JP2000290649A - Fluorescent substance, its production, and color cathode ray tube - Google Patents

Fluorescent substance, its production, and color cathode ray tube

Info

Publication number
JP2000290649A
JP2000290649A JP11102164A JP10216499A JP2000290649A JP 2000290649 A JP2000290649 A JP 2000290649A JP 11102164 A JP11102164 A JP 11102164A JP 10216499 A JP10216499 A JP 10216499A JP 2000290649 A JP2000290649 A JP 2000290649A
Authority
JP
Japan
Prior art keywords
phosphor
oxygen
heat treatment
less
thermoluminescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11102164A
Other languages
Japanese (ja)
Inventor
Hideji Matsukiyo
秀次 松清
Masaki Nishikawa
昌樹 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11102164A priority Critical patent/JP2000290649A/en
Publication of JP2000290649A publication Critical patent/JP2000290649A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fluorescent substance with little reduction in emission efficiency even under a condition severe in excitation conditions and environmental temperatures of a fluorescent film and used for color cathode ray tubes excellent in emitting characteristics by specifying the ratio of the integrated intensity of a thermoluminescent intensity curve before and after the heat treatment. SOLUTION: In the fluorescent substance, the ratio (I1/I2) of the integrated intensity (I1) of a thermoluminescence intensity curve in the temperature range of 80-400 K measured in an inactive gas before the heat treatment by bringing europium as an emission center and oxygen and sulfur as basic structural elements and the integrated intensity (I2) of a thermoluminescence intensity curve in the temperature range of 80-400 K after 1 hour heat treatment at 850-1150 deg.C in an atmosphere containing <0.2 vol.% of oxygen in the aforesaid active gas is brought to <=0.8. To obtain the subject fluorescent substance, it is preferable to have a previous processing and a post-processing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発光特性に優れたカ
ラー陰極線管用蛍光体、その製造方法、この蛍光体を用
いて蛍光膜を形成したカラー陰極線管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor for a color cathode ray tube having excellent light emission characteristics, a method for producing the same, and a color cathode ray tube formed with a phosphor film using the phosphor.

【0002】[0002]

【従来の技術】酸硫化イットリウム(Y2O2S)を母体結
晶とする蛍光体はよく知られている材料の一つであり、
なかでもユーロピウム付活酸硫化イットリウム(Y2O2S:
Eu3+)は、直視型陰極線管の赤色蛍光体として使用され
ている。この材料の蛍光体合成に関する技術、及びカラ
ーTV用蛍光体としての記述は、例えば蛍光体ハンドブ
ック(蛍光体同学会編、オーム社出版、1987)中の166
〜180ページ、及び254〜283ページに詳細に記載されて
いる。前記蛍光体ハンドブックにも記載されているよう
に、前記ユーロピウム付活酸硫化イットリウム(Y2O2S:
Eu3+)蛍光体の場合、励起密度を大きくしても発光強度
が増大しなくなるといういわゆる輝度飽和を改善するた
めに、微量の希土類イオン、具体的にはテルビウム(Tb
3+)もしくはプラセオジム(Pr3+)が添付されている。
また、前記蛍光体ハンドブックには、Eu3+濃度を低くし
発光色調を深赤色化するために、サマリウムイオン(Sm
3+)を添加することも記載されている。
2. Description of the Related Art A phosphor using yttrium oxysulfide (Y 2 O 2 S) as a host crystal is one of well-known materials.
Among them, europium-activated yttrium oxysulfide (Y 2 O 2 S:
Eu 3+ ) is used as a red phosphor in a direct-view cathode ray tube. A technique for synthesizing the phosphor of this material and a description as a phosphor for color TV are described in, for example, 166 of Phosphor Handbook (edited by Phosphors Society of Japan, Ohmsha Publishing, 1987)
-180 pages and 254-283 pages. As described in the phosphor handbook, the europium-activated yttrium oxysulfide (Y 2 O 2 S:
In the case of Eu 3+ ) phosphor, a trace amount of rare earth ions, specifically terbium (Tb
3+ ) or praseodymium (Pr 3+ ).
In addition, the phosphor handbook includes a samarium ion (Sm) in order to lower the Eu 3+ concentration and deepen the emission color tone.
The addition of 3+ ) is also described.

【0003】[0003]

【発明が解決しようとする課題】ユーロピウム付活酸硫
化イットリウム(Y2O2S:Eu3+)は、前述のように直視型
カラー陰極線管の赤色蛍光体としての用途が多い。とこ
ろがこの蛍光体は、陰極線管の表示画像が高精細・高コ
ントラスト化するにつれて励起電流密度が増加するため
に、輝度飽和や蛍光膜の温度上昇に伴う発光効率の低
下、いわゆる温度消光が顕著となる欠点を有している。
その結果、陰極線管の表示画像の品質が低下する問題が
ある。
As described above, europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu 3+ ) has many uses as a red phosphor for a direct-view color cathode ray tube. However, since the excitation current density of the phosphor increases as the display image of the cathode ray tube increases in definition and contrast, the decrease in luminous efficiency due to luminance saturation and the temperature rise of the phosphor film, so-called temperature quenching, is remarkable. Disadvantages.
As a result, there is a problem that the quality of the display image of the cathode ray tube is reduced.

【0004】本発明の第一の目的は、蛍光膜の励起条件
や環境温度が厳しい条件でも発光効率低下の少ない蛍光
体を提供することである。
[0004] A first object of the present invention is to provide a phosphor which has a small decrease in luminous efficiency even under conditions of exciting the fluorescent film and under severe environmental temperature.

【0005】本発明の第二の目的は、励起条件や環境温
度が厳しい条件でも蛍発光効率低下の少ない蛍光体の製
造方法を提供することである。
[0005] A second object of the present invention is to provide a method for producing a phosphor with a small decrease in the luminous efficiency even under severe conditions of excitation and environmental temperature.

【0006】さらに第三の目的は、上記励起条件や環境
温度が厳しい条件でも蛍発光効率低下の少ない蛍光体を
用いた蛍光膜を備えた高い画面輝度の陰極線管を提供す
ることである。
It is a third object of the present invention to provide a cathode ray tube having a high screen luminance provided with a fluorescent film using a phosphor with a small decrease in the luminous efficiency even under the above-mentioned excitation conditions and severe environmental temperatures.

【0007】[0007]

【課題を解決するための手段】(1)本発明の蛍光体は
ユーロピウムを発光センタとしたイットリウム、酸素及
び硫黄を基本構成元素とし、該蛍光体を不活性ガス雰囲
気で加熱処理する前に測定した温度範囲80K〜400
Kの熱発光強度曲線の積分強度(I)と、前記活性ガ
ス中に酸素を体積比で0.2未満含有する雰囲気中で、
850℃を越え1150℃未満で1時間加熱処理した後
に測定した温度範囲80K〜400Kにおける熱発光強
度曲線の積分強度(I)、との比(I2/I)が0.
8以下である。
(1) The phosphor of the present invention is composed of yttrium, oxygen and sulfur with europium as a light emitting center as a basic constituent element, and is measured before the phosphor is heated in an inert gas atmosphere. Temperature range 80K-400
The integrated intensity (I 1 ) of the thermoluminescence intensity curve of K and the atmosphere in which the active gas contains less than 0.2 by volume of oxygen,
The ratio (I 2 / I 1 ) to the integrated intensity (I 2 ) of the thermoluminescence intensity curve in a temperature range of 80 K to 400 K measured after heating for 1 hour at a temperature exceeding 850 ° C. and less than 1150 ° C. is 0.1.
8 or less.

