JPH08325565A - Zinc sulfide phosphor - Google Patents

Zinc sulfide phosphor

Info

Publication number
JPH08325565A
JPH08325565A JP13530695A JP13530695A JPH08325565A JP H08325565 A JPH08325565 A JP H08325565A JP 13530695 A JP13530695 A JP 13530695A JP 13530695 A JP13530695 A JP 13530695A JP H08325565 A JPH08325565 A JP H08325565A
Authority
JP
Japan
Prior art keywords
concentration
phosphor
zinc
signal
zinc sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13530695A
Other languages
Japanese (ja)
Inventor
Toshie Harazono
としえ 原園
Yukio Tokunaga
幸男 徳永
Ryuji Adachi
隆二 安達
Takashi Hase
堯 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Original Assignee
Kasei Optonix Ltd
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Mitsubishi Chemical Corp filed Critical Kasei Optonix Ltd
Priority to JP13530695A priority Critical patent/JPH08325565A/en
Publication of JPH08325565A publication Critical patent/JPH08325565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a high-luminance phosphor capable of attaining sufficiently high luminance without the aid of high-density electron beam irradiation. CONSTITUTION: This phoshor is a zinc sulfide phosphor represented by the composition formula (Zn1-x Cdx ) S:Cu, Cl (0<=(x)<=0.1; the concentrations of the activators, Cu and Cl are each 500ppm or less), wherein, in relation to zinc defect concentration ([VZn ], a molar concentration, the concentrations indicated hereafter by [ ] are all molar concentrations) defined by the formula: [Cl concentration - Cu concentrations] × 1/2, the half/value width of<67> Zn signal (Δν1/2 (Zn)) determined by static NMR is plotted, and in relation to zinc defect concentration ([VZn <s> T]) defined as half of the Cl concentration of a (Zn1-x Cdx )S:Cl phosphor as the standard, the half-value width of<67> Zn signal (Δν1/2 (Zn)) determined by static NMR is plotted, the relationship; Δν1/2 (Zn)>Δν1/2 (Zn)<s> T+10Hz is satisfied at the point where [VZn ]=[VZn <s> T].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化亜鉛蛍光体に関
し、電子線励起で高輝度特性を示すカラーテレビ用ブラ
ウン管等に用いられる硫化亜鉛蛍光体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc sulfide phosphor, and more particularly to a zinc sulfide phosphor used in a cathode ray tube for a color television, which exhibits high brightness characteristics when excited by an electron beam.

【0002】[0002]

【従来の技術】硫化亜鉛を主体とする蛍光体は明るい蛍
光を示し実用的価値が高い。ZnSに賦活剤としてC
u、Clを添加したZnS:Cu,Clは緑色蛍光体と
して最も利用価値が高く、テレビやディスプレイ、また
計測器用のブラウン管等に用いられている。
2. Description of the Related Art Phosphors containing zinc sulfide as a main component show bright fluorescence and have high practical value. C as an activator for ZnS
ZnS: Cu, Cl to which u and Cl are added has the highest utility value as a green phosphor and is used in televisions, displays, cathode ray tubes for measuring instruments, and the like.

【0003】近年、ハイビジョンテレビ等の高品位テレ
ビが普及しつつあるが、このような高品位テレビの画面
を高精密でかつ高輝度に発現するためには、ブラウン管
には高密度の電子線を入射させることが行われている。
In recent years, high-definition televisions such as high-definition televisions have become widespread, but in order to express the screen of such high-definition televisions with high precision and high brightness, a high-density electron beam is placed in the cathode ray tube. It is being incident.

【0004】しかし、硫化物蛍光体で電流密度を増加さ
せると、蛍光体の発光効率は低下してしまう。このた
め、電子ビームスポットのフォーカスをずらしスポット
径を広げ、電流密度増加による発光効率の低下を抑制す
ることで実用化されているが、高密度画面にするには輝
度が十分でなく、未だ十分高精密で高輝度な硫化亜鉛蛍
光体は提案されていない。
However, when the current density is increased with the sulfide phosphor, the luminous efficiency of the phosphor is lowered. For this reason, it has been put to practical use by shifting the focus of the electron beam spot to widen the spot diameter and suppressing the decrease in light emission efficiency due to the increase in current density. However, the brightness is not sufficient for a high-density screen, and it is still insufficient. No highly precise and bright zinc sulfide phosphor has been proposed.

