
According to a second aspect, in the excess air ratio detecting device according to the first aspect, the intake air amount detecting means detects the intake air amount based on the intake air pressure detected by the intake air pressure detecting means. Therefore, it is not necessary to provide an expensive air flow sensor or the like. According to claim 3, in the excess air ratio detecting device according to claim 1 or 2, the engine has a turbocharger, and the exhaust gas recirculation amount estimating means is based on an exhaust pressure upstream of the turbo. Since the exhaust gas recirculation amount is estimated by using the exhaust gas recirculation amount, it is not necessary to provide a flow rate sensor for the recirculation exhaust gas, and the increase in cost and the number of parts can be suppressed.

【0039】また、請求項4によれば、請求項1〜3の
空気過剰率検出装置において、上記排気圧力検出手段
は、エンジン回転速度と燃料供給量とから排気圧力定常
値を求め、同排気圧力定常値と、それぞれ数行程前の排
気ガス還流量と吸気量とからタービン加速圧を求め、同
タービン加速圧と、上記排気圧力定常値とから負荷を求
め、排気圧力の前回値と、上記タービン加速圧と、上記
負荷とから排気圧力の今回値を求めるようにしたため、
排圧センサを備える必要がなくなり、コストや部品点数
等の上昇が抑えられる。
According to a fourth aspect of the present invention, in the excess air ratio detecting device of the first to third aspects, the exhaust pressure detecting means obtains an exhaust pressure steady value from the engine speed and the fuel supply amount, and the exhaust pressure is the same. The steady-state pressure value, the turbine acceleration pressure is calculated from the exhaust gas recirculation amount and the intake amount several strokes ago, and the load is calculated from the turbine acceleration pressure and the steady-state exhaust pressure value. Because the exhaust pressure this time is calculated from the turbine acceleration pressure and the above load,
It is not necessary to provide an exhaust pressure sensor, and increase in cost and the number of parts can be suppressed.

【0040】また、請求項5によれば、請求項1〜4の
空気過剰率検出装置において、上記排気ガス還流量推定
手段は、排気ガス再循環装置の弁開度に基づき排気ガス
還流量を推定するようにしたため、還流排気ガス用の流
量センサ等を備える必要がなくなり、コストや部品点数
等の上昇が抑えられる。また、請求項6によれば、請求
項1〜5の空気過剰率検出装置において、上記排気ガス
還流量推定手段は、排気圧力と吸気圧力との差圧からオ
リフィス係数を求め、エンジン回転速度と、燃料供給量
とから還流排気ガス温度係数を求め、上記排気ガス再循
環装置の弁開度と、同排気ガス再循環装置の絞り係数
と、上記オリフィス係数と、上記還流排気ガス温度係数
とから排気ガス還流量を推定するようにしたため、還流
排気ガス用の流量センサ等を備える必要がなくなり、コ
ストや部品点数等の上昇が抑えられる。
According to a fifth aspect of the present invention, in the excess air ratio detecting device of the first to fourth aspects, the exhaust gas recirculation amount estimating means determines the exhaust gas recirculation amount based on the valve opening degree of the exhaust gas recirculation device. Since the estimation is performed, it is not necessary to provide a flow rate sensor for the recirculated exhaust gas, and the increase in cost and the number of parts can be suppressed. According to claim 6, in the excess air ratio detecting device according to claims 1 to 5, the exhaust gas recirculation amount estimating means obtains an orifice coefficient from a differential pressure between the exhaust pressure and the intake pressure to determine the engine rotation speed and , The recirculation exhaust gas temperature coefficient from the fuel supply amount, from the valve opening of the exhaust gas recirculation device, the throttle coefficient of the exhaust gas recirculation device, the orifice coefficient, and the recirculation exhaust gas temperature coefficient Since the exhaust gas recirculation amount is estimated, it is not necessary to provide a flow rate sensor for the recirculation exhaust gas and the like, and an increase in cost and the number of parts can be suppressed.