【0008】(2)本発明の蛍光体、ユーロピウムを発
光センタとしたイットリウム、酸素及び硫黄を基本構成
元素とする蛍光体を、原料を混合した後に空気中で加熱
処理する前工程と、不活性ガス雰囲気で加熱処理する後
工程とを有する方法で製造する。
(2) a pretreatment step of heating the phosphor of the present invention, a phosphor containing europium as a light emitting center and containing yttrium, oxygen and sulfur as basic constituent elements in air after mixing the raw materials; And a heat treatment in a gas atmosphere.

【0009】この蛍光体製造方法において、前記後工程
が不活性ガスが酸素を含有していて、前記不活性ガスに
対する酸素の体積比が0.2未満好ましくは0.002〜
0.1であって、加熱処理温度が850℃を越え1150
℃未満好ましくは900℃〜1100℃である。
In this method for producing a phosphor, the inert gas contains oxygen in the subsequent step, and the volume ratio of oxygen to the inert gas is less than 0.2, preferably 0.002 to 0.002.
0.1 and the heat treatment temperature exceeds 850 ° C. and 1150
It is lower than 900C, preferably 900-1100C.

【0010】(3)本発明のカラー陰極線管は、内面に
赤、緑、青の蛍光体を有する蛍光膜を形成したフェース
プレートと、該蛍光膜に近接して配置した色選別電極
と、該蛍光膜に向けて電子線を発する電子銃と、前記電
子線を偏向する偏向ヨークとを備えおり、前記蛍光体
が、ユーロピウムを発光センタとしたイットリウム、酸
素及び硫黄を基本構成元素とし、かつ前記蛍光体を不活
性ガス雰囲気で加熱処理する前に測定した温度範囲80
K〜400Kの熱発光強度曲線の積分強度(I)と、
前記蛍光体を前記活性ガス中に酸素を体積比で0.2未
満含有する雰囲気中で、850℃を越え1150℃未満
で1時間加熱処理した後に測定した温度範囲80K〜4
00Kにおける熱発光強度曲線の積分強度(I)、と
の比(I2/I)が0.8以下である。
(3) The color cathode ray tube of the present invention comprises a face plate having a fluorescent film having red, green, and blue phosphors formed on an inner surface thereof; a color selection electrode disposed in close proximity to the fluorescent film; An electron gun that emits an electron beam toward the fluorescent film, and a deflection yoke that deflects the electron beam, wherein the phosphor has yttrium with europium as a light emission center, oxygen and sulfur as basic constituent elements, and Temperature range 80 measured before heat treatment of phosphor in inert gas atmosphere
An integrated intensity (I 1 ) of a thermoluminescence intensity curve from K to 400 K;
A temperature range of 80 K to 4 K measured after heating the phosphor for 1 hour at a temperature exceeding 850 ° C. and less than 1150 ° C. in an atmosphere containing less than 0.2 by volume of oxygen in the active gas.
The ratio (I 2 / I 1 ) to the integrated intensity (I 2 ) of the thermoluminescence intensity curve at 00K is 0.8 or less.

【0011】蛍光体の発光特性を左右する要因として、
結晶中の欠陥(トラップ)が挙げられる。トラップは電
子もしくは正孔を捕獲するため、本来発光センターに伝
達されるエネルギーがトラップで消費され、その結果発
光特性に悪影響を及ぼすことが多い。従って、蛍光体の
劣化は結晶中のトラップ密度の大小が深く関与している
と考えられている。本発明の発明者は以下のように考え
た。酸素を構成元素とする蛍光体の場合、蛍光体の合成
中に酸素空孔が形成され、この酸素空孔がトラップとな
る場合が多いと考えた。また、ユーロピウム付活酸硫化
イットリウム(Y2O2S:Eu3+)を水素気流中で熱処理する
と母体の着色が観察されたことから、熱処理中に酸素空
孔が母体に形成されると考えた。従って、この酸素空孔
を形成できないようにすることと、生じた酸素空孔を補
修し消滅させることにより、蛍光体の発光特性を優れた
ものにできると考えるに至った。この観点から本発明で
は、蛍光体合成後に行う熱処理プロセスでこの課題に対
処した。但し、酸素を補うために、単に酸素気流中で蛍
光体を熱処理すればよい訳ではない。例えば母体結晶が
Y2O2Sの場合、酸素濃度が高いと熱処理中に硫酸イオン
(SO4 2-)が生成し、さらに酸化が進むと酸化物(Y
2O3)となる。従って、蛍光体の酸化状態を精密に制御
することが肝要である。本発明では、アルゴン(Ar)ガ
ス中の酸素含有量に注目して、熱処理を行った。当然の
ことながら、アルゴンの代りにネオンのような不活性ガ
スに所望の濃度の酸素ガスを混合して用いることも可能
である。また、酸素空孔は蛍光体が酸硫化物であるがゆ
えに生成するので、イットリウム(Y)の一部を他のイ
オン、例えばランタン(La)やガドリニウム(Gd)など
で置換した母体材料でも同様の効果が期待できる。本発
明では、赤色蛍光体として広く使用されているユーロピ
ウム付活酸硫化イットリウム(Y2O2S:Eu3+)についての
べるが、Eu3+以外の発光センタ、例えばプラセオジム
(Pr3+)などの酸硫化物蛍光体でも同様である。
The factors that affect the light emission characteristics of the phosphor include:
Defects (traps) in the crystal are mentioned. Since the trap captures electrons or holes, the energy originally transmitted to the light emitting center is consumed by the trap, and as a result, the light emission characteristics are often adversely affected. Therefore, it is considered that the deterioration of the phosphor is deeply related to the trap density in the crystal. The inventor of the present invention considered as follows. In the case of a phosphor containing oxygen as a constituent element, it is considered that oxygen vacancies are formed during the synthesis of the phosphor, and the oxygen vacancies often serve as traps. In addition, when the europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu 3+ ) was heat-treated in a stream of hydrogen, discoloration of the matrix was observed. It is considered that oxygen vacancies were formed in the matrix during the heat treatment. Was. Therefore, it has been considered that the emission characteristics of the phosphor can be improved by preventing the formation of the oxygen vacancies and by repairing and eliminating the generated oxygen vacancies. From this point of view, the present invention has solved this problem by a heat treatment process performed after the phosphor is synthesized. However, it is not sufficient to simply heat-treat the phosphor in an oxygen stream to supplement oxygen. For example, the host crystal
In the case of Y 2 O 2 S, when the oxygen concentration is high, sulfate ions (SO 4 2- ) are generated during the heat treatment, and when the oxidation proceeds further, the oxide (Y
2 O 3 ). Therefore, it is important to precisely control the oxidation state of the phosphor. In the present invention, the heat treatment was performed while paying attention to the oxygen content in the argon (Ar) gas. As a matter of course, it is also possible to use an inert gas such as neon mixed with a desired concentration of oxygen gas instead of argon. In addition, since oxygen vacancies are generated because the phosphor is an oxysulfide, the same applies to a base material in which part of yttrium (Y) is replaced with another ion, such as lanthanum (La) or gadolinium (Gd). The effect can be expected. In the present invention, europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu 3+ ), which is widely used as a red phosphor, will be described, but a light-emitting center other than Eu 3+ , such as praseodymium (Pr 3+ ) The same applies to the above oxysulfide phosphor.