【0005】[0005]

【発明が解決しようとする課題】このような事情から、
低い電流密度でより高い輝度特性を有する硫化亜鉛蛍光
体が必要とされていた。本発明は入射する電子線の強度
を増加させずに、テレビ、又はディスプレイ及び計測器
のブラウン管上で高精細で高輝度な明るさを発現維持す
る硫化亜鉛蛍光体を提供するものである。
[Problems to be Solved by the Invention] Under these circumstances,
There was a need for zinc sulfide phosphors with higher brightness characteristics at low current densities. The present invention provides a zinc sulfide phosphor that maintains high-definition and high-luminance brightness on a television or cathode ray tube of a display and a measuring instrument without increasing the intensity of an incident electron beam.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するためその結晶の格子欠陥および賦活元素とし
て添加されたCu元素とCl元素の分布状態の検討を重
ねた結果、特定のNMR(核磁気共鳴)特性を有する硫
化亜鉛蛍光体が高輝度特性を有することを見出し、本発
明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted a study on the lattice defects of the crystal and the distribution state of Cu element and Cl element added as activator elements in order to achieve the above object, and as a result, The inventors have found that a zinc sulfide phosphor having NMR (nuclear magnetic resonance) characteristics has high brightness characteristics, and have reached the present invention.

【0007】本発明は、組成式(Zn1-X Cdx )S:
Cu,Cl(式中、xは0≦x≦0.1であり、賦活剤
Cu、Clの濃度は各々500ppm以下である。)で
示される硫化亜鉛蛍光体であって、[Cl濃度−Cu濃
度]×1/2で定義される亜鉛欠陥濃度([VZn])に
対してスタティックNMRによる67Znシグナルの半値
幅(Δν1/2 (Zn))をプロットし、標準となる(Z
1-X Cdx )S:Cl蛍光体のCl濃度の1/2とし
て定義される亜鉛欠陥濃度([VZn ST])とスタティッ
クNMRによる67Znシグナルの半値幅(Δν1/2 (Z
n)ST)をプロットした際、[VZn]=[VZn ST]の点
で、Δν1/2 (Zn)>Δν1/2 (Zn)ST+10Hz
であることを特徴とする硫化亜鉛蛍光体である。ここで
[ ]で示す濃度は全てモル濃度である。
The present invention provides a compositional formula (Zn 1-X Cd x ) S:
A zinc sulfide phosphor represented by Cu and Cl (wherein x is 0 ≦ x ≦ 0.1, and the concentrations of the activators Cu and Cl are 500 ppm or less, respectively), [Cl concentration-Cu Density] × 1/2, the half-value width (Δν 1/2 (Zn)) of the 67 Zn signal by static NMR is plotted against the zinc defect concentration ([V Zn ]), which serves as the standard (Z
n 1-X Cd x ) S: Cl The zinc defect concentration ([V Zn ST ]) defined as 1/2 of the Cl concentration of the phosphor and the full width at half maximum of the 67 Zn signal by static NMR (Δν 1/2 (Z
n) ST ) when plotted, at the point of [V Zn ] = [V Zn ST ], Δν 1/2 (Zn)> Δν 1/2 (Zn) ST +10 Hz
And a zinc sulfide phosphor. Here, all the concentrations shown in [] are molar concentrations.

【0008】本発明の蛍光体は、(Zn1-X Cdx
S:Cu,Clで示される組成式を有する。xとしては
0.1(モル組成)以下であれば、緑色蛍光体として良
好に用いることが出来る。賦活元素であるCuおよび/
またはClは、各々500ppm以下である。Cuの好
ましい含有量は、40〜500ppm、特には40〜3
50ppmであり、Clの好ましい含有量は、20〜5
00ppm、特には20〜300ppmである。
The phosphor of the present invention is (Zn 1-X Cd x ).
It has a composition formula represented by S: Cu, Cl. When x is 0.1 (molar composition) or less, it can be favorably used as a green phosphor. Cu and / or activator elements
Alternatively, Cl is 500 ppm or less, respectively. The preferable content of Cu is 40 to 500 ppm, and particularly 40 to 3
It is 50 ppm, and the preferable content of Cl is 20 to 5
00 ppm, especially 20 to 300 ppm.

