JPH08325679A - Corrosion resistant sintered magnetic alloy - Google Patents

Corrosion resistant sintered magnetic alloy

Info

Publication number
JPH08325679A
JPH08325679A JP7157196A JP15719695A JPH08325679A JP H08325679 A JPH08325679 A JP H08325679A JP 7157196 A JP7157196 A JP 7157196A JP 15719695 A JP15719695 A JP 15719695A JP H08325679 A JPH08325679 A JP H08325679A
Authority
JP
Japan
Prior art keywords
magnetic alloy
sintered magnetic
sintered
alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7157196A
Other languages
Japanese (ja)
Inventor
Junichi Watanabe
渡辺  純一
Makoto Ushijima
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7157196A priority Critical patent/JPH08325679A/en
Publication of JPH08325679A publication Critical patent/JPH08325679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To provide a R-TM-B sintered magnetic alloy having highly reliable corrosion resistance by providing with the specified number of recessed part having its specified depth which exist in a grain boundary on the surface of the sintered magnetic alloy. CONSTITUTION: This sintered magnetic alloy is composed of, by wt.%, 5-40 R (R is the combination of a kind or more of rare earth elements including Y.), 50-90 TM (TM is a transition metal mainly including Fe, a part of which may be substituted by the other metal or non-metal.) and 0.2-8 B (boron). The recessed part >=102 piece/cm<2> of the depth of >=3μm<=20μm, which exist on a part of the grain boundary and its vicinity in the surface of the alloy, are formed. A chemical for etching is used so as to form the recessed part. An Ni plating layer is formed on the surface of the sintered magnetic alloy. By this method, adhesion strength between R-TM-B sintered alloy and its plating is reinforced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼結磁性合金に関し、
焼結磁性合金とその表面に形成しためっき層との密着性
を改善することにより焼結磁性合金の耐食性を著しく改
善したものに関する。
The present invention relates to a sintered magnetic alloy,
The present invention relates to a sintered magnetic alloy having significantly improved corrosion resistance by improving the adhesion between the sintered magnetic alloy and a plating layer formed on the surface thereof.

【0002】[0002]

【従来の技術】電気・電子機器の高性能・小型化に伴っ
て、その一部品たる永久磁石にも同様の要求が強まって
きた。すなわち以前の最強の永久磁石は希土類・コバル
ト(R−Co)系であったが、近年、より強力なR−T
M−B系磁性合金が台頭してきた(特開昭59−460
08号)。ここにRはYを含む希土類元素の1種または
2種以上の組み合わせであり、TMはFe、Co等の遷
移金属中心として、一部を他の金属元素または非金属元
素で置換したもの、Bはホウ素である。前記、磁性合金
は粉末冶金的手法により焼結法で製造されるが、極めて
錆やすいという問題点があった。そのため、耐食性を改
善するために永久磁石表面に耐酸化性の被覆層を設ける
手段がとられてきた。被覆層の種類としては、電気Ni
めっき、耐酸化性樹脂、Alイオンプレ−ティング等が
提案されており、とりわけ電気Niめっきは簡易な処理
でR−TM−B系永久磁石の耐食性を向上するものとし
て注目されている(特開昭60−54406号)。電気
Niめっきは、耐酸化性樹脂と比較して表面被覆層の機
械的強度に優れており、また被覆層自体の吸湿性がほと
んどないという長所を有している。
2. Description of the Related Art With the high performance and miniaturization of electric and electronic devices, the same demands have been placed on the permanent magnet, which is one of the components. In other words, the strongest permanent magnet before was the rare earth-cobalt (R-Co) system, but in recent years, the stronger RT
The emergence of MB magnetic alloys (JP-A-59-460)
08). Here, R is one kind or a combination of two or more kinds of rare earth elements including Y, TM is a transition metal center such as Fe or Co, and a part thereof is replaced with another metal element or non-metal element, B Is boron. Although the magnetic alloy is manufactured by a powder metallurgical method by a sintering method, it has a problem that it is extremely rusty. Therefore, measures have been taken to provide an oxidation resistant coating layer on the surface of the permanent magnet in order to improve the corrosion resistance. The type of coating layer is electric Ni
Plating, oxidation resistant resin, Al ion plating, and the like have been proposed, and in particular, electric Ni plating has attracted attention because it improves the corrosion resistance of the R-TM-B type permanent magnet by a simple treatment (Japanese Patent Laid-Open No. Sho-06-1999). 60-54406). The electroplating Ni has the advantages that the surface coating layer has excellent mechanical strength as compared with the oxidation resistant resin, and that the coating layer itself has almost no hygroscopicity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記焼
結磁性合金は焼結体であるが故に表面に黒皮、酸化物等
の金属異物や空隙が存在し、Niめっきの際、焼結磁性
合金とめっき層間で充分な密着強度が得られず、その耐
食性は不充分であった。密着強度の改善方法として被め
っき物表面に凹部を形成して、いわゆるアンカー効果に
より密着性の改善を図る方法がある。特開平2−112
207号公報には、永久磁石表面上に直径0.03〜
0.3mm、深さ10〜100μmの凹部を、表面に1
cm2あたり1個以上有することで磁石とめっき保護層
との密着性の改善を図る方法が提案されている。しか
し、特開平2−112207号公報記載の方法では、凹
部直径が0.03〜0.3mmと比較的大きいため、ア
ンカーの数が少なく、充分なアンカー効果を得ることが
出来ないという問題があった。したがって、本発明の目
的は、前記問題点を解決し、焼結磁性合金とその表面に
形成しためっき層間との密着性を改善することにより信
頼性の高い耐食性焼結磁性合金を提供することである。
However, since the above-mentioned sintered magnetic alloy is a sintered body, there are metallic foreign substances such as black skin and oxides and voids on the surface, and the Ni-plated sintered magnetic alloy is present. No sufficient adhesion strength was obtained between the plated layer and the plating layer, and its corrosion resistance was insufficient. As a method of improving the adhesion strength, there is a method of forming a recess on the surface of the object to be plated and improving the adhesion by the so-called anchor effect. JP-A-2-112
No. 207 discloses that a diameter of 0.03 to
A recess of 0.3 mm and a depth of 10 to 100 μm is formed on the surface.
There has been proposed a method of improving the adhesion between the magnet and the plating protection layer by having one or more per cm 2. However, the method described in JP-A 2-112207 has a problem that the number of anchors is small and a sufficient anchor effect cannot be obtained because the recess diameter is relatively large, 0.03 to 0.3 mm. It was Therefore, an object of the present invention is to solve the above problems and provide a highly reliable corrosion-resistant sintered magnetic alloy by improving the adhesion between the sintered magnetic alloy and the plating layer formed on the surface thereof. is there.