【0012】前記トラップの深さ及びトラップに捕獲さ
れた電子や正孔(以下、これらをキャリアと呼ぶ。)の
密度の測定方法としては、熱発光(thermoluminescenc
e)現象を測定プローブとして利用する方法が知られて
いる。この熱発光とは、励起を停止した後に試料の温度
を上げることによりトラップに捕獲されているキャリア
が熱的に開放されて、発光センタで輻射再結合すること
により再び発光する現象である。従って、トラップに捕
獲されているキャリアが多いほど、すなわちトラップ密
度が高いほど熱発光強度が強い。本発明では、高い精度
で制御した一定昇温速度条件下で熱発光の強度を測定
し、試料温度に対する熱発光強度の関数として表示した
熱発光曲線(グローカーブ)をトラップ評価の手段とし
た。なお、測定に用いるテストーピースは、Niメッキし
た無酸素銅製基板上に水ガラスを用いた凝集沈降により
蛍光体試料を均一塗布したものである。膜重量は4.5
mg/cm前後になるように沈降量を制御した。この
測定手法では、蛍光膜サンプルを同一量、同一面積にで
きるので、異なる試料の相対比較が容易にできる。測定
装置は、ジャーナル・オブ・エレクトロケミカル・ソサ
エティ(Jounal of Electrochemical Society)、14
5巻の1、270ページ(1998)に記載されている
ものである。以下の手順で測定した。(1)クライオス
タット内にセットした試料に約80Kの低温で紫外線
(波長;254nm)を1時間照射して、トラップにキ
ャリアを捕獲させた。(2)紫外線の照射を止め、10
分間そのまま約80Kに放置した後、一定の速度(毎秒
0.1K)で試料を昇温した。この際、100K以下の
低温における昇温でも設定温度に対して誤差0.1%以
下の精度で昇温速度を制御した。(3)試料温度はKタ
イプ熱電対により測定し、熱発光強度は光電子増倍管
(浜松フォトニクス社製、R268)を用いてモニタ
し、熱発光強度と温度をプロットした。
As a method for measuring the depth of the trap and the density of electrons and holes (hereinafter, these are referred to as carriers) captured by the trap, thermoluminescence (thermoluminescenc) is used.
e) A method of using a phenomenon as a measurement probe is known. The thermoluminescence is a phenomenon in which the carrier trapped in the trap is thermally opened by raising the temperature of the sample after the excitation is stopped, and the carrier is radiated again by radiative recombination at the luminescence center. Therefore, the more the carriers captured by the trap, that is, the higher the trap density, the higher the thermoluminescence intensity. In the present invention, the intensity of thermoluminescence is measured under a condition of a constant heating rate controlled with high accuracy, and a thermoluminescence curve (glow curve) displayed as a function of the thermoluminescence intensity with respect to the sample temperature is used as a means for evaluating the trap. The test piece used for the measurement was obtained by uniformly coating a phosphor sample on a Ni-plated oxygen-free copper substrate by coagulation sedimentation using water glass. The membrane weight is 4.5
The amount of sedimentation was controlled to be around mg / cm 2 . In this measurement method, since the same amount and the same area of the fluorescent film sample can be used, the relative comparison of different samples can be easily performed. The measuring device is the Journal of Electrochemical Society, 14
5, pages 1, 270 (1998). It measured by the following procedures. (1) The sample set in the cryostat was irradiated with ultraviolet rays (wavelength: 254 nm) at a low temperature of about 80 K for 1 hour to capture carriers in the trap. (2) Stop irradiation of ultraviolet rays
After leaving the sample at about 80K for a minute, the sample was heated at a constant speed (0.1K per second). At this time, even when the temperature was raised at a low temperature of 100 K or less, the heating rate was controlled with an accuracy of 0.1% or less with respect to the set temperature. (3) The sample temperature was measured with a K-type thermocouple, and the thermoluminescence intensity was monitored using a photomultiplier tube (R268, manufactured by Hamamatsu Photonics), and the thermoluminescence intensity and the temperature were plotted.

【0013】説明の便宜上、後述の実施例1で得たユー
ロピウム付活酸硫化イットリウム(Y2O2S:Eu3+)蛍光体
試料のグローカーブ11を図1に示す。また比較のため
に、合成後の熱処理を実施しない試料(比較例1)のグ
ローカーブ12も図1に併記した。本発明で得た蛍光体
は、同一条件で測定した比較例に比べて熱発光強度が大
きく減少しており、結晶中の有害なトラップの密度が低
減していることがわかる。試料温度80K〜400Kの
範囲で、横軸と熱発光曲線とで囲まれる面積、すなわち
積分強度で本発明の蛍光体と比較例と比べると、本発明
蛍光体の積分強度(I)は比較例の積分強度(I
の43%程度である。この積分強度比を尺度にした場
合、後述する輝度の発現効果を考慮して80%以下にト
ラップ密度を低減することが望ましい。
For convenience of explanation, a glow curve 11 of a europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu 3+ ) phosphor sample obtained in Example 1 described later is shown in FIG. For comparison, the glow curve 12 of the sample (comparative example 1) in which the heat treatment after the synthesis was not performed is also shown in FIG. In the phosphor obtained in the present invention, the thermoluminescence intensity is significantly reduced as compared with the comparative example measured under the same conditions, and it can be seen that the density of harmful traps in the crystal is reduced. When the phosphor of the present invention is compared with the comparative example in the area surrounded by the abscissa and the thermoluminescence curve in the sample temperature range of 80 K to 400 K, that is, the integrated intensity (I 2 ) of the phosphor of the present invention is comparative. Example integrated intensity (I 1 )
About 43% of the total. When this integrated intensity ratio is used as a scale, it is desirable to reduce the trap density to 80% or less in consideration of the expression effect of luminance described later.