【0009】蛍光体の発光の機構は未だ十分解明はされ
ていないが、ZnS:Cu,Clの場合、その発光の機
構は、以下のように推測される。ZnS中に固溶した賦
活元素Cl- はS2-を置換してドナー準位を形成し、ま
た一方、Cu+ がZn2+を置換してアクセプター準位を
形成する。この状態の蛍光体に入射して荷電帯から電導
帯に至った電子は、上記ドナー準位に移動し、ドナー準
位とアクセプター準位のエネルギー差に相当する蛍光を
発する。
Although the emission mechanism of the phosphor has not been sufficiently clarified, in the case of ZnS: Cu, Cl, the emission mechanism is presumed as follows. The activator element Cl solid-dissolved in ZnS replaces S 2− to form a donor level, while Cu + replaces Zn 2+ to form an acceptor level. Electrons that enter the phosphor in this state and reach the conduction band from the charge band move to the donor level, and emit fluorescence corresponding to the energy difference between the donor level and the acceptor level.

【0010】Zn2+に置換されたCu+ とS2-に置換さ
れたCl- はそれぞれ−1、+1の電荷を持ち、お互い
に電荷補償されている。Cl- は+1の電荷を有するた
め、Zn2+が−2の電荷を持つ空孔となり電荷補償され
る。即ち、2個のCl- と1個の亜鉛欠陥(Vzn)で電
荷補償される。亜鉛欠陥濃度([Vzn])は、 [Vzn]=[Cl濃度−Cu濃度]×1/2 で表される。
Cu + substituted with Zn 2+ and Cl substituted with S 2− have charges of −1 and +1 respectively, and the charges are mutually compensated. Since Cl has a charge of +1, Zn 2+ becomes a hole having a charge of −2 and the charge is compensated. That is, charge compensation is performed with two Cl and one zinc defect (V zn ). The zinc defect concentration ([V zn ]) is represented by [V zn ] = [Cl concentration-Cu concentration] × 1/2.

【0011】本発明者らは、上記亜鉛欠陥濃度
[Vzn]、およびCu+ とCl- の相対的な分布状態と
蛍光体の輝度との関係につき種々検討を重ねた結果、C
+ とCl-の分布状態は、スタティックNMRによる
380ppm付近の67Znのシグナルの線幅に反映され
ること、即ち線幅の広がりが大きい(半値幅が大きい)
方が輝度が高いことを見出した。
The present inventors have conducted various studies on the above-mentioned zinc defect concentration [V zn ] and the relation between the relative distribution of Cu + and Cl and the brightness of the phosphor, and as a result, C
The distribution state of u + and Cl is reflected in the line width of the 67 Zn signal around 380 ppm by static NMR, that is, the line width is wide (the full width at half maximum is large).
It was found that the brightness was higher.

【0012】本発明は、スタティックNMRによる38
0ppm付近の67Znのシグナルの線幅がVZn濃度に対
して1次に比例すること、Vzn濃度が一定のとき、この
67Znのシグナルの線幅が大きいものほど高い輝度を達
成できることに基づく。このことの学問的な解明はこれ
までになされていないが、380ppm付近の67Znの
シグナルのピークの線幅の広がりは、亜鉛欠陥の中に取
り込まれた電子、又はホールの常磁性緩和によって引き
起こされており、ZnSの結晶中で、VZnの分布の違い
や、Zn,S,Cu,Clの結合や置換の状態を反映し
ているものと考えられる。
The present invention uses 38 by static NMR.
The line width of the 67 Zn signal near 0 ppm is linearly proportional to the V Zn concentration, and when the V zn concentration is constant, this
This is based on the fact that the larger the line width of the 67 Zn signal, the higher the brightness that can be achieved. Although the scientific elucidation of this has not been done so far, the broadening of the line width of the 67 Zn signal peak near 380 ppm is caused by the paramagnetic relaxation of electrons or holes incorporated in zinc defects. It is considered that this reflects the difference in the distribution of V Zn in the ZnS crystal and the state of bonding and substitution of Zn, S, Cu and Cl.