【0004】[0004]

【課題を解決するための手段】本発明者等は、上記問題
点を解決するため鋭意検討の結果、磁気特性を劣化させ
ず十分な密着強度を得るためには、焼結磁性合金表面に
小さな凹部を多数形成すればよいこと、また焼結磁性合
金表面に小さな凹部を多数形成させるためには焼結磁性
合金表面の粒界及びその近傍に凹部を形成させればよい
ことを見いだした。したがって、本発明は、重量比でR
(ここでRは、Yを含む希土類元素の1種または2種以
上の組み合わせ)5〜40%、TM(ここでTMは、F
eを主体とする遷移金属であって、一部を他の金属また
は非金属元素で置換してよい)50〜90%、B(ホウ
素)0.2〜8%からなる焼結磁性合金であって、焼結
磁性合金表面の粒界およびその近傍の一部に存在する深
さ3μm以上20μm以下の凹部を1cm2当たり102
個以上有する耐食性焼結磁性合金である。本発明にかか
る焼結磁性合金の表面にNiめっき層を形成することに
より焼結磁性合金とめっき間の密着性に優れ、かつ高い
耐食性を有する耐食性焼結磁性合金を提供することがで
きる。本発明において、Fe、Co、Ni等の遷移金属
TMの一部を置換する元素は、その添加目的に応じて、
Ga、Al、Ti、V、Cr、Mn、Zr、Hf、N
b、Ta、Mo、Ge、Sb、Sn、Bi等を添加で
き、本発明はいかなるR−TM−B系焼結磁性合金にも
適用できる。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have found that in order to obtain sufficient adhesion strength without deteriorating magnetic properties, a small amount is required on the surface of the sintered magnetic alloy. It has been found that it is sufficient to form a large number of recesses, and in order to form a large number of small recesses on the surface of the sintered magnetic alloy, it is sufficient to form recesses on the grain boundaries of the surface of the sintered magnetic alloy and in the vicinity thereof. Therefore, the present invention provides a weight ratio of R
(Where R is one or a combination of two or more rare earth elements including Y) 5 to 40%, TM (where TM is F
A transition metal mainly composed of e, which may be partially replaced by another metal or a non-metal element) and is a sintered magnetic alloy composed of 50 to 90% and B (boron) 0.2 to 8%. 10 cm 2 per 1 cm 2 of recesses having a depth of 3 μm or more and 20 μm or less existing in the grain boundaries on the surface of the sintered magnetic alloy and in the vicinity thereof.
It is a corrosion-resistant sintered magnetic alloy having one or more pieces. By forming a Ni plating layer on the surface of the sintered magnetic alloy according to the present invention, it is possible to provide a corrosion-resistant sintered magnetic alloy having excellent adhesion between the sintered magnetic alloy and plating and having high corrosion resistance. In the present invention, the element substituting a part of the transition metal TM such as Fe, Co and Ni may be added depending on the purpose of addition.
Ga, Al, Ti, V, Cr, Mn, Zr, Hf, N
b, Ta, Mo, Ge, Sb, Sn, Bi, etc. can be added, and the present invention can be applied to any R-TM-B based sintered magnetic alloy.