【0014】また本発明実施例では、主に電子線励起に
よる蛍光体の発光強度を定量的に表すために、面積40
×30mmに、30kVで加速した電子線を所定の電
流量で照射して各試料の発光強度比較を行った。測定装
置は、ジャーナル・オブ・エレクトロケミカル・ソサエ
ティ(Jounal of Electrochemical Society)、143
巻の5、1684頁(1996)に記載されているもの
を用いた。なお、蛍光膜の発光強度測定は、色彩色差計
(ミノルタ製、CS100)を用いた。また、照射電流
を変えて輝度の照射電流依存性を測定し、照射電流の増
大に伴う輝度の延びを電流係数にて評価した。本発明で
は電流係数を以下の手順で算出した。まず、上記加速電
圧及び照射面積と同一条件で、電子線照射電流を0.
5、0.7、1.0、1.2、1.5、2.0、3.0、5.
0μAと変え、それぞれの場合の輝度を測定し、電流の
常用対数値を横軸に輝度の常用対数値を縦軸にプロット
する。この両対数プロットを、最小二乗近似を用いて便
宜的に三次曲線にフィッティングさせ、その微係数から
電流1.2μAにおける曲線の傾きを求める。こうして
求めた電流係数が1に近いほど照射した電流量に比例し
て発光強度が増大することになり、蛍光体の発光特性と
して好ましい。言い換えると、前記電流係数が1より低
い数値になると照射電流を増大しても輝度の伸びが鈍化
するため、高輝度化が実現できない。
In the embodiment of the present invention, an area 40 is mainly used to quantitatively express the luminous intensity of the phosphor mainly excited by the electron beam.
X 30 mm 2 was irradiated with an electron beam accelerated at 30 kV at a predetermined current amount, and the emission intensity of each sample was compared. The measuring device is the Journal of Electrochemical Society, 143
Volume 5, page 1684 (1996) was used. The emission intensity of the fluorescent film was measured using a colorimeter (CS100, manufactured by Minolta). Further, the irradiation current dependency of the luminance was measured while changing the irradiation current, and the extension of the luminance with the increase of the irradiation current was evaluated by the current coefficient. In the present invention, the current coefficient was calculated according to the following procedure. First, under the same conditions as the above-mentioned acceleration voltage and irradiation area, the electron beam irradiation current was set to 0.5.
5, 0.7, 1.0, 1.2, 1.5, 2.0, 3.0, 5.
The luminance was measured in each case, and the common logarithm of the current was plotted on the horizontal axis, and the common logarithm of the luminance was plotted on the vertical axis. The log-log plot is conveniently fitted to a cubic curve using least squares approximation, and the slope of the curve at a current of 1.2 μA is determined from its derivative. As the current coefficient thus obtained is closer to 1, the light emission intensity increases in proportion to the amount of current applied, which is preferable as the light emission characteristics of the phosphor. In other words, if the current coefficient is lower than 1, even if the irradiation current is increased, the increase in luminance is slowed down, so that high luminance cannot be realized.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図を用い
ながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0016】(実施例1〜4)純度99.999%以上
の酸化イットリウム(Y2O3)10.861gと純度99.
99%以上の酸化ユーロピウム(Eu2O3)0.669gを
メノウ製乳鉢内で、エタノールを少量加えて混合した。
なお酸化イットリウム(Y2O3)は、テルビウム(Tb)と
共沈させて所定の量を含むようにした。純度99.99
%以上の酸化サマリウム(Sm2O3)を硝酸(HNO3)に加
熱溶解させ、サマリウム(Sm)として水溶液1ml中に
1mg含有する溶液を調製した。このサマリウム(Sm)
を水溶液メスピペットを用いて希望の添加濃度になるよ
うに上記乳鉢内に加え、混合した。この原料混合物を空
気中約120℃で1時間ほど乾燥させた。この混合物と
純度99%以上の硫黄華3.413gと、純度99.99
%以上の炭酸ナトリウム(Na2CO3)3.413gと、純
度98%以上のリン酸カリウム(K3PO4)0.923gと
をよく混合した後、アルミナルツボに入れ空気中115
0℃で2時間加熱処理した。この時、アルミナルツボに
蓋を被せ、ルツボと蓋とをアロンセラミック(東亜合成
化学社商品名)で封止し、外気から遮断した。得られた
生成物をまず水洗処理を2回行い、次いでポリアミド樹
脂製のメッシュ(開口部が約60μm四方)に水洗した
生成物をそのまま通した後、約1mol/lの塩酸(HC
l)による洗浄、次いで純水による洗浄を3回行った。
蛍光体粉末を乾燥させたものをアルミナ製の容器に移
し、アルゴンガスの流量を毎分500mlに設定した管
状電気炉内で加熱処理をした。処理条件は1000℃
で、1時間熱処理である。冷却後、さらに蛍光体粒子の
分散性をよくするために、微細なZnOとAlOをいわゆ
るゾルゲル法によって付着させた。蛍光体粒子を瀘別
後、空気中120℃で乾燥させた。こうして得られた化合
物は、赤色発光を示す蛍光体であり、走査型電子顕微鏡
(SEM)による観察の結果平均粒径5μmの粉体である
ことが判った。また粉末X線回折による測定の結果、回
折パターンはASTM(American Society forTesting and
Materials)データに掲載されたY2O2Sのパターンと一致
した。また、誘導結合プラズマ質量分析法(ICP-MS、In
ductively Coupled Argon PlasmaMass Spectroscopy)を
用いて分析した結果、蛍光体1g中に含まれる不純物濃
度は、仕込み濃度に誤差範囲内で合致する分析値であっ
た。意図的に添加した微量成分はほぼ蛍光体結晶中に取
り込まれていると考えられる。こうして得た蛍光体試料
をNiメッキした無酸素銅製基板上に、水ガラスを用いた
凝集沈降方法によって均一に塗布し、蛍光体の発光特性
を評価するテストピースとした。
(Examples 1 to 4) 10.861 g of yttrium oxide (Y 2 O 3 ) having a purity of 99.999% or more and a purity of 99.999% or more were obtained.
0.669 g of 99% or more europium oxide (Eu 2 O 3 ) was mixed with a small amount of ethanol in an agate mortar.
Note that yttrium oxide (Y 2 O 3 ) was coprecipitated with terbium (Tb) so as to contain a predetermined amount. Purity 99.99
% Of samarium oxide (Sm 2 O 3 ) was dissolved in nitric acid (HNO 3 ) by heating to prepare a solution containing 1 mg of samarium (Sm) in 1 ml of an aqueous solution. This samarium (Sm)
Was added to the above mortar using an aqueous solution pipette so as to have a desired addition concentration, and mixed. This raw material mixture was dried in air at about 120 ° C. for about 1 hour. This mixture, 3.413 g of sulfur flower having a purity of 99% or more, and 99.99 purity
% Of sodium carbonate (Na 2 CO 3 ) (3.413 g) and potassium phosphate (K 3 PO 4 ) of 98% or more (0.923 g) are mixed well, then put in an alumina crucible and placed in an air crucible.
Heat treatment was performed at 0 ° C. for 2 hours. At this time, the alumina crucible was covered with a lid, and the crucible and the lid were sealed with Aron Ceramic (trade name of Toa Gosei Chemical Co., Ltd.) and were shielded from the outside air. The resulting product is first washed twice with water, then passed through a polyamide resin mesh (opening of about 60 μm square) as it is, and then subjected to about 1 mol / l hydrochloric acid (HC)
Washing with l) and then washing with pure water were performed three times.
The dried phosphor powder was transferred to an alumina container, and heat-treated in a tubular electric furnace in which the flow rate of argon gas was set at 500 ml / min. Processing conditions are 1000 ° C
And heat treatment for one hour. After cooling, fine ZnO and Al 2 O 3 were attached by a so-called sol-gel method in order to further improve the dispersibility of the phosphor particles. After the phosphor particles were filtered off, they were dried at 120 ° C. in air. The compound thus obtained was a phosphor emitting red light, and as a result of observation with a scanning electron microscope (SEM), it was found to be a powder having an average particle size of 5 μm. As a result of measurement by powder X-ray diffraction, the diffraction pattern was found to be ASTM (American Society for Testing and
Materials) and the pattern of Y 2 O 2 S published in the data. In addition, inductively coupled plasma mass spectrometry (ICP-MS, InP
As a result of analysis using inductively coupled Argon Plasma Mass Spectroscopy), the concentration of impurities contained in 1 g of the phosphor was an analysis value that matched the concentration of the charged substance within an error range. It is considered that the intentionally added trace component is almost taken into the phosphor crystal. The phosphor sample thus obtained was uniformly applied on a Ni-plated oxygen-free copper substrate by a coagulation sedimentation method using water glass to prepare a test piece for evaluating the light emission characteristics of the phosphor.