【0013】スタティックNMRによる380ppm付
近の67Znのシグナルの線幅の広がりは、そのシグナル
ピークの半値幅(Δν1/2 (Zn))で表され、スタテ
ィックプローブを用いたNMRにより共鳴周波数18.
8MHz、パルス幅5μsec(30°パルス)、待ち
時間2.5sec、積算時間は通常1000〜2000
回で測定することにより得られる。シグナルの線形から
は、常法によりガウス型関数を用いて線形を分離し線幅
が得られる。これの半値幅を例えば縦軸にして、VZn
度を横軸にしてプロットする。
The line width broadening of the 67 Zn signal at around 380 ppm by static NMR is represented by the half-value width (Δν 1/2 (Zn)) of the signal peak, and the resonance frequency of 18.
8 MHz, pulse width 5 μsec (30 ° pulse), waiting time 2.5 sec, integration time is usually 1000 to 2000
It is obtained by measuring the number of times. From the linear shape of the signal, the linear width is obtained by separating the linear shape using a Gaussian function by a conventional method. The half-value width is plotted on the vertical axis, and the V Zn concentration is plotted on the horizontal axis.

【0014】つぎに、標準線の作成を行う。まず、Zn
S:Clの標準物質を作成する。硫化亜鉛と各濃度に相
当する塩化ナトリウムを良く混合した後、石英製の円筒
型チューブ容器に充填して硫化水素気流中の950℃で
3時間焼成する。得られた焼成物を十分に純水で洗浄し
た後、120℃で乾燥し篩にかけてZnS:Clの標準
物質を得る。
Next, a standard line is created. First, Zn
Prepare S: Cl standard. After thoroughly mixing zinc sulfide and sodium chloride corresponding to each concentration, the mixture is filled in a cylindrical tube container made of quartz and baked at 950 ° C. in a hydrogen sulfide gas stream for 3 hours. The fired product obtained is thoroughly washed with pure water, dried at 120 ° C., and sieved to obtain a ZnS: Cl standard substance.

【0015】この標準物質を前記と同じにして、スタテ
ィックNMRにより380ppm付近の67Znシグナル
を得、その半値幅(Δν1/2 (Zn)ST)を求める。先
と同じに、半値幅を例えば縦軸にして、VZn濃度を横軸
にしてプロットする。
Using the same standard material as above, a 67 Zn signal near 380 ppm was obtained by static NMR, and the half-value width (Δν 1/2 (Zn) ST ) was determined. Similarly to the above, the half width is plotted on the vertical axis and the V Zn concentration is plotted on the horizontal axis.

【0016】本発明の蛍光体は、好ましくは、例えば次
の方法で製造できる。所望の組成に原料硫化亜鉛と塩化
ナトリウムを良く混合し、硫化水素気流中で950℃3
時間焼成する。得られた焼成物を水洗後120℃で乾燥
して得られる。また、このような工程あるいは他の製造
方法による場合でも、あらかじめ標準物質による検量線
を作成しておき、得られる蛍光体の半値幅をモニターし
て賦活剤量、各処理条件を調製することで製造すること
もできる。
The phosphor of the present invention can be preferably produced, for example, by the following method. Mix the raw material zinc sulfide and sodium chloride to the desired composition and mix in a hydrogen sulfide gas stream at 950 ° C.
Bake for hours. The fired product obtained is washed with water and dried at 120 ° C. In addition, even in the case of such a step or other manufacturing method, it is possible to prepare a calibration curve using a standard substance in advance and monitor the half width of the obtained phosphor to adjust the amount of activator and each treatment condition. It can also be manufactured.

【0017】[0017]

【実施例】以下、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。89Yシグナルの半値
幅(Δν1/2 (Zn)、Δν1/2 (Zn)ST)の測定
は、Bruker社製固体NMR装置MSL−300に
スタティックプローブを装着して行った。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. The full width at half maximum of the 89 Y signal (Δν 1/2 (Zn), Δν 1/2 (Zn) ST ) was measured by mounting a static probe on a solid state NMR apparatus MSL-300 manufactured by Bruker.