【0041】また、請求項7によれば、請求項1〜6の
空気過剰率検出装置において、上記等価吸入新気量推定
手段は、上記吸気量から上記排気ガスの還流量を上記空
気過剰率で除した値を減ずることにより等価吸入新気量
を推定するようにしたため、等価吸入新気量を正確かつ
リアルタイムに推定することが可能となる。また、請求
項8によれば、請求項1〜7の空気過剰率検出装置にお
いて、上記空気過剰率推定手段は、空気過剰率の推定を
上記エンジンの一行程毎に行うようにしたため、燃料噴
射量やEGR量等の制御応答性が向上する。
According to a seventh aspect of the present invention, in the air excess ratio detection device of the first to sixth aspects, the equivalent intake fresh air amount estimating means determines the recirculation amount of the exhaust gas from the intake air amount by the air excess ratio. Since the equivalent intake fresh air amount is estimated by subtracting the value divided by, the equivalent intake fresh air amount can be estimated accurately and in real time. According to claim 8, in the excess air ratio detecting device according to any one of claims 1 to 7, the excess air ratio estimating means estimates the excess air ratio for each stroke of the engine. The control responsiveness such as the amount and EGR amount is improved.

【0042】また、請求項9によれば、車両に搭載され
たエンジンの運転状態に基づき、上記エンジンの排気ガ
ス再循環装置の開弁量を制御する排気ガス再循環制御装
置において、上記エンジンに供給される混合気の空気過
剰率を検出する空気過剰率検出手段と、上記エンジンに
供給される混合気の目標空気過剰率を設定する目標空気
過剰率設定手段と、上記空気過剰率と上記目標空気過剰
率との偏差が無くなるように上記排気ガス再循環装置の
目標開弁量を設定する開弁量設定手段と、上記目標開弁
量に基づき、上記排気ガス再循環装置を駆動制御する駆
動制御装置とを備えるようにしたため、ディーゼルエン
ジン等におけるNOX 排出量や黒煙排出量を削減させる
ことが可能となる。
According to a ninth aspect, in the exhaust gas recirculation control device for controlling the valve opening amount of the exhaust gas recirculation device of the engine based on the operating state of the engine mounted on the vehicle, Excess air ratio detecting means for detecting the excess air ratio of the air-fuel mixture supplied, target air excess ratio setting means for setting the target air excess ratio of the air-fuel mixture supplied to the engine, the air excess ratio and the target A valve opening amount setting means for setting a target valve opening amount of the exhaust gas recirculation device so as to eliminate a deviation from an excess air ratio, and a drive for driving and controlling the exhaust gas recirculation device based on the target valve opening amount. Since the control device is provided, it is possible to reduce the NO x emission amount and the black smoke emission amount in the diesel engine and the like.

【0043】また、請求項10によれば、請求項9の排
気ガス再循環制御装置において、上記目標空気過剰率設
定手段は、エンジン回転速度と燃料供給量とに基づき目
標空気過剰率を設定するようにしたため、過渡運転時等
にもNOX 排出量や黒煙排出量を削減させることが可能
となる。また、請求項11によれば、請求項9または1
0の排気ガス再循環制御装置において、上記開弁量設定
手段は、少なくとも比例積分制御により上記開弁量を設
定するものであり、上記偏差の絶対値が所定値より大き
い場合には、当該比例積分制御における積分項の積算を
行わないようにしたため、積分項が過大となることによ
る制御応答性の悪化が防止される。
According to a tenth aspect, in the exhaust gas recirculation control device according to the ninth aspect, the target excess air ratio setting means sets the target excess air ratio based on the engine speed and the fuel supply amount. Therefore, it is possible to reduce the NO X emission amount and the black smoke emission amount even during the transient operation. Further, according to claim 11, claim 9 or 1
In the exhaust gas recirculation control device of No. 0, the valve opening amount setting means sets the valve opening amount by at least proportional integral control, and when the absolute value of the deviation is larger than a predetermined value, the proportional value is set. Since integration of the integration term is not performed in the integration control, deterioration of control response due to excessive integration term is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るエンジン制御系統の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an engine control system according to an embodiment of the present invention.