【0005】[0005]

【作用】本発明は、焼結磁性合金の粒界及びその近傍の
一部にマクロ的な凹部を形成することにより有効に作用
するアンカーが得られ、焼結磁性合金とめっき層間の密
着性を高める作用をする。図1(a)(b)(c)にめ
っき層を有する焼結磁性合金表面の凹部の断面形状の模
式図を示す。図1において、1はめっき層、2は結晶
粒、3はめっき層が入り込んだ焼結磁性合金表面の凹部
である。また、粒界とは結晶粒と結晶粒との間をいう。
図1(a)に示すような形状の凹部ではアンカー効果を
得ることはできず、密着性が不十分となる。図1(b)
に示す凹部形状を形成すればアンカー効果が得られる
が、(b)の形状に凹部を形成することは極めて困難で
ある。図1(c)は本発明により焼結磁性合金の粒界及
びその近傍に形成した凹部の模式図であるが、凹部内に
入り込んだめっき層が抜けにくい形状に凹部がマクロ的
に形成されているため、極めて強力なアンカー効果が得
られ、密着性が向上する。粒界および粒界近傍に凹部を
形成する手段としては、粒界相は酸等の薬品に侵食され
易い、いわゆるNdリッチ相により構成されているの
で、粒界及び粒界近傍を選択的にエッチングする薬品を
用いて形成すればよい。また、焼結磁性合金の表面に形
成された凹部の数が1cm当たり102個以上であり、
かつ、深さは3μm以上20μm以下である。これは、
凹部の個数が102個/cm2未満、または深さが3μm
未満では充分な密着強度が得られず、また、凹部の深さ
が20μmを越えると磁気特性の劣化が著しい。さら
に、凹部の数を1cm2当たり102個以上とするために
は、断面形状で磁石最表面の凹部の幅を10μm以下と
するのが望ましく、5μm以下とするのがさらに望まし
く、5μm以下とするのがもっとも望ましい。本発明に
かかる焼結磁性合金表面に形成する耐酸化性被覆層とし
ては、ワット浴によるNiめっき層が特に好ましい。こ
れは、ワット浴のpHが4〜5と弱酸性であるため、ワ
ット浴によるめっきの最中に焼結磁性合金表面の粒界お
よびその近傍がさらにエッチングされ、形成された凹部
の深部にまでNiめっきが析出し易く、強力なアンカー
効果が得られることによる。また、Niのイオン化傾向
が本発明の焼結磁性合金の主成分であるFeと比較的近
いため、めっき膜の密着性を低下させる置換めっきの析
出を防ぐことができることによるものである。
According to the present invention, an anchor that works effectively can be obtained by forming macroscopic recesses in the grain boundaries of the sintered magnetic alloy and a part of the vicinity thereof, thereby improving the adhesion between the sintered magnetic alloy and the plating layer. Acts to enhance. 1 (a), (b), and (c) show schematic views of the cross-sectional shape of the recesses on the surface of the sintered magnetic alloy having the plating layer. In FIG. 1, 1 is a plating layer, 2 is a crystal grain, and 3 is a concave portion of the surface of the sintered magnetic alloy in which the plating layer has entered. Further, the grain boundary means between crystal grains.
An anchor effect cannot be obtained with a recess having a shape as shown in FIG. 1 (a), resulting in insufficient adhesion. Figure 1 (b)
Although the anchor effect can be obtained by forming the concave shape shown in (1), it is extremely difficult to form the concave shape in the shape of (b). FIG. 1 (c) is a schematic view of the grain boundaries of the sintered magnetic alloy and the recesses formed in the vicinity thereof according to the present invention. The recesses are formed macroscopically in a shape that makes it difficult for the plating layer entering the recesses to come off. As a result, an extremely strong anchor effect is obtained and the adhesion is improved. As a means for forming recesses in the grain boundaries and in the vicinity of the grain boundaries, the grain boundary phase is constituted by a so-called Nd-rich phase which is easily corroded by a chemical such as an acid, so that the grain boundaries and the vicinity of the grain boundaries are selectively etched. It may be formed by using a chemical. Further, the number of recesses formed on the surface of the sintered magnetic alloy is 10 2 or more per 1 cm,
The depth is 3 μm or more and 20 μm or less. this is,
The number of recesses is less than 10 2 / cm 2, or the depth is 3 μm
If it is less than the above range, sufficient adhesion strength cannot be obtained, and if the depth of the recess exceeds 20 μm, the magnetic properties are significantly deteriorated. Further, in order to set the number of recesses to 10 2 or more per cm 2, it is preferable that the width of the recesses on the outermost surface of the magnet is 10 μm or less in sectional shape, more preferably 5 μm or less, further preferably 5 μm or less. Is the most desirable. As the oxidation resistant coating layer formed on the surface of the sintered magnetic alloy according to the present invention, a Ni plating layer formed by a Watts bath is particularly preferable. This is because the pH of the Watt bath is weakly acidic at 4 to 5, so that the grain boundaries on the surface of the sintered magnetic alloy and the vicinity thereof are further etched during the plating by the Watt bath to reach the deep portion of the formed recess. This is because Ni plating is easily deposited and a strong anchor effect is obtained. In addition, since the ionization tendency of Ni is relatively close to that of Fe, which is the main component of the sintered magnetic alloy of the present invention, it is possible to prevent the deposition of displacement plating which deteriorates the adhesion of the plated film.