【0017】図1に本実施例の蛍光体の熱発光曲線11
と、比較例1として合成後に熱処理を行なわない試料の
熱発光曲線12とを示す。図1から、本実施例の蛍光体
は合成後に熱処理を行っているので、蛍光体中のトラッ
プ密度が減少していることがわかる。なお、定量的に比
較するために、80K〜400Kまでの測定温度範囲で
熱発光曲線の積分強度を、本実施例の蛍光体と比較例1
とを比べるとその比は0.43:1であり、本実施例蛍
光体中のトラップ密度が比較例1より低減されている。
FIG. 1 shows a thermoluminescence curve 11 of the phosphor of this embodiment.
And a thermoluminescence curve 12 of a sample not subjected to heat treatment after synthesis as Comparative Example 1. From FIG. 1, it can be seen that since the phosphor of this example was subjected to heat treatment after synthesis, the trap density in the phosphor was reduced. In order to make a quantitative comparison, the integrated intensity of the thermoluminescence curve in the measurement temperature range from 80 K to 400 K was compared with the phosphor of the present example and Comparative Example 1
Is 0.43: 1, and the trap density in the phosphor of the present example is smaller than that of Comparative Example 1.

【0018】また、室温(300K)状態における電子
線励起による発光強度を前述の測定装置を用いて調べた
(加速電圧;30kV、照射電流;1.2μA、照射面
積;40×30mm、照射面積当りの電流は0.1μ
A/cmである)。測定結果を表1に示す。
The emission intensity by electron beam excitation at room temperature (300 K) was examined using the above-mentioned measuring apparatus (acceleration voltage: 30 kV, irradiation current: 1.2 μA, irradiation area: 40 × 30 mm 2 , irradiation area The current per unit is 0.1μ
A / cm 2 ). Table 1 shows the measurement results.

【0019】[0019]

【表1】 [Table 1]

【0020】本実施例の蛍光体と、合成後に熱処理を行
なわない試料(比較例1)とを比べると、本実施例で得
た蛍光体試料の輝度が約5%高い値を示している。ま
た、前述した電流係数を指標として両者の比較も行っ
た。熱処理を行った本実施例の蛍光体の方が比較例1よ
り約2%高い値を示し、輝度飽和の度合いが小さいこと
がわかる。
When the phosphor of this embodiment is compared with a sample in which no heat treatment is performed after the synthesis (Comparative Example 1), the brightness of the phosphor sample obtained in this embodiment is about 5% higher. The comparison between the two was also performed using the above-described current coefficient as an index. The heat-treated phosphor of the present example shows a value approximately 2% higher than that of Comparative Example 1, indicating that the degree of luminance saturation is smaller.

【0021】実施例1と同様の方法で蛍光体を合成し、
合成後のアルゴンガス気流中における熱処理の温度条件
のみを変えた試料を実施例2〜4として作製した。実施
例1と同様にして、評価用のテストピースを作製し熱発
光曲線の測定と試料の輝度及び電流係数を測定した。図
2及び表2に前記実施例1と併せて測定結果を示す。
A phosphor was synthesized in the same manner as in Example 1,
Samples in which only the temperature conditions of the heat treatment in the argon gas stream after the synthesis were changed were prepared as Examples 2 to 4. In the same manner as in Example 1, a test piece for evaluation was prepared, and a thermoluminescence curve was measured, and the luminance and current coefficient of the sample were measured. FIG. 2 and Table 2 show the measurement results together with Example 1 described above.

【0022】[0022]

【表2】 [Table 2]

【0023】図2において、符号11、21、22、2
3はそれぞれ実施例1、実施例2、実施例3、実施例4
の熱発光曲線を、符号12は比較例1の熱発光曲線を示
す。図2に示すように、1000℃で熱処理した実施例
1の蛍光体試料が最も低い熱発光強度を示している。す
なわち、実施例1の試料が結晶中の欠陥密度が小さく良
好である。実施例1と同様に、前記比較例1と実施例2
〜4との熱発光曲線の積分強度比を求めると、実施例
2、3及び4はそれぞれ前記比較例1の80%、71%
及び66%であった。また、輝度については表2に示す
ように、1000℃で熱処理した実施例1の試料が最も
高い輝度を示している。比較例2及び比較例3として熱
処理温度のみを850℃、1150℃として同様に作製
した試料の輝度は、熱処理をしていない前記比較例1と
ほぼ同等の値となっている。また電流係数の値は輝度と
類似した傾向、すなわち1000℃で熱処理した実施例
4の試料が最も高い電流係数を示し、処理温度が低すぎ
ても高すぎても好ましくない。これらの実験結果から、
熱処理温度が蛍光体の発光特性改善に大きく寄与してい
ることが明らかになった。蛍光体の熱処理温度範囲は8
50℃より高く1150℃より低い範囲、好ましくは9
00℃から1100℃の範囲が良いことがわかる。
In FIG. 2, reference numerals 11, 21, 22, 2
3 is Example 1, Example 2, Example 3, and Example 4 respectively.
The reference numeral 12 indicates the thermoluminescence curve of Comparative Example 1. As shown in FIG. 2, the phosphor sample of Example 1 heat-treated at 1000 ° C. has the lowest thermoluminescence intensity. That is, the sample of Example 1 has a small defect density in the crystal and is excellent. Comparative Example 1 and Example 2 as in Example 1.
When the integrated intensity ratios of the thermoluminescence curves of Comparative Examples 1 to 4 were determined, Examples 2, 3 and 4 were 80% and 71% of Comparative Example 1 respectively.
And 66%. As shown in Table 2, the sample of Example 1 heat-treated at 1000 ° C. showed the highest luminance. The luminances of the samples manufactured in the same manner as Comparative Examples 2 and 3 except that only the heat treatment temperature was set to 850 ° C. and 1150 ° C. were almost the same as those of Comparative Example 1 not subjected to the heat treatment. Further, the current coefficient value has a tendency similar to the luminance, that is, an example in which the heat treatment is performed at 1000 ° C.
The sample No. 4 shows the highest current coefficient, and it is not preferable that the processing temperature is too low or too high. From these experimental results,
It became clear that the heat treatment temperature greatly contributed to the improvement of the light emission characteristics of the phosphor. The heat treatment temperature range of the phosphor is 8
In the range above 50 ° C. and below 1150 ° C., preferably 9
It turns out that the range of 00 ° C to 1100 ° C is good.

【0024】以上のように、実施例1に代表される本実
施例のユーロピウム付活酸硫化イットリウム(Y2O2S:Eu
3+)蛍光体は、制御された雰囲気内で熱処理を行うこと
により未処理のものに比べて欠陥密度が大幅に低減され
ており、また約5%輝度が高く、電流係数も約2%高
い。
As described above, the europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu) of this embodiment represented by the first embodiment
3+ ) The phosphor has a significantly reduced defect density compared to the untreated one by performing a heat treatment in a controlled atmosphere, and has about 5% higher luminance and about 2% higher current coefficient. .