【図2】空気過剰率検出サブルーチンの手順を示すフロ
ーチャートである。
FIG. 2 is a flowchart showing a procedure of an excess air ratio detection subroutine.

【図3】EGR制御サブルーチンの手順を示すフローチ
ャートである。
FIG. 3 is a flowchart showing a procedure of an EGR control subroutine.

【図4】EGR制御サブルーチンの手順を示すフローチ
ャートである。
FIG. 4 is a flowchart showing a procedure of an EGR control subroutine.

【図5】燃料噴射量を急増させた場合の空気過剰率の変
化と従来装置による検出結果を示すグラフである。
FIG. 5 is a graph showing changes in the excess air ratio when the fuel injection amount is rapidly increased and the detection results obtained by the conventional device.

【符号の説明】[Explanation of symbols]

1 エンジン 2 シリンダヘッド 4 燃料噴射弁 5 電子ガバナ 6 燃料噴射ポンプ 8 ECU 11 吸気マニホールド 13 ターボ過給機 14 コンプレッサ 17 ブースト圧センサ 20 排気マニホールド 21 タービン 30 EGRパイプ 31 EGR弁 42 負圧側EGRソレノイド 43 バキュームポンプ 45 大気側EGRソレノイド 1 Engine 2 Cylinder Head 4 Fuel Injection Valve 5 Electronic Governor 6 Fuel Injection Pump 8 ECU 11 Intake Manifold 13 Turbocharger 14 Compressor 17 Boost Pressure Sensor 20 Exhaust Manifold 21 Turbine 30 EGR Pipe 31 EGR Valve 42 Negative Pressure Side EGR Solenoid 43 Vacuum Pump 45 Atmosphere side EGR solenoid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02M 25/07 550 F02M 25/07 550P 570 570C 570P ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area F02M 25/07 550 F02M 25/07 550P 570 570C 570P