【0006】[0006]

【実施例】以下、本発明の効果を実施例により具体的に
説明する。Nd(Fe0.7Co0.2B0.07Ga0.03)6.5
なる組成の合金をア−ク溶解にて作製し、得られたイン
ゴットをスタンプミル及びディスクミルで粗粉砕した。
その後、N2ガスを粉砕媒体としてジェットミルで微粉
砕を行い、粉砕粒度3.5μmの微粉砕粉を得た。得ら
れた原料粉を15kOeの磁場中で横磁場成形した。成
形圧力は2ton/cm2であった。本成形体を真空中
で1090℃×2時間焼結した。焼結体を18×10×
6mmの寸法に切り出し、次いで900℃のアルゴン雰
囲気中に2時間加熱保持した後に急冷し温度を600℃
に保持したアルゴンの雰囲気中で1時間保持した。こう
して得られた試料について、めっき前処理として試料表
面の加工歪み層及び酸化膜除去の目的で5vol%の硝
酸によるエッチングを行い、試料表面に均質な磁石素材
を露出させた後、5%クエン酸と0.5%硫酸の混酸に
より試料表面の粒界及びその近傍を選択的にエッチング
した。なお、5%クエン酸と0.5%硫酸の混酸による
エッチング時間の調節により、焼結磁性合金の粒界及び
その近傍での凹部の深さ、数の異なる試料(表1中実施
例1〜3および比較例1、2)を作成した。その後、ワ
ットNi浴で15μmの半光沢Niめっき層を形成し、
これを試験片とした。また、比較のため、めっき前処理
として試料表面の加工歪み層及び酸化膜除去の目的で5
vol%の硝酸によるエッチングを行った後、0.5N
の硝酸中に超音波浸漬して凹部を形成した試料(表1中
比較例3)を作成した。その後、ワットNi浴で15μ
mの半光沢Niめっき層を形成し、これを試験片とし
た。得られた試料の凹部状態の深さ及び数の計測は断面
試料を作成し、SEM観察により行った。密着性試験は
引っ張り試験機(セバスチャン1)により、また、塩水
噴霧試験は35℃、5%食塩水で100時間行った。結
果を表1に示す。表1より、R−TM−B系焼結磁性合
金において、従来のめっきでは不充分であっためっき膜
の密着性および耐食性が著しく向上したことがわかる。
また、形成された凹部の個数が102個/cm2未満では
充分な密着強度が得られず、一方、凹部の深さが25μ
m以上では磁気特性の劣化が著しいことがわかる。
EXAMPLES The effects of the present invention will be specifically described below with reference to examples. Nd (Fe0.7Co0.2B0.07Ga0.03) 6.5
An alloy having the following composition was prepared by arc melting, and the obtained ingot was roughly crushed by a stamp mill and a disc mill.
Then, N2 gas was used as a grinding medium to perform fine pulverization with a jet mill to obtain fine pulverized powder having a pulverized particle size of 3.5 μm. The obtained raw material powder was subjected to transverse magnetic field molding in a magnetic field of 15 kOe. The molding pressure was 2 ton / cm 2. The compact was sintered in vacuum at 1090 ° C for 2 hours. 18 x 10 x sintered body
Cut out to a size of 6 mm, then heat and hold in an argon atmosphere at 900 ° C for 2 hours and then rapidly cool to 600 ° C.
It was held for 1 hour in the atmosphere of argon held in. The sample thus obtained was etched with 5 vol% nitric acid as a pretreatment for plating for the purpose of removing the work strain layer and oxide film on the sample surface, and a homogeneous magnet material was exposed on the sample surface, followed by 5% citric acid. The grain boundary on the sample surface and its vicinity were selectively etched with a mixed acid of 0.5% and 0.5% sulfuric acid. By adjusting the etching time with a mixed acid of 5% citric acid and 0.5% sulfuric acid, samples having different depths and numbers of recesses at the grain boundaries of the sintered magnetic alloy and in the vicinity thereof (Examples 1 to 1 in Table 1). 3 and Comparative Examples 1 and 2) were prepared. Then, a semi-bright Ni plating layer having a thickness of 15 μm is formed with a watt Ni bath,
This was used as a test piece. Further, for comparison, as a pretreatment for plating, 5 was used for the purpose of removing the processing strain layer and oxide film on the sample surface.
After etching with nitric acid of vol%, 0.5N
A sample (Comparative Example 3 in Table 1) in which concave portions were formed by ultrasonic immersion in nitric acid was prepared. Then, in the watt Ni bath, 15μ