【0025】(実施例5〜8)実施例1と同様にして蛍
光体を合成し、合成後のアルゴンガス気流中における熱
処理温度を1000℃とし、アルゴンガスに対する酸素
の混合比率のみを変えた試料を実施例5〜8として作製
した。なお、この一連の実験においては、アルゴンガス
は純化器を通して微量に含まれる酸素を0.1%以下に
し、この後に所定量の酸素を混合した。酸素/アルゴン
の混合比率は、流量比から求めた体積比とした。実施例
1と同様にして、評価用テストピースを作製し熱発光曲
線の測定と試料の輝度及び電流係数とを測定した。測定
結果を図3及び表3に示す。
(Examples 5 to 8) Samples in which a phosphor was synthesized in the same manner as in Example 1, the heat treatment temperature in the stream of argon gas after synthesis was 1000 ° C, and only the mixing ratio of oxygen to argon gas was changed. Were produced as Examples 5 to 8. In this series of experiments, the amount of oxygen contained in a trace amount of argon gas was reduced to 0.1% or less through a purifier, and thereafter, a predetermined amount of oxygen was mixed. The mixing ratio of oxygen / argon was a volume ratio obtained from the flow ratio. In the same manner as in Example 1, a test piece for evaluation was prepared, and a thermoluminescence curve was measured, and the luminance and current coefficient of the sample were measured. The measurement results are shown in FIG.

【0026】[0026]

【表3】 [Table 3]

【0027】図3において、符号31、32、33、3
4はそれぞれ実施例5、実施例6、実施例7、実施例8
の熱発光曲線を、符号12は比較例1の熱発光曲線を示
す。図3の熱発光曲線に示すように、酸素/アルゴンの
混合比が0.05で熱処理した実施例8の試料が最も低
い熱発光強度を示しており、結晶中の欠陥密度が小さい
ことがわかる。実施例1〜4と同様に、熱発光曲線の積
分強度を比較例1と比べると、実施例5、6、7及び8
はそれぞれ77%、66%、43%及び54%であっ
た。また、表3に示す相対輝度のデ−タから、同じく酸
素/アルゴンの混合比が0.050で熱処理した実施例
7の試料が最も高い輝度を示している。比較例4及び比
較例5として同時に作製した試料の輝度は、熱処理をし
ていない比較例1と同等もしくはそれ以下の値となって
おり、熱処理の効果を発現していない。また電流係数の
値を見ると、輝度の傾向と類似した結果となった。これ
らの結果から、熱処理する際の雰囲気における酸素濃度
が発光特性改善に大きく寄与していることが判り、酸素
/アルゴンの混合比は0.002から0.1が好ましい。
In FIG. 3, reference numerals 31, 32, 33, 3
4 is Example 5, Example 6, Example 7, and Example 8 respectively.
The reference numeral 12 indicates the thermoluminescence curve of Comparative Example 1. As shown in the thermoluminescence curve of FIG. 3, the sample of Example 8 heat-treated at a mixing ratio of oxygen / argon of 0.05 showed the lowest thermoluminescence intensity, indicating that the defect density in the crystal was small. . As in Examples 1 to 4, when the integrated intensity of the thermoluminescence curve was compared with Comparative Example 1, Examples 5, 6, 7, and 8 were compared.
Were 77%, 66%, 43% and 54%, respectively. Also, from the relative luminance data shown in Table 3, the sample of Example 7 which was heat-treated at a mixing ratio of oxygen / argon of 0.050 also showed the highest luminance. The brightness of the samples manufactured simultaneously as Comparative Examples 4 and 5 was equal to or lower than that of Comparative Example 1 which was not subjected to the heat treatment, and the effect of the heat treatment was not exhibited. Looking at the value of the current coefficient, the result was similar to the tendency of the luminance. From these results, it is understood that the oxygen concentration in the atmosphere at the time of the heat treatment greatly contributes to the improvement of the emission characteristics, and the mixing ratio of oxygen / argon is preferably 0.002 to 0.1.

【0028】以上のように、実施例5〜8に示すように
ユーロピウム付活酸硫化イットリウム(Y2O2S:Eu3+)蛍
光体は、酸素/アルゴンの混合比を制御した雰囲気中で
熱処理を行うことにより、熱処理を実施しない比較例1
の蛍光体に比べて欠陥密度が大幅に低減し、輝度を約5
%高く、電流係数を約2%高くすることができる。
As described above, as shown in Examples 5 to 8, the europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu 3+ ) phosphor was used in an atmosphere in which the mixture ratio of oxygen / argon was controlled. Comparative Example 1 in which no heat treatment was performed by performing heat treatment
The defect density is greatly reduced compared to the phosphor of
%, And the current coefficient can be increased by about 2%.

【0029】(実施例9)代表的な受像装置として陰極
線管(21インチカラーディスプレイ管)を用いて以下
の検討を行った。蛍光体材料は、上記実施例1で得た赤
色蛍光体(Y2O2S:Eu3+)と、市販の顔料付き青色蛍光体
(ZnS:Ag,Cl)及び緑色蛍光体(ZnS:Cu,Al)である。ま
た、前記比較例の蛍光体(熱処理なし)も別途陰極線管
を作製して同様に評価した。ここで蛍光膜は、通常ブラ
ウン管製造に用いられているスラリー法(ポリビニルア
ルコールと重クロム酸ナトリウムによる)で、膜重量が
約3.5mg/cmになるように形成した。作製した
ブラウン管断面の模式図を図4に示す。蛍光膜41はフ
ェースプレート42上に形成されている。ここで、蛍光
膜はブラックマトリックス43の隙間に赤色、緑色及び
青色蛍光体が区分されて形成されている。ネック管44
内の電子銃45から発せられる電子線は、偏向ヨーク4
6によって偏向を受け、色選別電極であるシャドウマス
ク47を通過しさらにアルミニウム蒸着膜48を貫いて
所定の発光色の蛍光体を励起する。ここで、赤色のみを
表示するように信号を加えて以下の測定を行った。蛍光
膜の輝度は、加速電圧27.5kV、照射電流200μ
A、照射面積427×320mmで測定した。照射面
積当りの電流は、約0.15μA/cmである。輝度
の測定結果を表4に示す。
(Embodiment 9) Using a cathode ray tube (21 inch color display tube) as a typical image receiving device, the following study was conducted. The phosphor materials were the red phosphor (Y 2 O 2 S: Eu 3+ ) obtained in Example 1 above, a commercially available blue phosphor with a pigment (ZnS: Ag, Cl) and a green phosphor (ZnS: Cu). , Al). In addition, the phosphor of the comparative example (without heat treatment) was separately manufactured and similarly evaluated. Here, the fluorescent film was formed so as to have a film weight of about 3.5 mg / cm 2 by a slurry method (using polyvinyl alcohol and sodium bichromate) generally used for the manufacture of a cathode ray tube. FIG. 4 shows a schematic view of a cross section of the produced cathode ray tube. The fluorescent film 41 is formed on the face plate 42. Here, the fluorescent film is formed such that red, green, and blue phosphors are divided into gaps in the black matrix 43. Neck tube 44
The electron beam emitted from the electron gun 45 in the deflecting yoke 4
The phosphor is deflected by 6 and passes through a shadow mask 47, which is a color selection electrode, and further passes through an aluminum deposition film 48 to excite a phosphor of a predetermined emission color. Here, the following measurement was performed by adding a signal so as to display only red. The luminance of the phosphor film was 27.5 kV for acceleration voltage and 200 μ for irradiation current.
A, Measurement was performed with an irradiation area of 427 × 320 mm 2 . The current per irradiation area is about 0.15 μA / cm 2 . Table 4 shows the measurement results of the luminance.