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 車両に搭載されたエンジンの運転状態に
基づき、上記エンジンの排気ガス再循環装置が作動中で
あるときに当該エンジンに供給される混合気の空気過剰
率を繰り返し検出する空気過剰率検出装置において、 上記エンジンの吸気圧力を検出する吸気圧力検出手段
と、 上記エンジンの排気圧力を検出する排気圧力検出手段
と、 上記吸気圧力検出手段によって検出された吸気圧力と上
記排気圧力検出手段によって検出された排気圧力とに基
づき、上記排気ガス再循環装置による排気ガスの還流量
を推定する排気ガス還流量推定手段と、 上記排気ガス再循環装置による排気ガス還流量を含む上
記エンジンの吸気量を検出する吸気量検出手段と、 上記吸気量検出手段によって検出された吸気量と、所定
の回数だけ前に推定された空気過剰率と、上記排気ガス
還流量推定手段により推定された排気ガスの還流量とに
基づき、上記エンジンの等価吸入新気量を推定する等価
吸入新気量推定手段と、 上記エンジンの燃料供給量を検出する燃料供給量検出手
段と、 同燃料供給量検出手段によって検出された燃料供給量と
上記等価吸入新気量推定手段によって推定された等価吸
入新気量とに基づき、上記エンジンの空気過剰率を推定
する空気過剰率推定手段とを備えたことを特徴とするエ
ンジンの空気過剰率検出装置。
1. An air excess that repeatedly detects an air excess ratio of an air-fuel mixture supplied to the engine while the exhaust gas recirculation device of the engine is operating, based on an operating state of the engine mounted on the vehicle. In the rate detecting device, intake pressure detecting means for detecting the intake pressure of the engine, exhaust pressure detecting means for detecting the exhaust pressure of the engine, intake pressure detected by the intake pressure detecting means and exhaust pressure detecting means Exhaust gas recirculation amount estimating means for estimating a recirculation amount of exhaust gas by the exhaust gas recirculation device based on the exhaust pressure detected by the exhaust gas recirculation device, and intake air of the engine including the exhaust gas recirculation amount by the exhaust gas recirculation device. Intake air amount detecting means for detecting the intake air amount, the intake air amount detected by the intake air amount detecting means, and the air pressure estimated a predetermined number of times before. And an equivalent intake fresh air amount estimating means for estimating the equivalent intake fresh air amount of the engine based on the rate and the exhaust gas recirculation amount estimated by the exhaust gas recirculation amount estimating means, and the fuel supply amount of the engine. The excess air ratio of the engine based on the detected fuel supply amount detecting means, the fuel supply amount detected by the fuel supply amount detecting means, and the equivalent intake fresh air amount estimated by the equivalent intake fresh air amount estimating means. An excess air ratio detecting device for an engine, comprising: an excess air ratio estimating means for estimating.
【請求項2】 上記吸気量検出手段は、上記吸気圧力検
出手段によって検出された吸気圧力に基づいて吸気量を
検出することを特徴とする、請求項1記載のエンジンの
空気過剰率検出装置。
2. The excess air ratio detecting device for an engine according to claim 1, wherein the intake air amount detecting means detects the intake air amount based on the intake pressure detected by the intake pressure detecting means.
【請求項3】 上記エンジンは、ターボ過給機を有し、 上記排気ガス還流量推定手段は、ターボ上流の排気圧力
に基づいて排気ガス還流量を推定することを特徴とす
る、請求項1または2記載のエンジンの空気過剰率検出
装置。
3. The engine has a turbocharger, and the exhaust gas recirculation amount estimation means estimates the exhaust gas recirculation amount based on the exhaust pressure upstream of the turbo. Alternatively, the excess air ratio detecting device for the engine according to the item 2.
【請求項4】 上記排気圧力検出手段は、 エンジン回転速度と燃料供給量とから排気圧力定常値を
求め、 同排気圧力定常値と、それぞれ数行程前の排気ガス還流
量と吸気量とからタービン加速圧を求め、 同タービン加速圧と、上記排気圧力定常値とから負荷を
求め、 排気圧力の前回値と、上記タービン加速圧と、上記負荷
とから排気圧力の今回値を求めることを特徴とする、請
求項1〜3のいずれか一項に記載のエンジンの空気過剰
率検出装置。
4. The exhaust pressure detection means obtains a steady value of exhaust pressure from an engine speed and a fuel supply amount, and a turbine value is obtained from the steady value of exhaust pressure and exhaust gas recirculation amount and intake amount several strokes ago. The acceleration pressure is obtained, the load is obtained from the turbine acceleration pressure and the exhaust pressure steady value, and the current value of the exhaust pressure is obtained from the previous value of the exhaust pressure, the turbine acceleration pressure, and the load. The excess air ratio detection device for an engine according to any one of claims 1 to 3.
【請求項5】 上記排気ガス還流量推定手段は、排気ガ
ス再循環装置の弁開度に基づき排気ガス還流量を推定す
ることを特徴とする、請求項1〜4のいずれか一項に記
載のエンジンの空気過剰率検出装置。
5. The exhaust gas recirculation amount estimation means estimates the exhaust gas recirculation amount based on a valve opening degree of the exhaust gas recirculation device, according to any one of claims 1 to 4. Excess air ratio detector for the engine.
【請求項6】 上記排気ガス還流量推定手段は、 排気圧力と吸気圧力との差圧からオリフィス係数を求
め、 エンジン回転速度と、燃料供給量とから還流排気ガス温
度係数を求め、 上記排気ガス再循環装置の弁開度と、同排気ガス再循環
装置の絞り係数と、上記オリフィス係数と、上記還流排
気ガス温度係数とから排気ガス還流量を推定することを
特徴とする、請求項1〜5のいずれか一項に記載のエン
ジンの空気過剰率検出装置。