A semi-bright Ni plating layer of m was formed and used as a test piece. The depth and the number of concave portions of the obtained sample were measured by SEM observation after creating a cross-section sample. The adhesion test was conducted by a tensile tester (Sebastian 1), and the salt spray test was conducted at 35 ° C. and 5% saline for 100 hours. The results are shown in Table 1. From Table 1, it can be seen that in the R-TM-B system sintered magnetic alloy, the adhesion and corrosion resistance of the plated film, which were insufficient by conventional plating, were significantly improved.
Also, if the number of the formed recesses is less than 10 2 / cm 2, sufficient adhesion strength cannot be obtained, while the depth of the recesses is 25 μm.
It can be seen that when m or more, the magnetic properties are significantly deteriorated.

【0007】本発明に関わる焼結磁性合金の組織断面写
真を図2に示す。図2に示すように焼結磁性合金表面の
粒界およびその近傍に凹部を形成した後、金属めっきを
施すことにより密着性に優れためっき層を焼結磁性合金
の表面に形成することができる。なお、本実施例で焼結
磁性合金の表面に露出した該焼結磁性合金粒界およびそ
の近傍の一部の凹部形成の手段として5%クエン酸と
0.5%硫酸の混酸溶液でのエッチングを用いたが、該
焼結磁性合金粒界およびその近傍の一部に凹部を形成で
きる他の薬品あるいは他の方法を用いても同様の効果を
得ることできる。
FIG. 2 shows a photograph of a cross section of the structure of the sintered magnetic alloy according to the present invention. As shown in FIG. 2, after forming recesses at the grain boundaries on the surface of the sintered magnetic alloy and in the vicinity thereof, a plating layer having excellent adhesion can be formed on the surface of the sintered magnetic alloy by applying metal plating. . In this example, as a means for forming recesses in the sintered magnetic alloy grain boundaries exposed on the surface of the sintered magnetic alloy and in the vicinity thereof, etching was performed with a mixed acid solution of 5% citric acid and 0.5% sulfuric acid. However, the same effect can be obtained by using other chemicals or other methods capable of forming recesses in the sintered magnetic alloy grain boundary and a part of the vicinity thereof.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【発明の効果】本発明は、焼結磁性合金表面の該焼結磁
性合金の粒界およびその近傍の一部に凹部を形成すると
いう比較的容易な手段によりコストの高騰を招くことな
く、R−TM−B系焼結磁性合金とめっき間の密着強度
を高め、かつ耐食性を向上させることにより、信頼性の
高い耐食性R−TM−B系焼結磁性合金を提供するもの
である。
According to the present invention, the relatively easy means of forming the concave portion at the grain boundary of the sintered magnetic alloy on the surface of the sintered magnetic alloy and a part in the vicinity thereof causes no increase in cost without increasing the cost. A highly reliable corrosion resistant R-TM-B based sintered magnetic alloy is provided by increasing the adhesion strength between the -TM-B based sintered magnetic alloy and plating and improving the corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)従来の焼結磁性合金表面の断面形状を示
す模式図である。 (b)焼結磁性合金表面の断面形状を示す模式図であ
る。 (c)本発明の焼結磁性合金表面の断面形状を示す模式
図である。
FIG. 1A is a schematic view showing a cross-sectional shape of a conventional sintered magnetic alloy surface. (B) It is a schematic diagram which shows the cross-sectional shape of the surface of a sintered magnetic alloy. (C) It is a schematic diagram which shows the cross-sectional shape of the surface of the sintered magnetic alloy of this invention.