【0030】[0030]

【表4】 [Table 4]

【0031】本実施例カラーディスプレイ管と合成後の
熱処理を行っていない比較例1の蛍光体を蛍光膜にした
カラーディスプレイ管(比較例6)と比べると、本実施
例も輝度が約4%高い値を示した。また、前述の電流係
数で両者を比較すると、熱処理を行った本実施例陰極線
管の方が約2%が高い数値を示し、輝度飽和の度合いが
小さいことがわかる。
In comparison with the color display tube of the present embodiment and the color display tube of Comparative Example 1 in which the phosphor is not subjected to the heat treatment after synthesis (Comparative Example 6), the brightness of the present embodiment is also about 4%. It showed a high value. Comparing the two with the above-described current coefficient, the cathode ray tube of the present embodiment subjected to the heat treatment shows a higher value of about 2%, indicating that the degree of luminance saturation is smaller.

【0032】以上の実施例から、蛍光体合成後に特定の
酸素濃度の雰囲気において熱処理することにより、蛍光
体結晶中のトラップ密度を低減し、その結果蛍光体の輝
度を約5%、電流係数を約2%高くできることがわかっ
た。蛍光膜の輝度を高くできるので、高精細ディスプレ
イの画質を向上できる。なお、本発明はカラー陰極線管
を例に説明したが、これに限らず蛍光体を発光させる自
発光型の表示装置、例えばプラズマディスプレイやフィ
ールドエミッション型ディスプレイなどにも適用でき
る。
According to the above embodiment, the heat treatment is performed in an atmosphere having a specific oxygen concentration after the synthesis of the phosphor to reduce the trap density in the phosphor crystal. As a result, the luminance of the phosphor is reduced by about 5% and the current coefficient is reduced. It was found that it could be increased by about 2%. Since the brightness of the fluorescent film can be increased, the image quality of the high definition display can be improved. The present invention has been described by taking a color cathode ray tube as an example. However, the present invention is not limited to this, and can be applied to a self-luminous display device that emits a phosphor, for example, a plasma display or a field emission display.

【0033】[0033]

【発明の効果】本発明で得られた蛍光体は、熱処理を施
さない蛍光体に比べて約5%高い輝度を示した。また、
本発明の蛍光体の製造方法によれば、このような蛍光体
を容易に製造できることが判った。さらに、本発明の蛍
光体をカラー陰極線管に適用することにより、蛍光面の
輝度を高くでき、高品質の映像を表示できる。
According to the present invention, the phosphor obtained by the present invention showed about 5% higher luminance than the phosphor not subjected to the heat treatment. Also,
It has been found that such a phosphor can be easily produced according to the method for producing a phosphor of the present invention. Further, by applying the phosphor of the present invention to a color cathode ray tube, the luminance of the phosphor screen can be increased, and a high-quality image can be displayed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の蛍光体の熱発光強度の温度依存
性(グローカーブ)を示す図である。
FIG. 1 is a diagram showing the temperature dependence (glow curve) of the thermal emission intensity of a phosphor of an example of the present invention.

【図2】本発明実施例の蛍光体で熱処理温度を変えた試
料の熱発光強度の温度依存性(グローカーブ)を示す図
である。
FIG. 2 is a diagram showing the temperature dependence (glow curve) of the thermoluminescence intensity of a sample in which the heat treatment temperature is changed in the phosphor of the present invention.

【図3】本発明実施例の蛍光体で酸素に対するアルゴン
の混合比を変えた試料の熱発光強度の温度依存性(グロ
ーカーブ)を示す図である。
FIG. 3 is a diagram showing the temperature dependence (glow curve) of the thermoluminescence intensity of the sample of the phosphor of the present invention in which the mixing ratio of argon to oxygen is changed.

【図4】本発明の蛍光体を蛍光膜に用いてたカラー陰極
線管の一部断面模式図である。
FIG. 4 is a schematic partial cross-sectional view of a color cathode ray tube using the phosphor of the present invention for a phosphor film.

【符号の説明】[Explanation of symbols]