6. The exhaust gas recirculation amount estimating means obtains an orifice coefficient from a differential pressure between exhaust pressure and intake pressure, obtains a recirculation exhaust gas temperature coefficient from an engine rotation speed and a fuel supply amount, The exhaust gas recirculation amount is estimated from the valve opening of the recirculation device, the throttling coefficient of the exhaust gas recirculation device, the orifice coefficient, and the recirculation exhaust gas temperature coefficient. 5. The engine excess air ratio detection device according to claim 5.
【請求項7】 上記等価吸入新気量推定手段は、上記吸
気量から上記排気ガスの還流量を上記空気過剰率で除し
た値を減ずることにより等価吸入新気量を推定すること
を特徴とする、請求項1〜6のいずれか一項に記載のエ
ンジンの空気過剰率検出装置。
7. The equivalent intake fresh air amount estimating means estimates the equivalent intake fresh air amount by subtracting a value obtained by dividing the recirculation amount of the exhaust gas by the excess air ratio from the intake amount. The excess air ratio detection device for an engine according to any one of claims 1 to 6.
【請求項8】 上記空気過剰率推定手段は、空気過剰率
の推定を上記エンジンの一行程毎に行うことを特徴とす
る、請求項1〜7のいずれか一項に記載のエンジンの空
気過剰率検出装置。
8. The excess air ratio of the engine according to claim 1, wherein the excess air ratio estimating means estimates the excess air ratio for each stroke of the engine. Rate detector.
【請求項9】 車両に搭載されたエンジンの運転状態に
基づき、上記エンジンの排気ガス再循環装置の開弁量を
制御する排気ガス再循環制御装置において、 上記エンジンに供給される混合気の空気過剰率を検出す
る空気過剰率検出手段と、 上記エンジンに供給される混合気の目標空気過剰率を設
定する目標空気過剰率設定手段と、 上記空気過剰率と上記目標空気過剰率との偏差が無くな
るように上記排気ガス再循環装置の目標開弁量を設定す
る開弁量設定手段と、 上記目標開弁量に基づき、上記排気ガス再循環装置を駆
動制御する駆動制御装置とを備えたことを特徴とする排
気ガス再循環制御装置。
9. An exhaust gas recirculation control device for controlling a valve opening amount of an exhaust gas recirculation device of an engine based on an operating state of an engine mounted on a vehicle, wherein air of a mixture gas supplied to the engine. An excess air ratio detecting means for detecting an excess ratio, a target excess air ratio setting means for setting a target excess air ratio of the air-fuel mixture supplied to the engine, and a deviation between the excess air ratio and the target excess air ratio are A valve opening amount setting means for setting a target valve opening amount of the exhaust gas recirculation device so that the exhaust gas recirculation device is eliminated, and a drive control device for driving and controlling the exhaust gas recirculation device based on the target valve opening amount. An exhaust gas recirculation control device characterized by.
【請求項10】 上記目標空気過剰率設定手段は、エン
ジン回転速度と燃料供給量とに基づき目標空気過剰率を
設定することを特徴とする、請求項9記載の排気ガス再
循環制御装置。
10. The exhaust gas recirculation control device according to claim 9, wherein the target excess air ratio setting means sets the target excess air ratio based on the engine speed and the fuel supply amount.
【請求項11】 上記開弁量設定手段は、少なくとも比
例積分制御により上記開弁量を設定するものであり、上
記偏差の絶対値が所定値より大きい場合には、当該比例
積分制御における積分項の積算を行わないことを特徴と
する、請求項9または10記載の排気ガス再循環制御装
置。
11. The valve opening amount setting means sets the valve opening amount by at least proportional integral control. When the absolute value of the deviation is larger than a predetermined value, the integral term in the proportional integral control is set. The exhaust gas recirculation control device according to claim 9 or 10, characterized in that the above is not integrated.
JP13699595A 1995-06-02 1995-06-02 Engine excess air ratio detection device and exhaust gas recirculation control device Expired - Lifetime JP3198873B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13699595A JP3198873B2 (en) 1995-06-02 1995-06-02 Engine excess air ratio detection device and exhaust gas recirculation control device
DE69636687T DE69636687T2 (en) 1995-06-02 1996-06-03 DEVICE FOR DETECTING AND CONTROLLING THE AIR SURFACE FACTOR OF AN INTERNAL COMBUSTION ENGINE
KR1019970700679A KR100205512B1 (en) 1995-06-02 1996-06-03 Excess air factor detecting device and excess air factor controlling device for an engine
US08/776,320 US5704340A (en) 1995-06-02 1996-06-03 Excess air rate detecting apparatus and an excess air rate control apparatus for an engine
PCT/JP1996/001498 WO1996038660A1 (en) 1995-06-02 1996-06-03 Excess air factor detecting device and excess air factor controlling device for an engine
EP96920034A EP0774574B1 (en) 1995-06-02 1996-06-03 Excess air factor detecting device and excess air factor controlling device for an engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13699595A JP3198873B2 (en) 1995-06-02 1995-06-02 Engine excess air ratio detection device and exhaust gas recirculation control device