【図2】本発明に係る焼結磁性合金およびワット浴によ
り形成したNiめっき層の断面の走査型電子顕微鏡によ
る金属ミクロ組織写真である。
FIG. 2 is a scanning electron microscope photograph of a metal microstructure of a cross section of a Ni plating layer formed by a sintered magnetic alloy according to the present invention and a Watts bath.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でR(ここでRは、Yを含む希土
類元素の1種または2種以上の組み合わせ)5〜40
%、TM(ここでTMは、Feを主体とする遷移金属で
あって、一部を他の金属または非金属元素で置換してよ
い)50〜90%、B(ホウ素)0.2〜8%からなる
焼結磁性合金であって、焼結磁性合金表面の粒界および
その近傍の一部に存在する深さ3μm以上20μm以下
の凹部を1cm2当たり102個以上有することを特徴と
する耐食性焼結磁性合金。
1. R in a weight ratio (where R is one or a combination of two or more rare earth elements including Y) 5 to 40
%, TM (here, TM is a transition metal mainly composed of Fe and may be partially replaced with other metal or non-metal element) 50 to 90%, B (boron) 0.2 to 8 %, A corrosion-resistant sintered alloy having a depth of 3 μm or more and 20 μm or less present at a grain boundary of the surface of the sintered magnetic alloy or a part thereof in the vicinity thereof is 10 2 or more per 1 cm 2. Magnetic alloy.
【請求項2】 請求項1に記載の焼結磁性合金の表面に
Niめっき層を有することを特徴とする耐食性焼結磁性
合金。
2. A corrosion resistant sintered magnetic alloy having a Ni plating layer on the surface of the sintered magnetic alloy according to claim 1.
JP7157196A 1995-05-31 1995-05-31 Corrosion resistant sintered magnetic alloy Pending JPH08325679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7157196A JPH08325679A (en) 1995-05-31 1995-05-31 Corrosion resistant sintered magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7157196A JPH08325679A (en) 1995-05-31 1995-05-31 Corrosion resistant sintered magnetic alloy

Publications (1)

Publication Number Publication Date
JPH08325679A true JPH08325679A (en) 1996-12-10

Family

ID=15644310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7157196A Pending JPH08325679A (en) 1995-05-31 1995-05-31 Corrosion resistant sintered magnetic alloy

Country Status (1)

Country Link
JP (1) JPH08325679A (en)

Similar Documents

Publication Publication Date Title
EP1643514B1 (en) R-t-b based permanent magnet
JP2003257721A (en) Sintered rare-earth magnet
WO2006054617A1 (en) Rare earth sintered magnet
JP2007300791A (en) Method for using rare earth sintered magnet
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH08325679A (en) Corrosion resistant sintered magnetic alloy
JP3234448B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JPH09270310A (en) Rare earth permanent magnet
JPH07106109A (en) R-tm-b permanent magnet of improved corrosion resistance, and its manufacture
JP3914557B2 (en) Rare earth sintered magnet
JP3377605B2 (en) Corrosion resistant magnetic alloy
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JPH01268004A (en) R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance
US5348639A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP2721187B2 (en) RF lower e-BM sintered magnet and manufacturing method thereof
JPH1068052A (en) R-tm-b series sintered magnetic alloy high in corrosion resistance
JPH08325677A (en) Corrosion resistant sintered magnetic alloy
JP4296442B2 (en) Method for preventing hydrogen embrittlement of rare earth sintered magnets
JPH06124813A (en) Manufacture of r-tm-b magnet
JPH06231944A (en) R-t-b permanent magnet with improved corrosion resistance