【0018】測定条件は以下の通りである。The measurement conditions are as follows.

【0019】[0019]

【表1】プローブ :スタティックプローブ 共鳴周波数 :18.8MHz パルス系列 :シングルパルス パルス幅 :5μsec(30°パルス) 待ち時間 :2.5sec[Table 1] Probe: Static probe Resonance frequency: 18.8 MHz Pulse sequence: Single pulse Pulse width: 5 μsec (30 ° pulse) Wait time: 2.5 sec

【0020】以下、各試料のCu,Cl及び不純物濃度
は、Seiko SPS−1200A ICP装置(誘
導結合高周波プラズマ発光分析装置)とRigaku3
370蛍光X線装置を用いて定量した。また、蛍光体の
輝度の測定は、電子線励起装置(TOPCON ABT
−32)を用いて行った。
Below, the Cu, Cl and impurity concentrations of the respective samples were measured by the Seiko SPS-1200A ICP apparatus (inductively coupled high frequency plasma emission spectrometer) and Rigaku3.
Quantification was performed using a 370 X-ray fluorescence system. In addition, the measurement of the brightness of the phosphor is performed by using an electron beam excitation device (TOPCON ABT
-32).

【0021】(標準物質の作成)下表1の組成になるよ
うに原料硫化亜鉛と塩化ナトリウムを乾式にて十分混合
し、石英製の円筒型チューブ容器に充填して硫化水素気
流中で950℃で3時間焼成した。得られた焼成物を純
水で十分に洗浄した後、120℃で乾燥し篩にかけて塩
素付活の硫化亜鉛の標準物質を得た。粉末X線回折の結
果いずれも硫化亜鉛単層であった。また、ICP装置に
よりZn/Clの量は仕込量と実験誤差の範囲内で一致
した。
(Preparation of Standard Material) Raw material zinc sulfide and sodium chloride were thoroughly mixed in a dry manner so as to have the composition shown in Table 1 below, and the mixture was filled in a cylindrical tube container made of quartz and 950 ° C. in a hydrogen sulfide gas stream. It was baked for 3 hours. The fired product obtained was thoroughly washed with pure water, dried at 120 ° C., and sieved to obtain a chlorine-activated zinc sulfide standard substance. As a result of powder X-ray diffraction, all were zinc sulfide single layers. In addition, the amount of Zn / Cl in the ICP apparatus was in agreement with the charged amount within the range of experimental error.

【0022】[0022]

【表2】 [Table 2]

【0023】(67Zn標準線の作成)参考例1〜6の標
準物質について、スタティックNMRにて67Znシグナ
ルの半値幅(Δν1/2 (Zn)ST)を測定した。測定
は、Bruker社製固体NMR装置MSL−300に
スタティックプローブを装着して行った。
(Preparation of 67 Zn Standard Line) With respect to the standard substances of Reference Examples 1 to 6, the full width at half maximum of the 67 Zn signal (Δν 1/2 (Zn) ST ) was measured by static NMR. The measurement was carried out by mounting a static probe on a solid state NMR apparatus MSL-300 manufactured by Bruker.

【0024】67Znシグナルの半値幅Δν1/2 (Zn)
STを亜鉛欠陥濃度[VZn ST]およびCl濃度[Cl]と
ともに表1に示す。また、これをもとに、縦軸に67Zn
シグナルの半値幅Δν1/2 (Zn)STを、横軸に亜鉛欠
陥濃度[VZn ST]にしてその関係をプロットし直線化し
て得られた標準線を図2に示す。
67 Zn signal full width at half maximum Δν 1/2 (Zn)
ST is shown in Table 1 together with the zinc defect concentration [V Zn ST ] and the Cl concentration [Cl]. Based on this, the vertical axis shows 67 Zn.
FIG. 2 shows a standard line obtained by plotting the half-value width Δν 1/2 (Zn) ST of the signal as the zinc defect concentration [V Zn ST ] on the horizontal axis and plotting the relationship to make it linear.