11‥‥熱処理した試料(実施例1)、12‥‥未処理
の試料(比較例1)、21‥‥900℃で熱処理した試
料(実施例2)、22‥‥950℃で熱処理した試料
(実施例3)、23‥‥1100℃で熱処理した試料
(実施例4)、31‥‥混合比0.002で熱処理した
試料(実施例6)、32‥‥混合比0.01で熱処理し
た試料(実施例7)、33‥‥混合比0.05で熱処理
した試料(実施例8)、34‥‥混合比0.1で熱処理
した試料(実施例9)、41‥‥蛍光膜、42‥‥フェ
ースプレート、43‥‥ブラックマトリックス、44‥
‥ネック管、45‥‥電子銃、46‥‥偏向ヨーク、4
7‥‥シャドウマスク、48‥‥Al蒸着膜。
11% heat-treated sample (Example 1), 12% untreated sample (Comparative Example 1), 21% heat-treated sample at 900 ° C (Example 2), 22 ° -950 ° C heat-treated sample (Example 2) Example 3), a sample heat-treated at 23-1100 ° C. (Example 4), a sample heat-treated at a 31 ° mixing ratio of 0.002 (Example 6), and a sample heat-treated at a 32 ° mixing ratio of 0.01. (Example 7), a sample heat-treated at 33 ° mixing ratio 0.05 (Example 8), a sample heat-treated at 34 ° mixing ratio 0.1 (Example 9), 41 ° fluorescent film, 42 ° {Face plate, 43} Black matrix, 44}
‥ neck tube, 45 ‥‥ electron gun, 46 ‥‥ deflection yoke, 4
7 ‥‥ Shadow mask, 48 蒸 着 Al deposited film.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ユーロピウムを発光センタとしたイットリ
ウム、酸素及び硫黄を基本構成元素とする蛍光体におい
て、 不活性ガス雰囲気で加熱処理する前に測定した温度範囲
80K〜400Kの熱発光強度曲線の積分強度(I
と、前記活性ガス中に酸素を体積比で0.2未満含有す
る雰囲気中で、850℃を越え1150℃未満で1時間
加熱処理した後に測定した温度範囲80K〜400Kに
おける熱発光強度曲線の積分強度(I)、との比(I
2/I)が0.8以下であることを特徴とする蛍光体。
1. An integration of a thermoluminescence intensity curve in a temperature range of 80 K to 400 K measured before heat treatment in an inert gas atmosphere in a phosphor containing europium as a light emission center and yttrium, oxygen and sulfur as basic constituent elements. Strength (I 1 )
And integration of a thermoluminescence intensity curve in a temperature range of 80 K to 400 K measured after heating for 1 hour at a temperature exceeding 850 ° C. and less than 1150 ° C. in an atmosphere containing oxygen in a volume ratio of less than 0.2 in the active gas. Intensity (I 2 ), and the ratio (I
2 / I 1 ) is 0.8 or less.
【請求項2】ユーロピウムを発光センタとしたイットリ
ウム、酸素及び硫黄を基本構成元素とする蛍光体の製造
方法において、原料を混合した後に空気中で加熱処理す
る前工程と、不活性ガス雰囲気で加熱処理する後工程と
を有することを特徴とする蛍光体の製造方法。
2. A method for producing a phosphor containing yttrium, oxygen and sulfur as basic constituent elements using europium as a light-emitting center, a pre-process in which raw materials are mixed and a heat treatment in air, and a heating process in an inert gas atmosphere. And a post-processing step.
【請求項3】請求項2に記載の蛍光体の製造方法におい
て、前記後工程が不活性ガスが酸素を含有していて、前
記不活性ガスに対する酸素の体積比が0.2未満であっ
て、加熱処理温度が850℃を越え1150℃未満であ
ること特徴とする蛍光体の製造方法。
3. The method for producing a phosphor according to claim 2, wherein the inert gas contains oxygen and the volume ratio of oxygen to the inert gas is less than 0.2. And a heat treatment temperature of more than 850 ° C. and less than 1150 ° C.
【請求項4】請求項3に記載の蛍光体の製造方法におい
て、前記後工程で不活性ガスが含有する酸素の体積比が
0.002〜0.1であって、加熱処理温度が900℃〜
1100℃であることを特徴とする蛍光体の製造方法。
4. The method for producing a phosphor according to claim 3, wherein the volume ratio of oxygen contained in the inert gas in the subsequent step is 0.002 to 0.1, and the heat treatment temperature is 900 ° C. ~
A method for producing a phosphor, wherein the temperature is 1100 ° C.
【請求項5】内面に赤、緑、青の蛍光体を有する蛍光膜
を形成したフェースプレートと、該蛍光膜に近接して配
置した色選別電極と、該蛍光膜に向けて電子線を発する
電子銃と、前記電子線を偏向する偏向ヨークとを備えた
カラー陰極線管において、前記蛍光体が、ユーロピウム
を発光センタとしたイットリウム、酸素及び硫黄を基本
構成元素とし、かつ前記蛍光体を不活性ガス雰囲気で加
熱処理する前に測定した温度範囲80K〜400Kの熱
発光強度曲線の積分強度(I)と、前記蛍光体を前記
活性ガス中に酸素を体積比で0.2未満含有する雰囲気
中で、850℃を越え1150℃未満で1時間加熱処理
した後に測定した温度範囲80K〜400Kにおける熱
発光強度曲線の積分強度(I)、との比(I2/I
が0.8以下であることを特徴とするカラー陰極線管。
5. A face plate in which a fluorescent film having red, green, and blue phosphors is formed on an inner surface, a color selection electrode disposed close to the fluorescent film, and an electron beam emitted toward the fluorescent film. In a color cathode-ray tube including an electron gun and a deflection yoke for deflecting the electron beam, the phosphor is composed of yttrium, oxygen and sulfur having europium as a light emission center as basic constituent elements, and the phosphor is inert. An integrated intensity (I 1 ) of a thermoluminescence intensity curve in a temperature range of 80 K to 400 K measured before performing heat treatment in a gas atmosphere; and an atmosphere containing the phosphor in the active gas in a volume ratio of less than 0.2 in oxygen. And the ratio (I 2 / I 1 ) to the integrated intensity (I 2 ) of the thermoluminescence intensity curve in a temperature range of 80 K to 400 K measured after heating at 850 ° C. to less than 1150 ° C. for 1 hour.
Is 0.8 or less.
JP11102164A 1999-04-09 1999-04-09 Fluorescent substance, its production, and color cathode ray tube Pending JP2000290649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11102164A JP2000290649A (en) 1999-04-09 1999-04-09 Fluorescent substance, its production, and color cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11102164A JP2000290649A (en) 1999-04-09 1999-04-09 Fluorescent substance, its production, and color cathode ray tube

Publications (1)

Publication Number Publication Date
JP2000290649A true JP2000290649A (en) 2000-10-17

Family

ID=14320083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11102164A Pending JP2000290649A (en) 1999-04-09 1999-04-09 Fluorescent substance, its production, and color cathode ray tube

Country Status (1)

Country Link
JP (1) JP2000290649A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074403A1 (en) * 2003-02-20 2004-09-02 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
WO2004074402A1 (en) * 2003-02-20 2004-09-02 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
WO2004074404A1 (en) * 2003-02-20 2004-09-02 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
US7223987B2 (en) 2003-02-20 2007-05-29 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
US7486010B2 (en) 2003-02-20 2009-02-03 Panasonic Corporation Plasma display device and method of preparing phosphor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074403A1 (en) * 2003-02-20 2004-09-02 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
WO2004074402A1 (en) * 2003-02-20 2004-09-02 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
WO2004074404A1 (en) * 2003-02-20 2004-09-02 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
EP1541658A1 (en) * 2003-02-20 2005-06-15 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
CN1296456C (en) * 2003-02-20 2007-01-24 松下电器产业株式会社 Process for producing phosphor and plasma display panel unit
US7176627B2 (en) 2003-02-20 2007-02-13 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
US7192325B2 (en) 2003-02-20 2007-03-20 Matsushita Electric Industrial Co., Ltd Process for producing phosphor and plasma display panel unit
US7223987B2 (en) 2003-02-20 2007-05-29 Matsushita Electric Industrial Co., Ltd. Process for producing phosphor and plasma display panel unit
EP1541658A4 (en) * 2003-02-20 2008-12-17 Panasonic Corp Process for producing phosphor and plasma display panel unit
US7486010B2 (en) 2003-02-20 2009-02-03 Panasonic Corporation Plasma display device and method of preparing phosphor

Similar Documents

Publication Publication Date Title
JP5549001B2 (en) Phosphor and production method thereof
JP4836229B2 (en) Phosphor and light emitting device
JP2000073053A (en) Phosphor and cathode-ray tube using the same
KR20080003435A (en) Novel materials used for emitting light
JP2003013059A (en) Color cathode ray tube and red phosphor to be used therein
Melato et al. Effect of Ho3+ concentration on the structure, morphology and optical properties of Ba0. 5Mg0. 5Al2O4 nanophosphor
Zhai et al. Annealing temperature dependent afterglow of Tb3+ doped CaAl2O4
JP3469425B2 (en) Phosphor and manufacturing method thereof
US7394191B2 (en) Image display device having a long-life phosphor layer
US5707549A (en) Phosphor, manufacturing method therefor, and cathode-ray tube using the same
JP2000290649A (en) Fluorescent substance, its production, and color cathode ray tube
JP4635184B2 (en) Zinc oxide phosphor, method for producing the same and light emitting device
CN106905962A (en) Green long afterglow luminescent material with Zn and O defect as the centre of luminescence
JP4205936B2 (en) Aluminate phosphor, method for producing the same, phosphor paste composition, and vacuum ultraviolet light-emitting device
JP2000226577A (en) Fluorescent material
US11142691B2 (en) Rare earth aluminate fluorescent material, and method for producing the same
US6623661B2 (en) Method for producing photostimulable phosphor
JPH0881220A (en) Rare earth oxisulfide,its preparation and use of it as emission group
JP2003231878A (en) Zinc oxide-base composition emitting yellowed light and method for producing the same
JPH11106749A (en) Phosphor for active light-emitting liquid display element
Zhai et al. Bluish-green afterglow and blue photoluminescence of undoped BaAl 2 O 4
JP2002302672A (en) Rare earth oxysulfide phosphor and its evaluation method
JP2002053855A (en) Color cathode ray tube and fluorescent substance for color cathode ray tube
JP3199961B2 (en) Phosphor, its manufacturing method and cathode ray tube
CN116376551B (en) Near-infrared fluorescent powder, preparation method thereof and near-infrared light-emitting device