Publications (2)

Publication Number Publication Date
JPH08326595A true JPH08326595A (en) 1996-12-10
JP3198873B2 JP3198873B2 (en) 2001-08-13

Family

ID=15188334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13699595A Expired - Lifetime JP3198873B2 (en) 1995-06-02 1995-06-02 Engine excess air ratio detection device and exhaust gas recirculation control device

Country Status (1)

Country Link
JP (1) JP3198873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687598B2 (en) * 2001-03-30 2004-02-03 Nissan Motor Co., Ltd. Method and system for controlling an engine with enhanced torque control
US9951701B2 (en) 2014-09-22 2018-04-24 General Electric Company Method and systems for EGR control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687598B2 (en) * 2001-03-30 2004-02-03 Nissan Motor Co., Ltd. Method and system for controlling an engine with enhanced torque control
US9951701B2 (en) 2014-09-22 2018-04-24 General Electric Company Method and systems for EGR control
AU2017203076B2 (en) * 2014-09-22 2019-02-28 Ge Global Sourcing Llc Method and systems for egr control
US10794304B2 (en) 2014-09-22 2020-10-06 Transportation Ip Holdings, Llc Method and systems for EGR control

Also Published As

Publication number Publication date
JP3198873B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
KR100205512B1 (en) Excess air factor detecting device and excess air factor controlling device for an engine
US7367320B2 (en) Fuel control system for internal combustion engine
JP3365197B2 (en) EGR control device for internal combustion engine
US6334425B1 (en) Air/fuel ratio control system for internal combustion engine
US7742866B2 (en) Fuel volatility compensation for engine cold start speed control
US6877479B2 (en) Apparatus and a method for controlling an internal combustion engine
JP2004316544A (en) Fuel cut control device for compression ignition type internal combustion engine
US20020026921A1 (en) Combustion state control system of internal combusion engine
US7021288B2 (en) Injection control apparatus for an engine
JP3493986B2 (en) Diesel engine cylinder intake gas temperature calculation device and EGR control device
US5826564A (en) Fuel injection control apparatus and method for engine
JP4415509B2 (en) Control device for internal combustion engine
JP2020148162A (en) Fuel injection control device
JP3198873B2 (en) Engine excess air ratio detection device and exhaust gas recirculation control device
JP3161288B2 (en) Exhaust pressure detection device and excess air ratio detection device for turbocharged engine
JP3307169B2 (en) Engine excess air ratio detection method and excess air ratio control device
JP3355872B2 (en) Engine excess air ratio detection device and exhaust gas recirculation control device
US6302091B1 (en) Air-fuel ratio feedback control for engines having feedback delay time compensation
JP3925273B2 (en) Exhaust gas purification device for internal combustion engine
JP3161291B2 (en) Excess air ratio control device for turbocharged engine
JP3161292B2 (en) Excess air ratio control device for turbocharged engine
JPH09287510A (en) Air-fuel ratio controller for internal combustion engine
JPH08144867A (en) Exhaust gas recirculating system for diesel engine
JPH0430358Y2 (en)
JP2987675B2 (en) Intake control device for internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 13

EXPY Cancellation because of completion of term