【0025】(実施例1〜5)(比較例1) 下表2の組成になるように原料硫化亜鉛と塩化ナトリウ
ム及び硝酸銅を乾式にて十分混合し、石英製の円筒型チ
ューブ容器に充填して硫化水素気流中で950℃で3時
間焼成した。得られた焼成物を純水で十分に洗浄した
後、120℃で乾燥し篩にかけてZnS:Cu,Cl蛍
光体を得た。これらの蛍光体を電子線あるいは紫外線で
励起するといずれも緑色に光った。
(Examples 1 to 5) (Comparative Example 1) The raw material zinc sulfide, sodium chloride and copper nitrate were sufficiently mixed in a dry manner so as to have the composition shown in Table 2 below, and the mixture was filled in a cylindrical tube container made of quartz. Then, it was fired in a hydrogen sulfide gas stream at 950 ° C. for 3 hours. The obtained fired product was thoroughly washed with pure water, dried at 120 ° C., and sieved to obtain a ZnS: Cu, Cl phosphor. When these phosphors were excited by electron beams or ultraviolet rays, all of them glowed green.

【0026】このものをスタティックNMRにて67Zn
シグナルの半値幅(Δν1/2 (Zn))を測定した。図
3に実施例3のNMRチャート図を示す。ついで輝度を
測定し、その結果を表3に示す。
This was analyzed by static NMR to obtain 67 Zn
The full width at half maximum of the signal (Δν 1/2 (Zn)) was measured. The NMR chart of Example 3 is shown in FIG. Then, the brightness was measured, and the results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表3の67Znシグナルの半値幅Δν1/2
67Zn)を縦軸に、亜鉛欠陥濃度[VZn]を横軸にし
て、その関係をプロットし、先の標準物質による図2の
標準線との関係を示したのが図1である。
The full width at half maximum of 67 Zn signal in Table 3 Δν 1/2 (
67 Zn) is plotted on the ordinate and zinc defect concentration [V Zn ] is plotted on the abscissa, and the relationship is plotted to show the relationship with the standard line of FIG.

【0030】図1から明らかなように、相対輝度に優れ
た本発明の実施例のものは、標準線より高い半値幅値を
有する。
As is apparent from FIG. 1, those of the examples of the present invention having excellent relative luminance have a half width value higher than the standard line.

【0031】[0031]

【発明の効果】本発明の蛍光体は、高輝度で、高密度の
電子線照射によらずに十分な高い輝度を達成できる。
EFFECTS OF THE INVENTION The phosphor of the present invention has a high brightness and can achieve a sufficiently high brightness regardless of high-density electron beam irradiation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蛍光体の67Znシグナルの半値幅Δν
1/2 (Zn)と亜鉛欠陥濃度[VZn]の関係と標準線と
の関係を示す図。
FIG. 1 is a full width at half maximum Δν of 67 Zn signal of the phosphor of the present invention.
The figure which shows the relationship of 1/2 (Zn) and zinc defect density [ VZn ], and a standard line.

【図2】標準物質の67Znシグナルの半値幅Δν
1/2 (Zn)STと亜鉛欠陥濃度[VZn ST]の関係を示す
標準線の図。
[Fig. 2]67Full width at half maximum of Zn signal Δν
1/2(Zn)STAnd zinc defect concentration [VZn ST] Relationship
Diagram of standard line.

【図3】実施例3の硫化亜鉛蛍光体のNMRチャート
図。
3 is an NMR chart of the zinc sulfide phosphor of Example 3. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安達 隆二 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社小田原工場内 (72)発明者 長谷 堯 神奈川県小田原市成田1060番地 化成オプ トニクス株式会社小田原工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryuji Adachi 1060 Narita, Odawara-shi, Kanagawa Kasei Optonix Co., Ltd. Odawara Plant (72) Inventor, Hase Ko, 1060 Narita, Odawara-shi, Kanagawa Odawara Plant Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 組成式(Zn1-X Cdx )S:Cu,C
l(式中、xは0≦x≦0.1であり、賦活剤Cu、C
lの濃度は各々500ppm以下である。)で示される
硫化亜鉛蛍光体であって、[Cl濃度−Cu濃度]×1
/2で定義される亜鉛欠陥濃度([VZn]、モル濃度、
以下[ ]で示す濃度は全てモル濃度である。)に対し
てスタティックNMRによる67Znシグナルの半値幅
(Δν1/ 2 (Zn))をプロットし、標準となる(Zn
1-X Cdx )S:Cl蛍光体のCl濃度の1/2として
定義される亜鉛欠陥濃度([VZn ST])とスタティック
NMRによる67Znシグナルの半値幅(Δν1/2 (Z
n)ST)をプロットした際、[VZn]=[VZn ST]の点
で、Δν1/2 (Zn)>Δν1/2 (Zn)ST+10Hz
であることを特徴とする硫化亜鉛蛍光体。
1. A composition formula (Zn 1-X Cd x ) S: Cu, C
l (where x is 0 ≦ x ≦ 0.1, and activators Cu, C
The concentration of 1 is 500 ppm or less. ), Which is a zinc sulfide phosphor represented by [Cl concentration−Cu concentration] × 1
Zinc defect concentration ([V Zn ], molar concentration,
The concentrations shown in [] below are all molar concentrations. ) FWHM of 67 Zn signal by a static NMR a (Δν 1/2 (Zn) ) plotted against, the standard (Zn
The zinc defect concentration ([V Zn ST ]) defined as 1/2 of the Cl concentration of the 1-X Cd x ) S: Cl phosphor and the full width at half maximum of the 67 Zn signal by static NMR (Δν 1/2 (Z
n) ST ) when plotted, at the point of [V Zn ] = [V Zn ST ], Δν 1/2 (Zn)> Δν 1/2 (Zn) ST +10 Hz
And a zinc sulfide phosphor.
JP13530695A 1995-06-01 1995-06-01 Zinc sulfide phosphor Pending JPH08325565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13530695A JPH08325565A (en) 1995-06-01 1995-06-01 Zinc sulfide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13530695A JPH08325565A (en) 1995-06-01 1995-06-01 Zinc sulfide phosphor

Publications (1)

Publication Number Publication Date
JPH08325565A true JPH08325565A (en) 1996-12-10

Family

ID=15148642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13530695A Pending JPH08325565A (en) 1995-06-01 1995-06-01 Zinc sulfide phosphor

Country Status (1)

Country Link
JP (1) JPH08325565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216903A (en) * 2004-03-02 2011-10-27 Idemitsu Kosan Co Ltd Organic electroluminescent device, and method of manufacturing material for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216903A (en) * 2004-03-02 2011-10-27 Idemitsu Kosan Co Ltd Organic electroluminescent device, and method of manufacturing material for the same
US8895154B2 (en) 2004-03-02 2014-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device

Similar Documents

Publication Publication Date Title
US4208299A (en) Method of preparing zinc sulfide phosphor coactivated with copper and gold
US6940221B2 (en) Display device
US6753099B2 (en) Phosphor and imaging device using the same
JP2000073053A (en) Phosphor and cathode-ray tube using the same
JP2003013059A (en) Color cathode ray tube and red phosphor to be used therein
JP3755390B2 (en) Phosphor, display device using the same, and light source
US6696782B2 (en) Green-emitting phosphor and image display device using the same
JP2008066045A (en) Image display device
KR930010745B1 (en) Phosphor and cathode-ray tube using the same
JPH08325565A (en) Zinc sulfide phosphor
JPH08325568A (en) Zinc sulfide phosphor
EP0364888A2 (en) A green light emitting phosphor
EP0109676B1 (en) Color projection type video device
JP4927352B2 (en) Image display device
US3868533A (en) Cathode-ray tube for image display
JP3263991B2 (en) Blue light emitting phosphor
EP1555306A1 (en) Fluorescent material for display unit, process for producing the same and color display unit including the same
JPH08325569A (en) Yttrium oxysulfide phosphor
Do et al. Preparation and Optical Properties of $ SrGa_2S_4 $: Eu Phosphor
JPH08325566A (en) Zinc sulfide phosphor
JP2000290649A (en) Fluorescent substance, its production, and color cathode ray tube
JPH08109374A (en) Zinc sulfide phosphor
JPH08127773A (en) Yttrium oxide phosphor
JPH08325567A (en) Zinc sulfide phosphor
JPH0629421B2 (en) Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same